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Social media platforms

* Gather an unprecedented scale of data and information

* Offer possibilities to observe social responses in a timely and
continuously manner

* Speculate on the iImplications of expressed social attitude

* Distinguish interactions on social media relating to significant
events



Twitter Microblog

* Its Information network properties accelerate information
diffusion

* [ts soclal attributes allow access to personal information such as geo-
location, social connections, personal emotions

* Limitation of message length promote the rapid exchange of
Information

* [t became a research hotspot in the field of emergency management
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Case Study 1 : Hurricane Sandy

How cyber citizens react to a
catastrophe using analyses of
both tweet volume and content

Identify general features of the
public behavior

Whether the combination of tweets
c and geo-information has an
Advantage in early warning.
Hurricane
Sandy

Analyze the correlations between

n tweets information and the damage



» Hurricane Sandy : the most destructive hurricane of 2012
ne third-costliest hurricane in American history

t
(Harvey,2017; Katrina,2005)
damage: >$70 billion

2012.11.1
2012.10.2 23:00

9
d t
Q)

New Jersey Hurricane damage losses
Tweet data data
New York: 500 thousands  1.FEMA' s Enterprise
New Jersey: 470 Coordination& Information
Management(ECIM) reporting
team
2.https://www.fema.gov/what-

thousands




» An example of the extracted tweets

count:

 user_ follwers \ |
38

2576318762510
04929

25763187625100492

tweet id: }
o

‘ user_friends_ count: |

People that hate rainy 40.0669444444
weather obviously don't 444

have rear-drive cars. #Truth

text: | l lat_final: |

creat_at: ‘ , e = 7 | Ing_final:
2012-10-15 -89.1997222222222
08:00:00+08 ' s

user_id: 4 geom:
26606421 0101000020E6100000AS
; 2EB73FC84Cs56CO0D0OC4
B3A291084440
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Sentiment analysis

Whether a correlation Measure the emotion or mood
exists between postings expressed in each tweet and classify

on tweet and factual it as negative, neutral, or positive

\ o o o
\\ data on disaster Sentiment lexicons
‘damage.

_o======o_._ Machine learning
‘Reverse ’ RN
geqcoding __-- Content analysis'~,

- - N

Reverse geo-information ST TN
of tweets into frequency analysis

identifiable geographic Top hushtags and keywors
information




Import: Tweets set T ={¢ .7, .1.,L .t _},sentiment lexicon Dict, emoticons set Emotions .
For each tweet ¢, the scoring formula Scores(t,) is:

Scores(t,) = z fw, ;. Dict)+ Z ole, ,, Emotions)

w5 & €1

Where w, ; and e, ; Trepresent the word and emoticon in tweet [, respectively.

S (w, . Dict) = Pos(w, ,)- Neg(w, ;)

Each word w, , in Dict has two numerical scores Pos(w, ;) and Neg(w, ), which indicate the degree of

positivity or negativity.

Pos(e, ;) if e, , represents positive in Emotions

5[-5?1'

. Emotions) = ,
! Negle, ) if e, , represents negative in Emotions

Output: For each tweet, Scores(t,) is calculated, where Scores(t,) > 0 indicates positive emotional orientation

and vice-versa.




Five topics of Twitter messages.

Topics

Description

Related words

Disaster-related

Weather-related

Emotion-related

Action-related

Situation-
related

The most important role of Twitter during a disaster is information sharing
and dissemination. When people use some words directly related to the
disaster, which could attract people’s attention as an early warning.
Hurricanes are often accompanied by climate changes, being different from
other kinds of natural disasters,

Emotional support is important during and after a disaster. When undergoing
a disaster, people naturally express their personal feelings and concerns,
providing social and emotional support, comfort, and sympathy to others.
When a disaster happens, the government plays an irreplaceable role in
disaster relief and support. This category includes the words that people are
using to appeal to the govemnment to tack action.

Situation updates and influence descriptions are important for early warnings
and disaster assistance.

“disaster,” “Franken-storm,” “hurricane,” “tlood,” “destroy,” “Sandy,”
“storm,” “tornado.”

“cold,” “climate change,” “black out,” “climate.”
Hpanicl n HhDPElJJ HtEn.lfy[ngl n Hi.nsanflﬂ HS'EEIEdl n ”I{'E'Ep EHJ_[H,” ”S{'E_l'}rl”
Hhungl.}rl n Hfucklﬂ HhatElJJ ”h{}[l’iblﬁ'l” le.a}r [.‘{H.. us’!! ”{}[ﬂgl” H@dlll

“government,” “MTA,” “FEMA,” “governor,” “red cross,” “federal,” “Cuomo,”
HNYlJJ HNYlJJ H"‘rall StlJJ HleJJ

nu nu

“power,” “no power,” “food,” “house,” “energy,” “hospital,” “airport,”
“electric,” “electricity,” “cancelled,” “gas,” “blocked,” “emergency,” “life,”
“warning,” “lost,” “help,” “need,” “keep safe,” “safe,” “stay home,” “stay safe,”
“recovery,” “survived,” “dead,” “kill,” “dying,” “home,” “problem,” “move.”




» Data processing and analysis-1

Twititer

Raw Data

Twitter text

whyw are all these people
outside alreadv? so many
dangers after a stormm
passes Fsamndy

Sull no power outages 1IN

pockets of Westlake and

Roclky River (@ WEWS
#Sandy #mno Power

Goosle
Map API1
Openstreet
Map

Reverse Geocode: Visualization

Porter Stemmuer

Twitter Content
Analysis

v

v

Sentiment analy sis:

Accordmg the positrve,
negative words to mfer
Twitber uses’  attitndes or
responses o Humcocane

Hashtag And High
Freguency Words
Aavna by sis:

Hashtag, used m micro-blog
twitter o mark cloes, and the
high frequency wonds
analysis help us more
quickly and efficient to find
Twitter uses’  greatest

concerns during a disaster. !

Twitter data:
Temporal
Spatial
Content




» Data processing and analysis-2

Early-warning
Disaster assessment

Twitter activity at the national
level

Twitter activity at the states level

Twitter activity at ZCTAs level

T hree levels:

Country
States
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Tweet nationwide analysis--- volume of Twitter activity
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23:30 10.29




Tweet nationwide analysis--- content features
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Tweet nationwide analysis——

consistency between Twitter activity, five topics and sentiment index
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Tweet State analysis--- early warning

A Disaster-related ratios B Emotion-related ratios
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Tweet State analysis--- early warning

C Situation-related ratios
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Tweet State analysis--- early warning

E Weather-related ratios

F Average sentiment indices
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Tweet ZCTA analysis--- disaster assessment
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Case Study 2 : Typhoon Lekima 8.9.8:00/2019-8.14.8:00/2019
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