Evaluation of driving risk at different speeds

Guangyuan Gao¹

School of Statistics, Renmin University of China

CAS annual meeting in Honolulu, November, 2019

¹joint work with Hanfang Yang (Renmin University) and Mario V. Wüthrich (ETH Zurich).

Main conclusions based on our data set

- ① Driving style is much more related to claims frequency than driving habit.
- ② The driving style in (0,20]km/h is most related to claims frequencies among the four speed buckets, and it also reflects the driving style at other speeds.

2/37

Table of Contents

- 1 Driving style and habit
 - v-a heatmaps
 - Driving style and habit
 - ullet Principal components analysis of v-a heatmaps
- 2 Claims frequency modeling
 - The marginal effects of risk factors on claims frequencies
 - GAM, Backward elimination, and Cross validation
 - Poisson GAMs for claims frequency
 - Model comparison
- 3 Conclusions

Telematics car driving data

- Every second we receive the current speed and the acceleration in all directions from the internal sensor installed in the cars.
- We select the recorded speed and the recorded longitudinal acceleration to form the v-a heatmaps.
- We consider the telematics data of n=973 cars during three months of driving experience from 01/05/2016 to 31/07/2016.
- An assumption is that a driver's driving characteristics remain the same during his/her policy period, since we apply the same telematics covariates for all policies of a given driver.

4 / 37

Driving style and habit v-a heatma

Partition of v-a rectangle

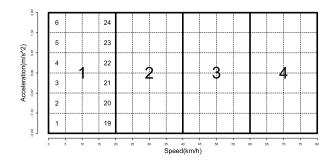


Figure 1: The partition of $R = (0, 80] \times [-2, 2]$.

For each speed bucket $m=1,\ldots,4$, we divide the v-axis (speed) into 4 intervals and the a-axis (acceleration) into 6 intervals, which results in 24 sub-rectangles $(R_{m,j})_{j=1:24}$ in each speed bucket m (see the numbers in speed bucket 1 in Figure 1).

5/37

Driving style and habit v-a heatmaps

Normalization in each speed bucket

- For each driver i, we denote the amount of time spent in $R_{m,j}$ by $t_{i,m,j}$.
- Given a speed bucket m, for each driver i we calculate the relative amount (normalized amount) of time spent in $R_{m,j}$ as

$$z_{i,m,j} = \frac{t_{i,m,j}}{t_{i,m}} \ge 0, (1)$$

where $t_{i,m} = \sum_{j=1}^{24} t_{i,m,j}$ is the total amount of time spent in speed bucket m by driver i.

- Equation (1) induces an empirical discrete distribution $z_{i,m} = (z_{i,m,1}, \dots, z_{i,m,24})'$ on speed bucket m.
- $z_{i,m}, m = 1, \dots, 4$ can be illustrated by v-a heatmaps.

v-a heatmaps of three drivers

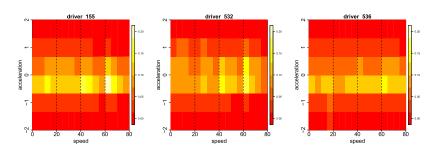


Figure 2: v-a heatmaps of drivers 155, 532and 536.

7 / 37

Driving style and habit

Driving style and habit

Driving style

- The *driving style* of every car driver i is described by a J-vector $x_i = (z'_{i,1}, \dots, z'_{i,4})' \in \mathbb{R}^J$ containing the four discrete distributions $z_{i,m}$ on the rectangle $m=1,\dots,4$.
- Note that the dimension of x_i is $J = 24 \times 4 = 96$.

8/37

Driving habit

• Driving habit of driver i is defined to be the relative amount of time spent in each speed bucket m:

$$h_{i,m} = \frac{t_{i,m}}{t_i}, \quad \text{for } m = 1, \dots, 4,$$
 (2)

where $t_i = \sum_{m=1}^4 t_{i,m}$ is the total amount of time spent in the entire speed interval (0,80]km/h by driver i.

• Another driving habit covariate is the average driving hours in (0, 80]km/h per week, defined as

$$ave_hours_i = \frac{t_i \times 7}{3600 \times 92},$$

which indicates the intensity of driving.

Driving habit v.s driving style

• Suppose that a commuting driver i and an off-peak driver i' had the same driving style, we would have $h_{i,1} > h_{i',1}, h_{i,4} < h_{i',4}$, but $x_i = x_{i'}$.

10 / 37

Driving style and habit

Principal components analysis of v-a heatmaps

Design matrix of driving style

- For each speed bucket m, we stack the vectors $\boldsymbol{z}_{i,m}, i=1,\ldots,n$, to form the $n\times 24$ design matrix $\boldsymbol{X}_m\in\mathbb{R}^{n\times 24}$.
- For the four speed buckets altogether, we stack the vectors $\boldsymbol{x}_i, i=1,\dots,n$, to form the $n\times J$ design matrix $\boldsymbol{X}\in\mathbb{R}^{n\times J}$.
- Denote the normalized design matrices by $(\boldsymbol{X}_m^0)_{m=1:4}$ and \boldsymbol{X}^0 (all column means are set to zero and variances are normalized to one).
- ullet Denote the corresponding i-th row by $(oldsymbol{z}_{i,m}^0)_{m=1:4}$ and $oldsymbol{x}_i^0.$

13 / 37

Singular value decomposition

Singular value decomposition of $oldsymbol{X}^0$ is as follows:

$$X^0 = U\Lambda V'$$
,

where U is an $n \times J$ orthogonal matrix, V is a $J \times J$ orthogonal matrix and $\Lambda = \text{diag}(g_1, \dots, g_J)$ is a $J \times J$ diagonal matrix with singular values.

- The w-th column of the rotation matrix V is the w-th principal component loading vector (or right-singular vector) $\mathbf{v}_w = (v_{1,w}, \dots, v_{J,w})', w = 1, \dots, J.$
- ullet The w-th principal component of driver i is the projected value of $oldsymbol{x}_i^0$ onto the direction $oldsymbol{v}_w$

$$p_{i,w} = \sum_{j=1}^{J} v_{j,w} x_{i,j}^{0}.$$

The first two loading vectors

- We illustrate the proportion of explained variance in X^0 by the principal components in Figure 3 (left).
- The first 20 principal components explain around 95% of the total variance in X^0 . Therefore, we only consider the first 20 principal components in claims frequency modeling.
- In Figure 3 we show the first and second loading vectors v_1, v_2 in its corresponding sub-rectangle.

15 / 37

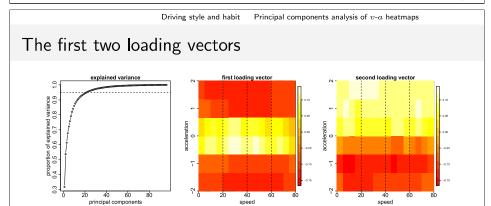


Figure 3: The proportion of explained variance by the principal components (left). The first and second loading vectors v_1 and v_2 (middle and right).

- The first principal component reflects the degree of concentration on the zero acceleration rate.
- The second principal component illustrates the frequency difference between acceleration and braking.

16 / 37

Driving style and habit Principal components analysis of v-a heatmaps

The principal components in each speed bucket

- We apply the principal component analysis to the matrices $(\boldsymbol{X}_{m}^{0})_{m=1:4}$, respectively.
- We denote by $p_{i,w}^m, w=1,\ldots,24, m=1,\ldots,4,$ the w-th principal component of driver i in speed bucket m.
- In Table 2, we calculate the coefficient of correlation among the first two principal components $p_{i,1}^m, p_{i,2}^m$.

The principal components in each speed bucket

Table 2: The coefficients of correlation among the first two principal components $p_{i,1}^m, p_{i,2}^m$.

	n^1	n^2	$p_{i,1}^{3}$	n^4 .	n^1	$n_{i=2}^2$	$p_{i,2}^{3}$	n^4
n1	$p_{i,1}$ 1.00	$\frac{p_{\bar{i},1}}{0.86}$	0.69	0.55	$p_{\tilde{i},2}$ 0	$\frac{p_{i,2}}{-1.2 \times 10^{-2}}$	$\frac{P_{i,2}}{1.1 \times 10^{-2}}$	$\frac{p_{i,2}}{3.0 \times 10^{-2}}$
$\begin{array}{c} p_{i,1}^{1} \\ p_{i,1}^{2} \\ p_{i,1}^{3} \\ p_{i,1}^{4} \\ \underline{p_{i,1}^{4}} \end{array}$	0.86	1.00	0.87	0.70	-2.2×10 ⁻²	0	1.5×10^{-2}	3.9×10^{-2}
$p_{i-1}^{3,1}$	0.69	0.87	1.00	0.92	-8.3×10 ⁻²	-4.6×10^{-2}	0	2.3×10^{-2}
$p_{i,1}^{4,1}$	0.55	0.70	0.92	1.00	-1.3×10 ⁻¹	-8.9×10^{-2}	-2.4×10^{-2}	0
$p_{i,2}^{1}$	T				1.00	0.95	0.91	0.86
$p_{i,2}^{2^{,-}}$					0.95	1.00	0.96	0.89
$p_{i,2}^{3}$					0.91	0.96	1.00	0.93
$\begin{array}{c} p_{i,2}^1 \\ p_{i,2}^2 \\ p_{i,2}^3 \\ p_{i,4}^4 \end{array}$					0.86	0.89	0.93	1.00

It shows that the driving characteristics in different speed buckets are quite similar in terms of the first two principal components.

18 / 37

Claims frequency modeling

Three aspects to be investigated

- ① The predictive performance of driving habit covariates $(h_{i,m})_{m=1:4}$ and ave_hours_i ;
- ② The predictive performance of driving style covariates $(p_{i,w})_{w=1:20}$;
- $\begin{tabular}{ll} \hline \textbf{3} & The predictive performance of the covariates } & (p^m_{i,w})_{w=1:7} & in each speed bucket m. \\ \hline \end{tabular}$

19/37

Claims frequency modeling

Claims data

- We consider the compolsory third party policies purchased by these n=973 cars (these policies have all the same coverage limit of CNY 122,000).
- We record the number of reported claims from 01/01/2014 to 29/06/2017. The total exposure is 2,179.5 years-at-risk with the empirical frequency of 0.24.

Four classical risk factors

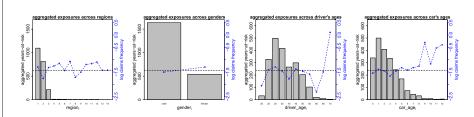


Figure 4: Distribution of aggregated years-at-risk (left axis) and the corresponding logarithm of the empirical claims frequencies (right axis) across the four classical risk factors: regions, gender, driver's age, and car's age.

21/37

Claims frequency modeling
The marginal effects of risk factors on claims frequencies

Driving habit covariates and driving style covariates

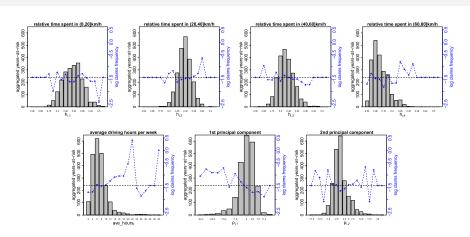


Figure 5: Distribution of aggregated years-at-risk and the corresponding logarithm of the empirical claims frequencies across the driving habit covariates and the selected driving style covariates.

22 / 37

Claims frequency modeling GAM, Backward elimination, and Cross validation

General setting

We assume that the number of claims Y_i of driver i follows a Poisson distribution with an underlying expected claims frequency of λ_i per year:

$$Y_i \overset{\text{ind.}}{\sim} \mathsf{Poisson}(\lambda_i e_i)$$
 with $\log \lambda_i = \beta_0 + \alpha_{u_i} + \beta_1 v_i + s(w_i; \boldsymbol{\beta}_2, \delta),$ (4)

- $e_i \in [1, 3.5]$ years-at-risk is the total exposure of driver i.
- The non-linear effect of w_i is described by a penalized thin plate regression spline s with regression parameters β_2 and smoothing parameter δ . By using the penalized thin plate regression splines, we do not need to specify the knots (Section 4.1.5 of Wood [17]).

Backward elimination, cross validation

- We always start with a full model containing all the considered covariates
- Then we sequentially drop the single covariate with the highest non-significant *p*-value from the model and refit the model until all the covariates are significant.
- We randomly partition the data of all cars \mathcal{N} into 10 roughly equally-sized disjoint parts, denoted by $\mathcal{T}_1, \ldots, \mathcal{T}_{10}$.
- We estimate the average Poisson deviance loss by 10-fold cross validation as

$$\widehat{D} = \frac{1}{10} \sum_{l=1}^{10} D(\mathcal{T}_l, \hat{\theta}_{-\mathcal{T}_l}),$$
 (5)

where $D(\mathcal{T}_l, \hat{\theta}_{-\mathcal{T}_l})$ is the average Poisson deviance loss on the data \mathcal{T}_l using the estimated claims frequencies $\lambda_i(\hat{\theta}_{-\mathcal{T}_l})$

$$D(\mathcal{T}_l, \hat{\theta}_{-\mathcal{T}_l}) = \frac{2}{|\mathcal{T}_l|} \sum_{i \in \mathcal{T}_l} Y_i \left[\frac{\lambda_i(\hat{\theta}_{-\mathcal{T}_l}) e_i}{Y_i} - 1 - \log \left(\frac{\lambda_i(\hat{\theta}_{-\mathcal{T}_l}) e_i}{Y_i} \right) \right].$$
_{24/37}

Claims frequency modeling Poisson GAMs for claims frequence

GAM with the classical risk factors

We start with the model

$$\log \lambda_i = \beta_0 + \alpha_{region_i} + \gamma_{gender_i} + s_1(driver_age_i; \boldsymbol{\beta}_1, \delta_1) + s_2(car_age_i; \boldsymbol{\beta}_2, \delta_2)$$
(7)

 We apply the backward elimination to model (7) to remove driver's age and gender sequentially. The resulting model is

$$\log \lambda_i = \beta_0 + \alpha_{region_i} + s_2(car_age_i; \beta_2, \delta_2). \tag{8}$$

• We also fit an intercept model for comparison:

$$\log \lambda_i = \beta_0. \tag{9}$$

26 / 37

Claims frequency modeling Poisson GAMs for claims frequency

GAM with driving habit covariates

• A starting point of backward elimination is to include linear terms of $(h_{i,m})_{m=1:4}$ and the smooth term of ave_hours_i :

$$\begin{split} \log \lambda_i = & \beta_0 + \alpha_{region_i} + \gamma_{gender_i} + s_1(driver_age_i; \boldsymbol{\beta}_1, \delta_1) + s_2(car_age_i; \boldsymbol{\beta}_2, \delta_2) \\ & + \beta_1^h h_{i,1} + \beta_2^h h_{i,2} + \beta_3^h h_{i,3} + f_5(ave_hours_i; \boldsymbol{\beta}_5^h, \delta_5^h). \end{split} \tag{10}$$

- Note that we have removed $h_{i,4}$ in the model because there is a constraint of $\sum_{m=1}^4 h_{i,m} = 1$ and most cars spend the least time in (60,80]km/h.
- The backward elimination leads to the following regression function:

$$\log \lambda_i = \beta_0 + \alpha_{region_i} + s_2(car_age_i; \boldsymbol{\beta}_2, \delta_2) + \beta_3^h h_{i,3} + f_5(ave_hours_i; \boldsymbol{\beta}_5^h, \delta_5^h).$$
 (11)

GAM with driving habit and driving style covariates

• If we start with smooth terms of driving habit and style covariates, the backward elimination leads to the following model:

$$\log \lambda_{i} = \beta_{0} + \alpha_{region_{i}} + \beta_{2}^{h} h_{i,2} + \beta_{3}^{h} h_{i,3} + \beta_{5}^{h} ave_hours_{i} + \beta_{1}^{p} p_{i,1} + \beta_{7}^{p} p_{i,7} + \beta_{15}^{p} p_{i,15} + \beta_{16}^{p} p_{i,16} + r_{8}(p_{i,8}; \boldsymbol{\beta}_{8}^{p}, \delta_{8}^{p}) + r_{10}(p_{i,10}; \boldsymbol{\beta}_{10}^{p}, \delta_{10}^{p}) + r_{12}(p_{i,12}; \boldsymbol{\beta}_{12}^{p}, \delta_{12}^{p}).$$

$$(12)$$

• If we start with linear terms of driving habit and style covariates, the backward elimination leads to the following model:

$$\log \lambda_{i} = \beta_{0} + \alpha_{region_{i}} + \beta_{3}^{h} h_{i,3} + \beta_{5}^{h} ave_hours_{i} + \beta_{1}^{p} p_{i,1} + \beta_{3}^{p} p_{i,3} + \beta_{7}^{p} p_{i,7} + \beta_{10}^{p} p_{i,10}.$$
(13)

• We calculate the weight for sub-rectangle j as $\hat{\beta}_1^p v_{j,1} + \hat{\beta}_3^p v_{j,3} + \hat{\beta}_7^p v_{j,7} + \hat{\beta}_{10}^p v_{j,10}$ for $j=1,\ldots,J$. We plot these weights in the v-a rectangle according to their signs in Figure 7.

30 / 37

Claims frequency modeling Poisson GAMs for claims frequency

GAM with driving habit and driving style covariates

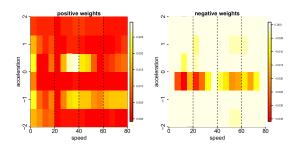


Figure 7: The weights on the v-a rectangle in model (13).

- Most sub-rectangles in (0,20]km/h are highlighted, indicating that (0,20]km/h is important in predicting claims frequency.
- Hard brake and acceleration have the positive effect on claims frequency, while smooth brake and acceleration have the negative effect on claims frequency.

31 / 37

Claims frequency modeling Poisson GAMs for claims frequency

GAM with driving style covariates in each speed bucket

For each speed bucket m, we either start with the model

$$\begin{split} \log \lambda_{i} = & \beta_{0} + \alpha_{region_{i}} + \gamma_{gender_{i}} + s_{1}(driver_age_{i}; \boldsymbol{\beta}_{1}, \delta_{1}) + s_{2}(car_age_{i}; \boldsymbol{\beta}_{2}, \delta_{2}) \\ & + f_{1}(h_{i,1}; \boldsymbol{\beta}_{1}^{h}, \delta_{1}^{h}) + f_{2}(h_{i,2}; \boldsymbol{\beta}_{2}^{h}, \delta_{2}^{h}) + f_{3}(h_{i,3}; \boldsymbol{\beta}_{3}^{h}, \delta_{3}^{h}) + f_{4}(h_{i,4}; \boldsymbol{\beta}_{4}^{h}, \delta_{4}^{h}) \\ & + f_{5}(ave_hours_{i}; \boldsymbol{\beta}_{5}^{h}, \delta_{5}^{h}) \\ & + r_{1}^{m}(p_{i,1}^{m}; \boldsymbol{\beta}_{1}^{m}, \delta_{1}^{m}) + \ldots + r_{7}^{m}(p_{i,7}^{m}; \boldsymbol{\beta}_{7}^{m}, \delta_{7}^{m}), \end{split} \tag{14}$$

or start with the model with only driving style covariates

$$\log \lambda_i = \beta_0 + r_1^m(p_{i,1}^m; \boldsymbol{\beta}_1^m, \delta_1^m) + \ldots + r_7^m(p_{i,7}^m; \boldsymbol{\beta}_7^m, \delta_7^m), \tag{15}$$

GAM with driving style covariates in each speed bucket

The backward elimination leads to the following models:

1 The first speed bucket (0, 20]km/h.

Ine first speed bucket (0, 20]km/n.
$$\log \lambda_i = \beta_0 + \alpha_{region_i} + s_2(car_age_i; \boldsymbol{\beta}_2, \delta_2) + \beta_3^h h_{i,3} + f_5(ave_hours_i; \boldsymbol{\beta}_5^h, \delta_5^h) + \beta_1^1 p_{i,1}^1. \tag{16}$$

$$\log \lambda_i = \beta_0 + \beta_1^1 p_{i,1}^1. \tag{17}$$

2 The second speed bucket (20,40]km/h.

$$\log \lambda_{i} = \beta_{0} + \alpha_{region_{i}} + s_{2}(car_age_{i}; \boldsymbol{\beta}_{2}, \delta_{2}) + \beta_{3}^{h}h_{i,3} + f_{5}(ave_hours_{i}; \boldsymbol{\beta}_{5}^{h}, \delta_{5}^{h}) + \beta_{1}^{2}p_{i,1}^{2} + r_{7}^{2}(p_{i,7}^{2}; \boldsymbol{\beta}_{7}^{2}, \delta_{7}^{2}).$$
(18)

$$\log \lambda_i = \beta_0 + \beta_1^2 p_{i,1}^2. \tag{19}$$

3 The third speed bucket (40,60]km/h.

$$\log \lambda_{i} = \beta_{0} + \alpha_{region_{i}} + s_{2}(car_age_{i}; \boldsymbol{\beta}_{2}, \delta_{2}) + \beta_{3}^{h}h_{i,3} + f_{5}(ave_hours_{i}; \boldsymbol{\beta}_{5}^{h}, \delta_{5}^{h}) + \beta_{1}^{3}p_{i,1}^{3}.$$

$$(20)$$

$$\log \lambda_{i} = \beta_{0} + \beta_{1}^{3}p_{i,1}^{3} + \beta_{4}^{3}p_{i,4}^{3}.$$

$$(21)$$

4 The forth speed bucket (60, 80]km/h.

$$\log \lambda_{i} = \beta_{0} + \alpha_{region_{i}} + s_{2}(car_age_{i}; \boldsymbol{\beta}_{2}, \delta_{2}) + \beta_{3}^{h}h_{i,3} + f_{5}(ave_hours_{i}; \boldsymbol{\beta}_{5}^{h}, \delta_{5}^{h}) + \beta_{1}^{4}p_{i,1}^{4}.$$
(22)
$$\log \lambda_{i} = \beta_{0} + \beta_{1}^{4}p_{i,1}^{4}.$$
(23)

Claims frequency modeling Model comparison

The selected representative models

Table 4: The selected representative models.

model index	covariates in the model	equation
1	no covariates	(9)
2	classical	(8)
3	classical, driving habit	(11)
4	classical, driving habit, driving style (in smooth terms)	(12)
5	classical, driving habit, driving style (in linear terms)	(13)
6	classical, driving habit, driving style of $(0,20]$ km/h	(16)
7	classical, driving habit, driving style of $(20,40]$ km/h	(18)
8	classical, driving habit, driving style of $(40,60]$ km/h	(20)
9	classical, driving habit, driving style of $(60,80]$ km/h	(22)
10	driving style of $(0,20]$ km/h	(17)
11	driving style of $(20,40]$ km/h	(19)
12	driving style of $(40,60]$ km/h	(21)
13	driving style of $(60, 80]$ km/h	(23)

Claims frequency modeling Model comparison

UBRE, AIC and average Poisson deviance loss

We plot the UBRE, the AIC and the average Poisson deviance loss with 90% interval for these selected models in Figure 8.

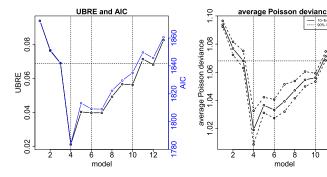


Figure 8: The UBRE, the AIC and the average Poisson deviance loss with 90% interval for the models in Table 4.

Main:

- Driving style is much more related to claims frequency than driving habit
- The driving style in (0,20]km/h is most related to claims frequencies among the four speed buckets, and it also reflects the driving style at other speeds.

36 / 37

- Ayuso, M., Guillen, M., Pérez-Marín, A.M. (2016). Telematics and gender discrimination: some usage-based evidence on whether men's risk of accidents differs from women's. *Risks*, **4/2**, article 10.
- Ayuso, M., Guillen, M., Nielsen, J.P. (2018). Improving automobile insurance ratemaking using telematics: incorporating mileage and driver behaviour data. *Transportation*, DOI: 10.1007/s11116-018-9890-7.
- Bair, E., Hastie, T., Paul, D., Tibshirani, R. (2006). Prediction by supervised principal components. *Journal of the American Statistical Association*, **101/473**, 119-137.
- Boucher, J.-P., Côté, S., Guillen, M. (2017). Exposure as duration and distance in telematics motor insurance using generalized additive models. *Risks*, **5**, article 54.
- Gao, G., Meng, S., Wüthrich, M.V. (2019). Claims frequency modeling using telematics car driving data. *Scandinavian Actuarial Journal*, **2019/2**, 143-162.

36 / 37

- Guillen, M., Nielsen, J.P., Ayuso, M., Pérez-Marín, A.M. (2019). The use of telematics devices to improve automobile insurance rates. *Risk Analysis*, **39/3**, 662-672.
- Hastie, T., Tibshirani, R., Friedman, J. (2009). *The Elements of Statistical Learning. Data Mining, Inference, and Prediction,* second edition. New York: Springer-Verlag.
- Hung, W.T., Tong, H.Y., Lee, C.P., Ha, K., Pao, L.Y. (2007). Development of practical driving cycle construction methodology: a case study in Hong Kong. *Transportation Research Part D: Transport and Environment*, **12/2**, 115-128.
- Kaufman, L., Rousseeuw, P. (1990). Finding Groups in Data: An Introduction to Cluster Analysis. New York: Wiley.
- Denuit, M., Guillen, M., Trufin, J. (2019). Multivariate credibility modelling for usage-based motor insurance pricing with behavioural data. *Annals of Actuarial Science*, DOI: 10.1017/S1748499518000349.

- Paefgen, J., Staake, T., Fleisch, E. (2014). Multivariate exposure modeling of accident risk: insights from pay-as-you-drive insurance data. *Transportation Research A: Policy and Practice*, **61**, 27-40.
- Reynolds, A., Richards, G., de la Iglesia, B., Rayward-Smith, V. (1992). Clustering rules: A comparison of partitioning and hierarchical clustering algorithms. *Journal of Mathematical Modelling and Algorithms*, **5/4**, 475-504.
- Verbelen, R., Antonio, K., Claeskens, G. (2018). Unraveling the predictive power of telematics data in car insurance pricing. *Journal of the Royal Statistical Society: Series C (Applied Statistics)*, 67/5, 1275-1304.
- Wang, Q., Huo, H., He, K., Yao, Z., Zhang, Q. (2008). Characterization of vehicle driving patterns and development of driving cycles in Chinese cities. *Transportation Research Part D: Transport and Environment*, 13/5, 289-297.

36 / 37

- Weidner, W., Transchel, F.W.G., Weidner, R. (2016). Classification of scale-sensitive telematic observables for riskindividual pricing. *European Actuarial Journal*, **6/1**, 3-24.
- Weidner, W., Transchel, F.W.G., Weidner, R. (2016). Telematic driving profile classification in car insurance pricing. *Annals of Actuarial Science*, **11/2**, 213-236.
- Wood, S.N. (2017). Generalized Additive Models: An Introduction with R, second edition. New York: Chapman & Hall.

37 / 37

Thank you!

Q & A