

ONTARIO ACCIDENT BENEFITS

Overview of the Coverage

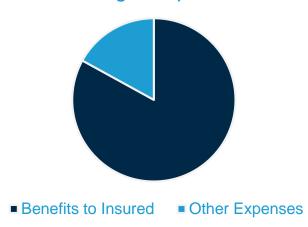
- First party no-fault auto injury insurance
- Medical and income replacement benefits with standard application forms
- Injuries classified as minor, non-minor, or catastrophic
- Regulatory limits on medical payments for each class

COSTS OF LEGAL REPRESENTATION

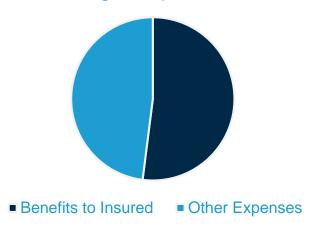
Understanding customer "pain points"

Expenses on minor claims are significantly higher when claimants take on legal representation

Without Legal Representation



With Legal Representation



DISCUSSION POINTS

What actions might the claims team take to reduce claimants' reliance on legal representation?

How might a predictive model assist with this initiative?

CENSORED DATA CHALLENGES

Will Claim 2 eventually become represented?

CLAIM ID	CLAIM STATUS	DAYS OPEN	LEGAL REPRESENTATION?	WHEN DID LEGAL REP JOIN?
1	Open	200	Yes	Day 7
2	Open	10	No	NA
3	Closed	450	Yes	Day 30
4	Closed	250	No	NA

POLLING QUESTION

You are assembling lists of eligible predictors for two models by considering ASOP 12 criteria.

One model will be used for pricing, and one will be used to support claims operations.

Which characteristic will be the biggest driver of differences between the two lists?

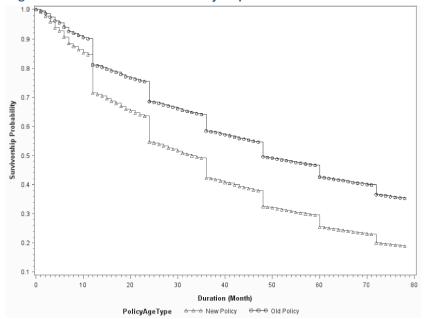
- Relationship between risk characteristics and expected outcomes
- b. Objectivity
- c. Practicality
- d. Industry / business practices

SOURCE MATERIAL

Policy Retention Analysis

- Builds on Estimating Insurance Attrition
 Using Survival Analysis by Luyang Fu
 and Hongyuan Wang
- Model the probability that a policy will be in force greater than X days.
- Right censoring: if a policy has not been cancelled, and has been in force for Y days, its cancellation time is greater than Y.

Figure 4. Survival curves for new vs. 5-year policies



PROPORTIONAL HAZARDS

Approach due to Cox (1972)

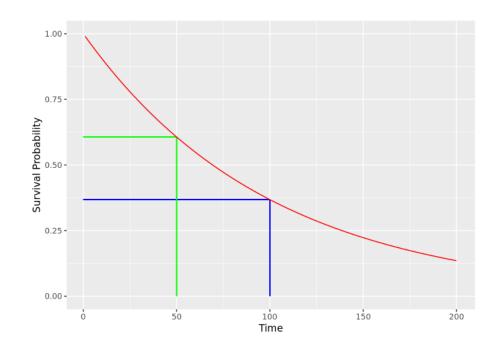
- Survival function: $S(t) = P(T \ge t)$
- Hazard rate: $h(t) = -\frac{S'(t)}{S(t)}$
- $S(t) = \exp(-\int_0^t h(t)dt)$
- Cox: $h(t) = h_0(t) \exp(\beta x)$

Think: Kaplan-Meier

Think: GLM

ADVANTAGES OF COX MODELS

- Producing S(t) provides flexibility in how we define "prediction"
- More responsive to recent data
- Similar to familiar actuarial techniques



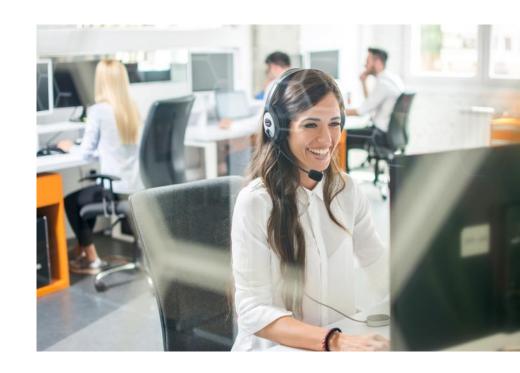
IMPLEMENTATION OPTIONS

- R "survival" package
 (+ "survminer" for plots)
- Python "lifelines" package
- SAS "PHREG" procedure
- SPSS

MODEL CONSTRUCTION RECIPE

$$h(t) = h_0(t) \exp(\beta x)$$

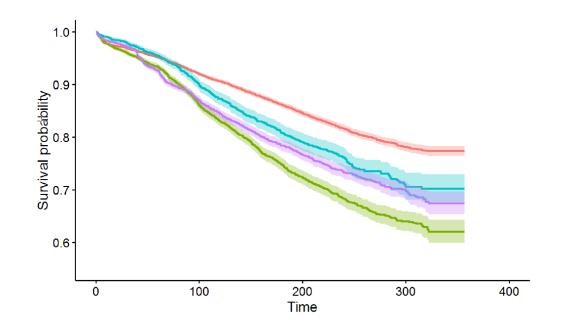
- 1. Select x and β using "the usual" linear modelling approaches
- 2. Test proportionality assumption
- 3. If not proportional: fit a strata (different $h_0(t)$ for each level of the variable)



PROPORTIONALITY CHECK

The quick check

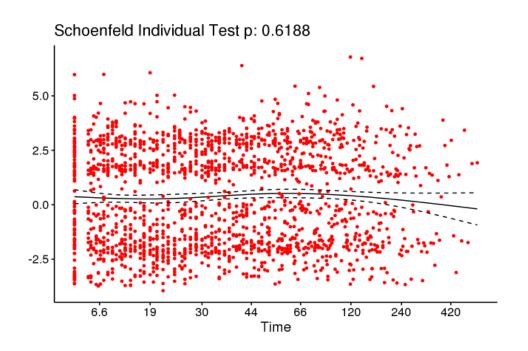
- Produce a survival curve for each level of a variable
- Look for qualitative differences in the shape of the curve (e.g. crossing) which indicate non-proportionality



PROPORTIONALITY CHECK

The rigorous check

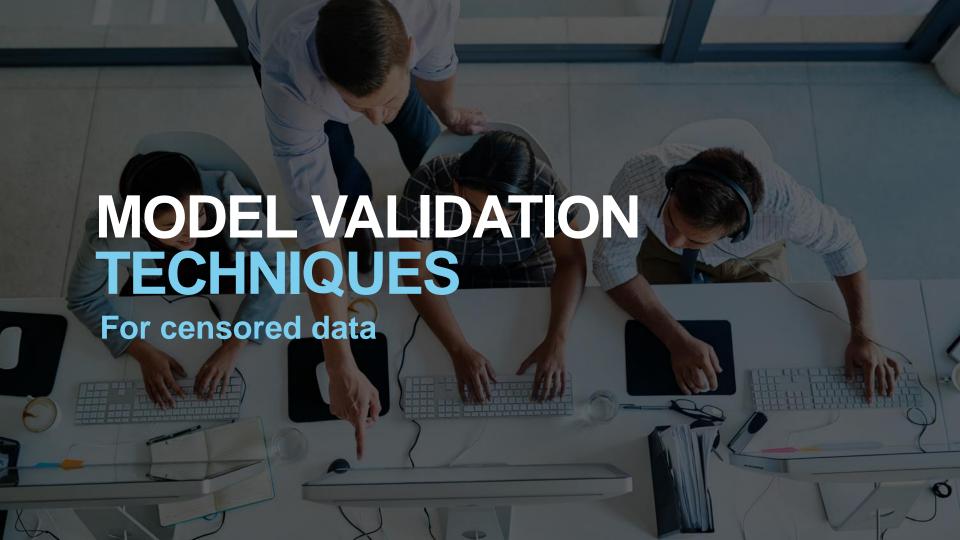
- Schoenfeld Residuals Test
- Plot residuals vs. time
- Patterns in the residuals indicate non-proportionality



DISCUSSION POINTS

What types of factors would you investigate as possible predictors in a legal representation model?

What impact do you hypothesize the factors might have on the risk of legal representation?



VALIDATION CHALLENGES

How would you validate the model on holdout data?

CLAIM ID	CLAIM STATUS	DAYS OPEN	LEGAL REP?	MODEL PREDICITION	FLAGGED BY MODEL?
1	Open	200	Yes	0.75	Yes
2	Open	10	No	0.65	Yes
3	Closed	450	Yes	0.3	No
4	Closed	250	No	0.2	No

POLLING QUESTION

Which of the following holdout testing methods will need to change to reflect censored data?

- a. False positive / false negative rates
- b. Gini coefficient
- c. Quantile plots

Sort based on model prediction **Group** into quantiles

Average model prediction

VS

Average observed value

Total expected events to date vs

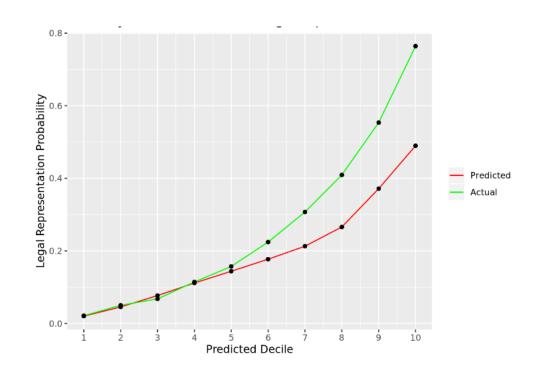
Actual number of events

Compare graphically

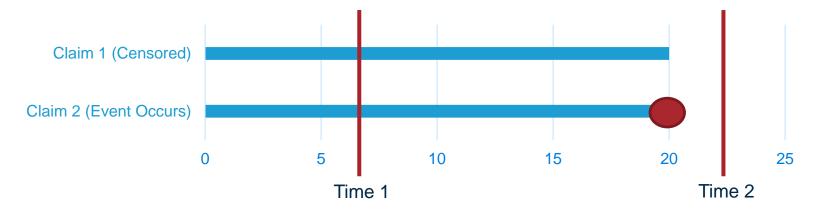
MODIFIED QUANTILE PLOT

Calculated on holdout data

- Good segmentation of high vs. low risk of legal representation
- Underestimates the absolute probability of legal representation
- Appropriate for use cases involving flagging the top risks



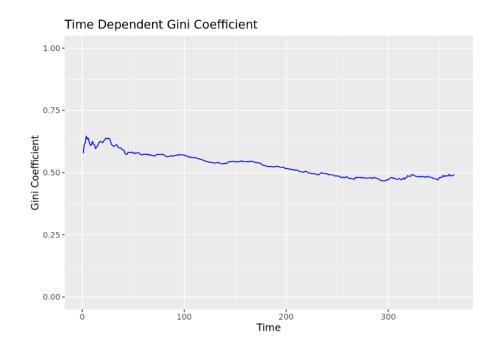
TIME-DEPENDENT SENSITIVITY AND SPECIFICITY



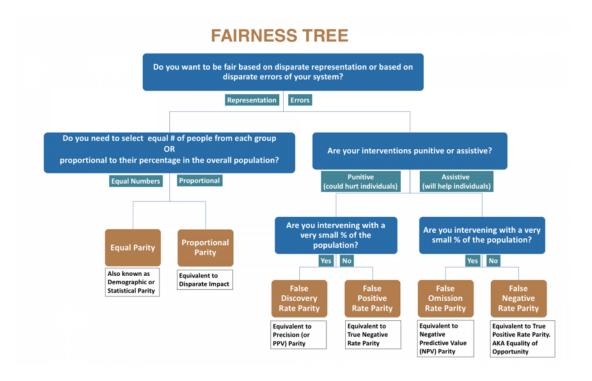
	Time 1	Time 2
Cumulative sensitivity	Claim 2 Negative	Claim 2 Positive
Dynamic specificity	Claim 1 Negative	Claim 1 Excluded

TIME-DEPENDENT GINI/AUROC

- Fix a time t
- Apply the CS / DS Rules
- Calculate Gini / AUROC
- Repeat for each t



BIAS AND FAIRNESS AUDIT



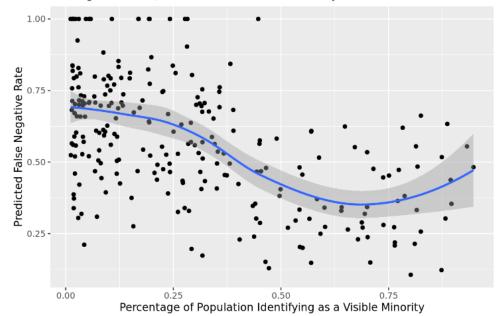
Source: https://dsapp.uchicago.edu/projects/aequitas/

BIAS AND FAIRNESS AUDIT

Our modifications

- Census averages
- Scatterplot should not show an increasing trend
- Used predicted false negative rate

Predicted False Negative Rate by FSA Training Data Audit; FSAs with at least 10 claims only



Thank you

economical

Economical Insurance includes the following companies: Economical Mutual Insurance Company, Family Insurance Solutions Inc., Sonnet Insurance Company, Petline Insurance Company. ©2019 Economical Insurance. Economical Insurance are registered trademarks of Economical Mutual Insurance Company. All Economical intellectual property belongs to Economical Mutual Insurance Company. All other intellectual property is the property of their respective owners.