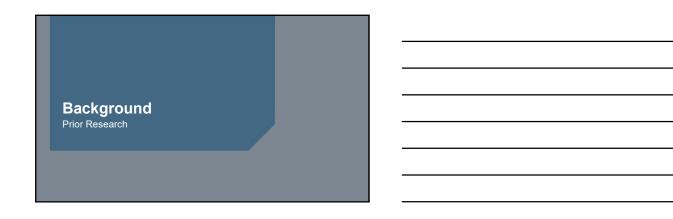
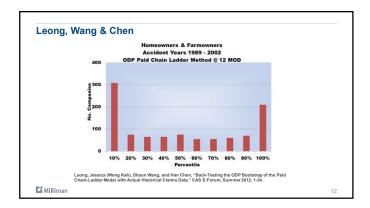

1 Background		
2 Analysis Summary		
Model Limitations		
Model Projections – Are they Unbiased?		
Proposed Adjustments		
Conclusions		
7 Claim Variability Benchmarks		





Meyers & Shi

"...study suggests that there might be environmental changes that no single model can identify."

"If this continues to hold, the actuarial profession cannot rely solely on stochastic loss reserve models to manage its reserve risk."

MIIIIman

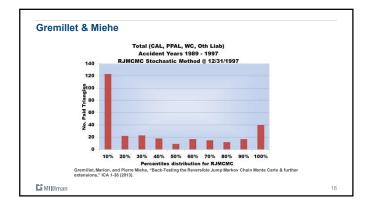

Leong, Wang & Chen

"...the popular ODP bootstrap of the paid chain-ladder method is underestimating reserve risk."

"...the bootstrap model does not consider systemic risk, or, to put it another way, the risk that future trends in the claims environment – such as inflation, trends in tort reform, legislative changes, etc. – may deviate from what we saw in the past."

Leong, Jessica (Weng Kah), Shaun Wang, and Han Chen, "Back-Testing the ODP Bootstrap of the Paid Chain-Ladder Model with Actual Historical Claims Data." CAS E-Forum, Summer 2012, 1-34.

MIIIIman


Leong, Wang & Chen

"...it appears that the incurred bootstrap model is also underestimating the risk of falling in these extreme percentiles."

Note: This is not the same incurred ODP bootstrap model as described in the Shapland Monograph.

Leong, Jessica (Weng Kah), Shaun Wang, and Han Chen, "Back-Testing the ODP Bootstrap of the Pair

Milliman Milliman

Gremillet & Miehe

"Actuary in the box" dream for stochastic reserves valuation not yet happening

Gremillet, Marion, and Pierre Miehe, "Back-Testing the Reversible Jump Markov Chain Monte Carlo & furthe extensions," ICA 1-38 (2013).

MIJIIman

Analysis Summary

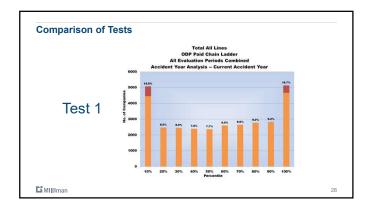
item	Meyers & Shi	Leong, Wang & Chen	Gremillet & Miehe	Shapland
Data	50 Companies	21 (MPL) to 78 (PPAL) Companies	?	1,679 Companies
Evaluations	1	11	5	9
Models	2	2	3	8
Lines of Business	1	9	4	16
Triangle Sets	50	~4,850	296	30,707

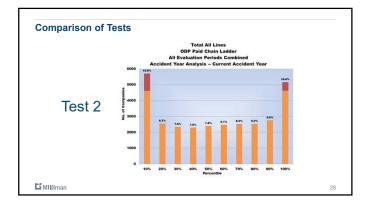
Analysis Details

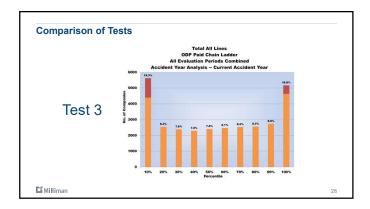
- ODP Bootstrap
- Paid Chain Ladder
- Incurred Chain Ladder
- Paid Bornhuetter-Ferguson
- Incurred Bornhuetter-Ferguson
- Paid Cape Cod
- Incurred Cape Cod
- Weighted
- Mack Bootstrap
 - Paid Chain Ladder

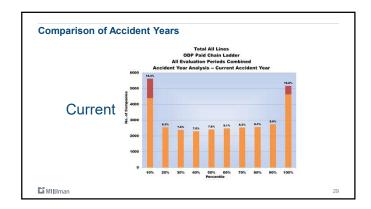
MIIIImar MIIII

Analysis Details

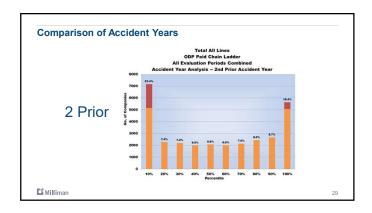

- Beginning Data
- NAIC Schedule P 4,796 Companies (& Groups)
- Remove all triangles without 10 years of data (Paid, Incurred, etc.)
- Other data quality tests → "quality data"
- Test whether next 9 years are identical → "complete data"
- Test Data
- Total of 75,000+ LOBs with "quality data"
- 1,679 Companies with at least 1 Schedule P LOB of "complete data"
- Total of 30,707 LOBs with "complete data"
- 2,104 Companies with at least 2 Schedule P LOBs of "quality data"
- Approx. 27,000 LOBs with at least 2 for same Company

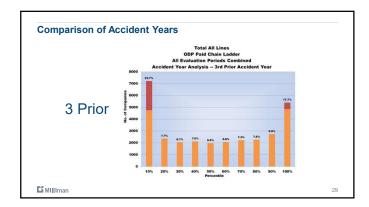

L' Milliman

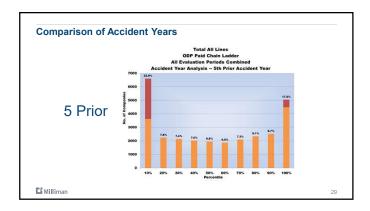

_		

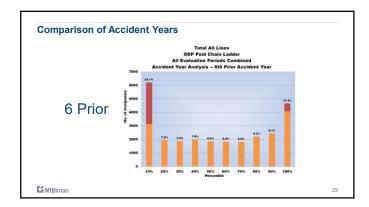

Analysis Details	
- Model Outruit	
 Model Output Accident Year Totals (by Year & All Years Combined) 	
Calendar Year Totals (by Year)	
Calendar Year Runoff Totals (by Year)	
Ultimate Loss Ratios (by Year)	
Incremental Results (by Year and Development Period)	
Diagnostic Statistics	
Ľ MIIIman 34	
	·
Analysis Details	
Analysis Details	
Model Options (Tests)	
■ Test 1 – Defaults	
No Tail factors (i.e., 1.000)	
■ BF – a priori based on hindsight L/R, No CoV	
 CC – Trend = 2.5%, Decay Ratio = 90% Test 2 – Selected Limiting of Incrementals 	
Test 3 – Selected Limiting & Suggested Suggested	
Heteroscedasticity Groups	
Ľ MIIIIman 35	
	1
Model Limitations	
Model Elilitations	

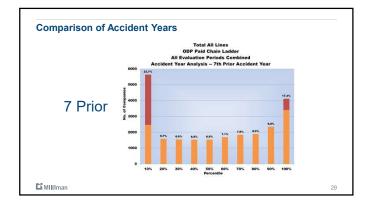
Model Limitations	
Model Risk	
Limited to known data	
 A single model can underestimate variability 	
Systemic risk	
In addition to model risk	
A shift in claims environment	
Need to Understand Assumptions	
11000 to official and fooding fiorio	
Ľ MI∭man 37	
= initition	
Malan Assumutan	
Major Assumption	
Postatron modela (ODD 9	
Bootstrap models (ODP &	
Mack) accume Chain Ladder	
Mack) assume Chain Ladder	
projections are unbiased	
projections are unbiased	
Ľ MI∥Iman 38	
	•
	-
Model Projections	
Are they Unbiased?	
	•
	•

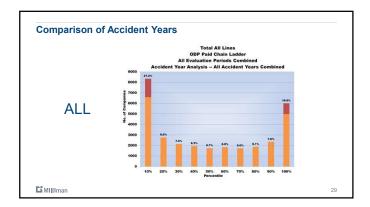


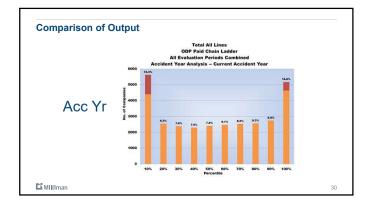


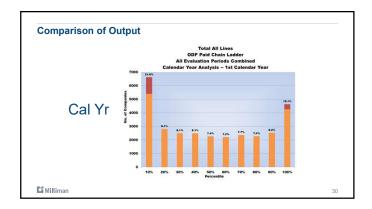


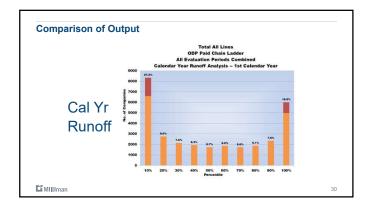


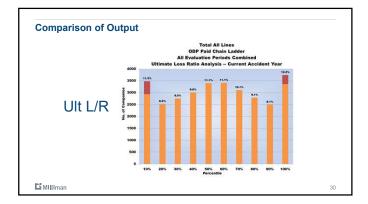


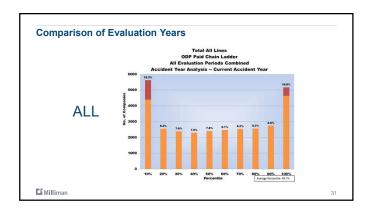


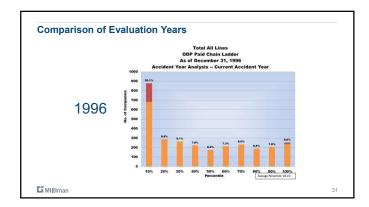


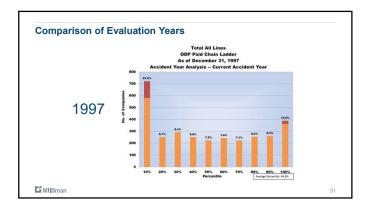


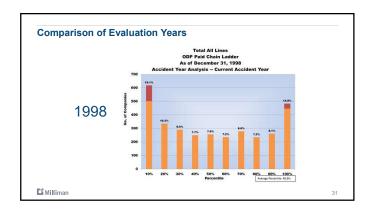


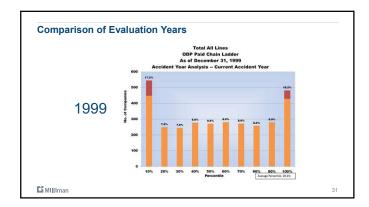


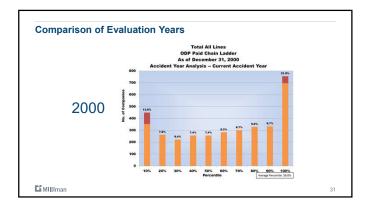


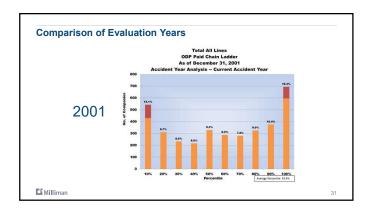


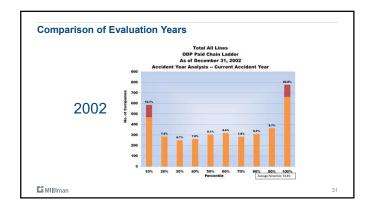


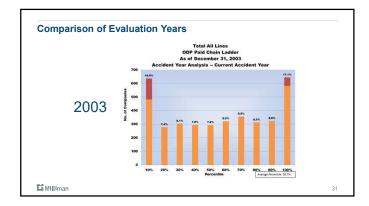


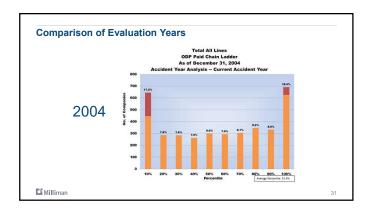


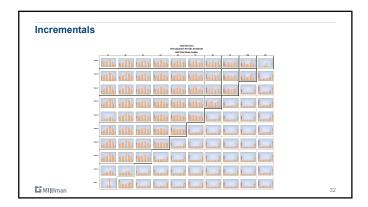


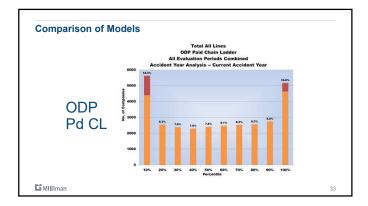


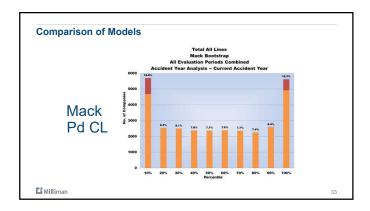


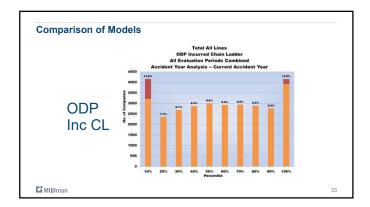


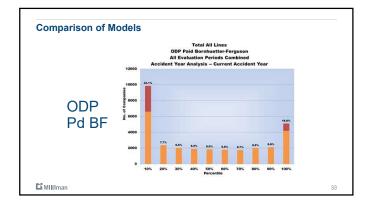


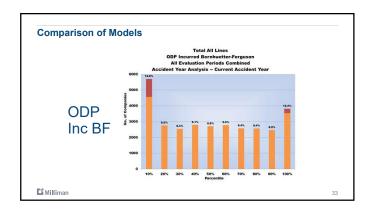


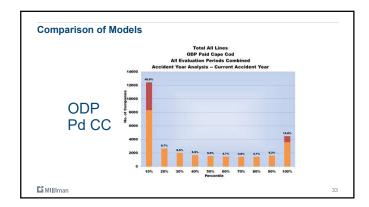


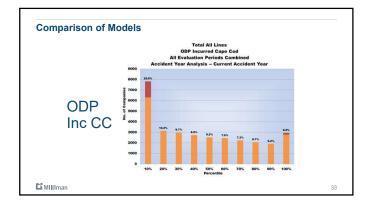


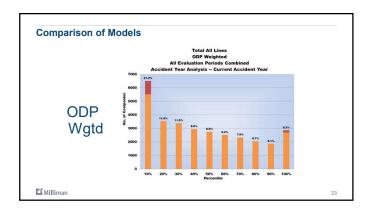








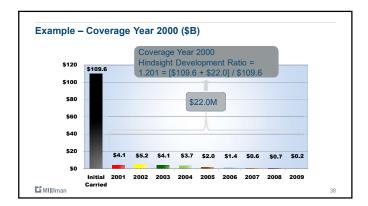


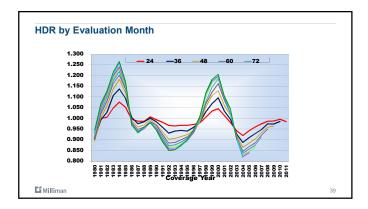


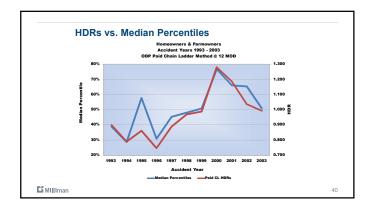
Leong, Wang & Chen

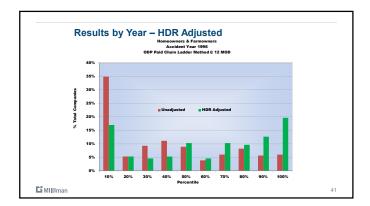
- Systemic Risk Distribution Method
- Multiply each simulated bootstrap result by a "systemic" factor
- Wang Transform Adjustment
- Increase the variability of the original unpaid loss distribution
- Shift the percentiles to account for bias in methods over time
- Relies on a parameter "Lambda" targeting an ideal histogram

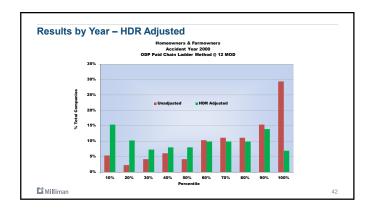
Assumes Model Risk is Systemic! Based on Hindsight only!

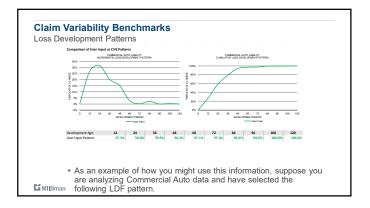

MIIIIman

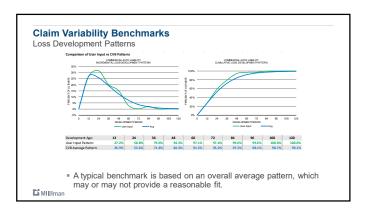

	1
Leong, Wang & Chen	
130 100 100 100 100 100 100 100 100 100	
0.80 — 12/1224/1236/1248/1260/12 — 72/12 1.5 —	
5 051	
Leong, Jessica (Weng Kah), Shaun Wang, and Han Chen, "Back-Testing the ODP Bootstrap of the Paid Chain- Ladder Model with Actual Historical Claims Data," Variance 8-2: 182-202.	
Li Milliman 36	

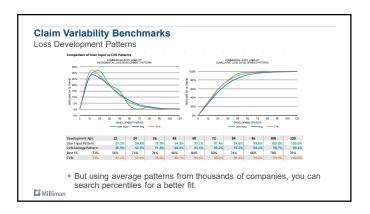

HDR Adjustment

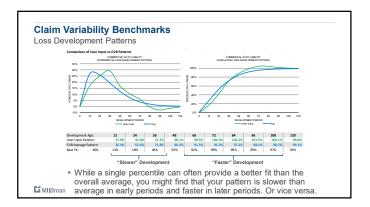

- Shift distribution by multiplying unpaid claim estimates by the HDR
- Coefficient of variation unchanged
- Additive shift will not address variance
- Hindsight adjustment, but we are not advocating, just testing how much bias vs. not enough variance

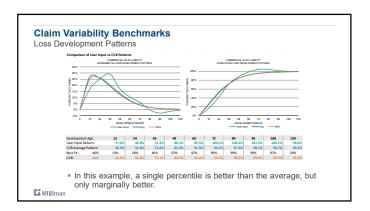

Li MI||Iman

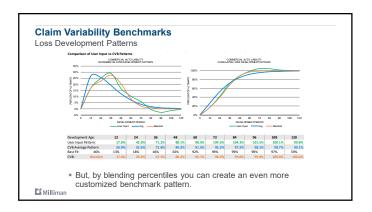


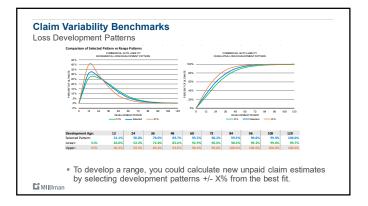


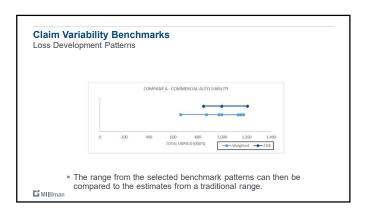


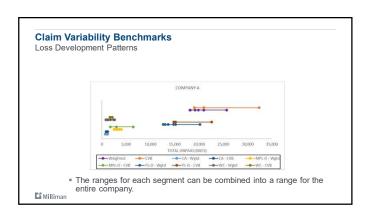

Conclusions	
3011014010110	
	\neg
Conclusions	-
Goal of Ideal Histogram Unrealized by Paid CL Bootstrap	
Both ODP Bootstrap and Mack Bootstrap	
Confirms Other Research	
Other ODP Bootstraps – Much Closer to Theoretical Ideal	
Incurred models different (Shapland Monograph)	
Bornhuetter-Ferguson and Cape Cod models	
 Cyclical Bias in Reserve Distributions – Paid and 	
Incurred	
Consistent with Deterministic Projections	
Li MI III man 44	4
Ormalizations	
Conclusions	
"Corrections" to Other ODP Models may be Unnecessary	
Addressing Model Risk is very important	
Can't "blindly" accept model results	
Use diagnostics to assess model strengths / weaknesses	
Implications for weighting Still pend to address systemic risks	
Still need to address systemic risks Still need to address systemic risks	
Guidelines (i.e., benchmarks) to Assess Results	
Based on hindsight, but forward looking Including Correlations	
Including Correlations Distributions by LOB and Bromium	
Distributions by LOB and Premium Phatilings	. [


Claim Variability Benchmarks A Quantum Leap in Benchmarking		
		1
Claim Variability Benchmarks Types of Benchmarks		
1 Loss Development Patterns		
2 Unpaid Claim Distributions		
Correlation Between Segments		
L i Milliman	77	
Claim Variability Benchmarks Loss Development Patterns		
 Common LDF benchmarks are "static" – one size fits all 		
 Back-testing includes VWA factors for all actual & simulated paid data triangles, by Schedule P Line of Business 		
 A "distribution" of the patterns were created for both actual and simulat This allows for "dynamic" benchmarks – patterns are better tailored to 		
data	youi	
You can also create a benchmark for your range of point estimates		
☐ Milliman	49	









	ability Benchmarks			
Types of B	chmarks			
	1 Loss Development Patte	rns		
	2 Unpaid Claim Distributio	ns		
	3 Correlation Between Seg	ments		
C MI Iman			47	

Claim Variability Benchmarks

Unpaid Claim Distributions

- For each Schedule P LOB, the back-testing results contain thousands of simulated distributions for companies of all different sizes
- Regression models were used to fit the distributions by premium volume for each of the Acc Yr, Cal Yr, Cal Yr Runoff, and Loss Ratio distributions
- Fitted results were smoothed to be consistent between distribution types and to conform with statistical properties – e.g., less exposure = more risk
- Algorithm allows for a variety of customizations e.g., development patterns
- Underestimation of unpaid claim distributions can impact required capital, reinsurance, pricing, risk margins, etc.
- Overestimation is also problematic e.g., capital does not match risk appetite

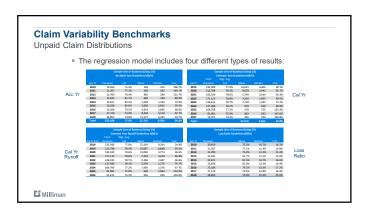
Li MI II Iman

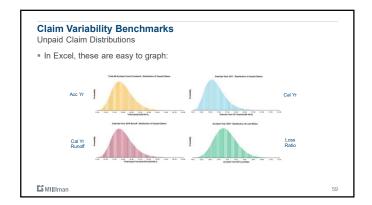
Claim Variability Benchmarks Unpaid Claim Distributions * Variance Adjustment Factors are used to correct for back-testing results * Separate variance adjustments factors for Loss Ratio distributions For example, this is the Acc Yr adjustment for Commercial Auto * "Fitted" results still appear to under-estimate, but this is reserve cycle affect

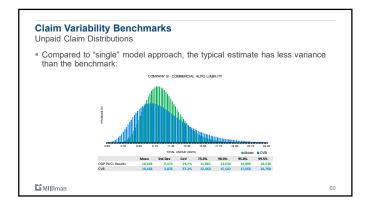
Page 30 of 35

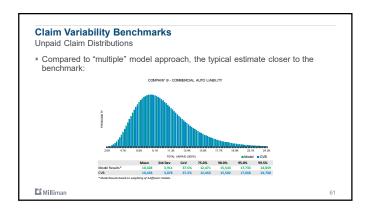
Claim Variability Benchmarks Unpaid Claim Distributions The regression model adjusts assumptions to fit statistical properties. For example, consider smaller vs larger number of exposures: Small Large Small

Claim Variability Benchmarks


Unpaid Claim Distributions


- The regression model allows for other customizations.
- For example, consider a faster development pattern:


Slower Sample Line of Business (Using CA) Accident Year Guidelines (000's)						Faster Sample Line of Business (Using CA) Accident Year Guidelines (000's)					
Accident Year disselines (000's)					Accident rear Guidennes (000's)						
					CoV						
2010	20,459	75.3%	199	415	208.7%	2010	20,459	75.3%	61	147	242.99
2011	21,207	77.1%	306	442	144.7%	2011	21,207	77.1%	87	168	193.39
2012	21,709	79.4%	485	590	121.7%	2012	21,709	79.4%	152	258	169.59
2013	22,032	81.7%	860	768	89.4%	2013	22,032	81.7%	376	431	114.79
2014	22,671	82.5%	1,590	1,183	74.4%	2014	22,671	82.5%	895	780	87.19
2015	23,628	82.0%	3,050	1,815	59.5%	2015	23,628	82.0%	2,046	1,328	64.99
2016	25,108	79.2%	5,619	2,695	48.0%	2016	25,108	79.2%	4,421	2,203	49.89
2017	27,118	74.9%	9,639	4,210	43.7%	2017	27,118	74.9%	8,415	3,754	44.69
2018	28,855	73.8%	15,572	6,345	40.7%	2018	28.855	73.8%	14,680	6.033	41.13
Total	232,508		37,319	9.264	24.8%	Total	232.508	77.9%	31.132	7.985	25.69


MIJIImar MIJIImar

MIIIIman

Claim Variability Benchmarks Types of Benchmarks		
Types of Deficilitation		
1 Loss Development Patterns		
2 Unpaid Claim Distributions		
3 Correlation Between Segments		
Li Milliman	47	

Claim Variability Benchmarks

Correlation Between Segments

- Back-testing output includes correlation statistics between all pairs of LOBs within a company (i.e., if there was more than one 'complete' LOB)
- Output includes both paid and incurred, before and after optimal hetero adjustments
- The mean and std dev (unweighted and weighted) for all specific pairs (i.e., between two specific LOBs) was measured
- Weights based on 1 minus P-Value, since the lower the P-Value the more statistically significant the correlation
- Industry benchmarks have long been needed

MIIIIman

Claim Variability Benchmarks

Correlation Between Segments

For example, consider the weighted results for 4 LOBs using 1996 data:

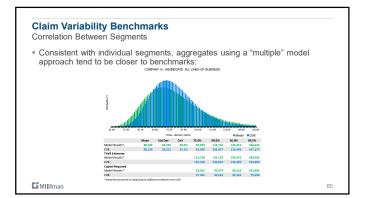
Means

Means

Standard Deviations

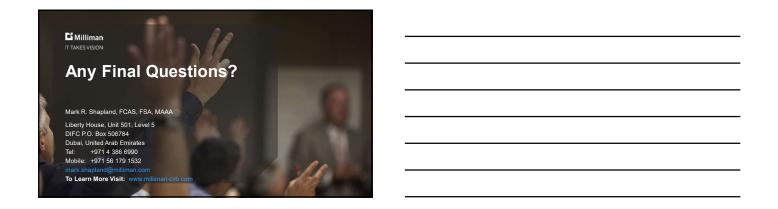
COMPANY A

CVB Correlation - Means


COMPANY A

CVB Correlation - Std Dev

CA


100% 1341% 120% 140% 100% 10.5% 100% 10.5% 100% 10.5% 100% 10.5%

Claim Variability Benchmarks Correlation Between Segments • Consistent with individual segments, aggregates using a "single" model approach tend to be narrower than benchmarks: COMMITTER ALLIES OF BASINESS **COMMITTER A

Other Potential Uses Calculating average durations for future cash flows Calculating reserve risk margins based on the expected unpaid claim runoff – e.g., Solvency II or IFRS-17 Assessing the variance parameter for a priori loss ratio assumptions in models Creating back-testing benchmarks for ERM thresholds Other uses which are only limited by your imagination

Claim Variability Benchmarks

