

Analytic Data Stores: Should I Really Use a Database? November 13, 2018

Intro

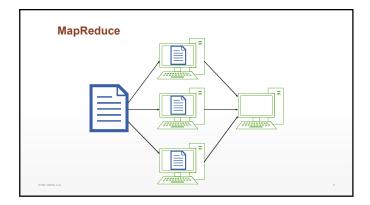
Who are we?

What is this session about?

- You will know when to use databases over Hadoop, which is vast majority of use cases
- You will be able to choose the right database for your use case, since databases are no longer a "commodity"
- 3. You will be able to model traditional data into a Document Databases

Do you represent any vendors?

Intro Poll


- Q1. Hadoop is:
 - a) A filesystem that shards data across commodity hardware b) A database that shards data across commodity hardware c) A new database for the cloud d) A new twist on the hula hoop
- Q2. Parquet is:
 - a) A new floor style
 - b) A data storage format in Hadoop

 - c) A query language for Hadoop d) A new database offering in AWS

	1
Intro Poli	
Q3. JSON is:	
a) Just Some Other Noobie b) JavaScript Object Notation	
c) Java Standard Object Notation	
d) Jupyter Served On Network	-
Q4. Which type of data format includes markup?	
a) XML b) JSON	
c) Tables	-
d) Avro	
,	
SINC DASS LLC 4	
	•
Intro Poli	
Q5. What are NoSQL databases?	
a) Databases that aren't SQL Server	
b) Non-mainstream databases	
c) New relational databases that query data with another	
language	
d) Databases that do not store data in traditional tables	
Q6. What is true about relational databases?	
a) Only organize data by row within a table	
b) Generally scale horizontally	
c) Generally scale vertically	
d) Do not offer features found in other types of databases	
SMC OKIS LLC 5	
STINL UNIO LLL	
	1
Intro Poli	
Q7. Which statement is true?	
a) A column-oriented database and a wide column store are the same	
b) All databases of a certain type generally have the same features	
c) There are standard guery languages for NoSQL databases like SQL	
d) JavaScript is a typical language used with NoSQL databases	
Q8. Document Databases store data primarily in:	
a) Excel documents	
b) Word documents c) JSON documents	
d) ORC documents	
_, 5.10 4554115115	
SYNC OMRIS LLC 6	

What's the difference?	Database
• Data Storage	Data Storage
 Compute 	Compute
Hadoop logo courtiesy of Apache Software Foundation and displayed under Apache Lice	ense, Version 2.0
SYNC DASS LLC	7

Hadoop Particulars Data Storage • Hadoop Distributed Files System (HDFS) Compute • MapReduce • Spark Key takeaway: Both data storage and compute are distributed

MapReduce Shortcomings	
It can be really slow!	
It must be possible to split the computation into parts!	
STINE CARSIS LLC.	
MapReduce Alternative?	
And yet	
Requires gobs of memory Easy to overwhelm servers Isn't great with small files	
• Easy to overwhelm servers • Isn't great with small files	-
Much faster than MapReduce!	
muon ruotoi triun mupricuuosi	
Spark logo courtesy of Apache Software Foundation and displayed under Apache License, Version 2.0	
SMC DMS LLC 11	
_	
Hadoop Poll	
Q1. Which of the following is not associated with Hadoop:	-
a) MapReduce b) HDFS	
c) WiredTiger d) Spark	
Q2. Hadoop is: a) A database	
 b) A distributed file and compute system c) Runs on specialized hardware 	
d) Stores data in many small files	
Q3. Hadoop works best for: a) Massively large (100s TB+) sets of data	-
b) Quick aggregations of data c) Quick manipulation of data	
d) Creating organized data for analytics	

Case Study - Why a Database over Hadoop?

Data

- Several main data sets with additional lookup tables
- 100,000s of new entries daily

Uses

- Perform CRUD on the data
- Run reports, perform analysis

Key takeaway: Your data should be more than just a parking lot of static data, it should be a living / breathing data asset that is managed and curated.

SYNC OASIS LL

Case Study

Clean Data

• Train ML Model

X

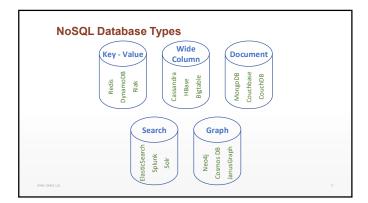
Database

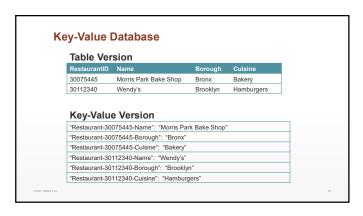
- Copy from Hadoop
- Clean Data
- Train ML Model
- Test ML Model
- Predict on new data
- Copy back to Hadoop

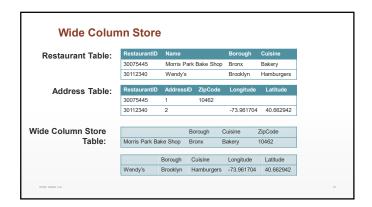
he Software Foundation and displayed under Apache License, Version

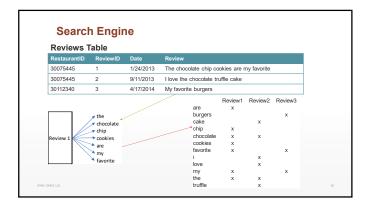
Hadoop vs Databases

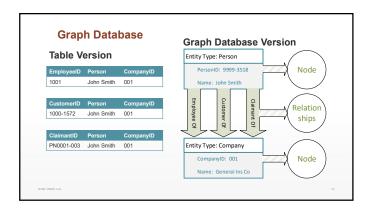
- UD not generally supported
- Joining non-trivial
- Supports *HUGE* data
- Supports columnar data


Database


- CRUD fully supported
- Joining fully supported
- Can support *HUGE* data
- Can support columnar


Do you really have Petabytes of data?


Hadoop logo courtesy of Apache Software Foundation and displayed under Apache License, Version 2.0


Ca	ase Study Discussion	
Kej	y takeaways	
	Databases are often the right approach, the key is choosing the right database for your needs	
	Column based versus row based tables are usually superior for analytic use cases	
		10

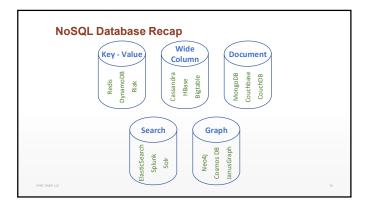


Table Version			JSON Version	
EmployeeID 1001	Person John Smith	HireDate 1/1/2015	{ "EmployeeID": 1001, "Person": "John Smith", "HireDate": 2015-01-01 }	

Notes – NoSQL Database Recap Key takeaways Need to choose the right NoSQL database type Within each database type, product capabilities can vary significantly by vendor Choosing right database is important, as there is no universal "SQL" A mixed model approach may be appropriate (i.e. a database that uses more than one NoSQL database type) Storing the data "twice" may be appropriate (within a database, between database types) How you store the data can be different from how you use the data

Notes - NoSQL Database Use Cases

- Key-Value Database

 Store session data for live applications, store lookups
 Real-time ingest layer for other databases

- Wide Column Store
 Massive ingestion of data (i.e. IOT / telematics)
 A two-dimensional key value store (i.e. organize key-values into a record)

- Find records that match criteria without writing SQL
 Find information in unstructured fields, since every word is indexed

Graph Database
Fraud Detection, Recommendation Engine, Master Data Management, Social Network Graphs, Al and ML

- Document Database

 Customer 360 / Siloed data integration

 Flexible Schema within a structured data model

 Store hierarchical data or data with variable number of fields

Employee Data

1001-001-0589 Jane Smith Data Engineer Employee Number: Employee Name: Job Title: Business Address: Home Address:

1001 Cherry Way, Springfield, MO 65807 989 Arroyo Street, Springfield, MO 65801 XX/XX/XXXX

Date of Birth: XXX-XX-XXXX SSN:

Programming Languages: SQL, SAS, JavaScript, Python, Scala, Go

Employee Data in Tables

 EmployeeID
 Name
 Title
 Date of Birth
 SSN

 1001-001-0589
 Jane Smith
 Data Engineer
 XVXXVXXXXX
 XXX-XXX-XXXXX
 Home 989 Arroyo Street Springfield MO 65801 1001-001-0589 002

EmployeeID	LanguageID
1001-001-0589	001
1001-001-0589	002
1001-001-0589	003
1001-001-0589	004
1001-001-0589	005
1001-001-0589	006

LanguageID	Name	
001	SQL	Database
002	SAS	SAS
003	JavaScript	Browser
004	Python	PVM
005	Scala	JVM
006	Go	N/A
	001 002 003 004 005	001 SQL 002 SAS 003 JavaScript 004 Python 005 Scala

9

Employee Data in Document { "EmployeeNumber": "1001-001-0589", "EmployeeName": "Jane Smith", "JobTitle": "Data Engineer", "Address": [{ "Type": "Business", "Street": "1001 Cherry Way", "City": "Springfield", "State": "MO", "ZipCode": "65807"), { "Type": "Home", "Street": "989 Arroyo Street", "City": "Springfield", "State": "MO", "ZipCode": "65801")], "Date of Birth": XXXX-XXX-XX, "SSN": "XXX-XXXXXX", "Programming Languages": ["SQL", "SAS", "JavaScript", "Python", "Scala", "Go"] }

Propert	, Analy	ic				Methods					
AY	12	24	36	48	60	AY	Cur	CDF	LDF Ult	EP	LR
2013	100	125	135	138	138	2013	138	1.000	138	200	69.0%
2014	150	185	220	225		2014	225	1.000	225	300	75.0%
2015	135	190	200			2015	200	1.025	205	350	58.6%
2016	175	235				2016	235	1.138	267	400	66.8%
2017	140					2017	140	1.490	209	375	55.7%
Factors	12-24	24-36	36-48	48-Ult							
2013	1.250	1.080	1.022	1.000		AY	ELR	Unpaid	BF UIt		Sel Ult
2014	1.233	1.189	1.023			2013	60%	0%	138		138
2015	1.407	1.053				2014	60%	0%	225		225
2016	1.343					2015	60%	2%	205		205
						2016	60%	12%	264		265
Avg	1.308	1.107	1.022	1.000		2017	60%	33%	214		215
Wtd	1.313	1.110	1.023	1.000							
Selected	1.310	1.110	1.025	1.000							
CDF	1.490	1.138	1.025	1.000							

Document Exercise "Answer"	
See the relevant article on my LinkedIn feed: www.linkedin.com/in/jeff-white-syncoasis/detail/recent-activity/posts	
one over up	