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Social media platforms

• Gather an unprecedented scale of data and information

• Offer possibilities to observe social responses in a timely and 

continuously manner

• Speculate on the implications of expressed social attitude

• Distinguish interactions on social media relating to significant 

events



Twitter  Microblog

• Its information network properties accelerate information 

diffusion

• Its social attributes allow access to personal information such as geo-

location, social connections, personal emotions

• Limitation of message length promote the rapid exchange of 

information

• It became a research hotspot in the field of emergency management
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Case Study 1：Hurricane Sandy

A

B D

C
How cyber citizens react to a 

catastrophe using analyses of 

both tweet volume and content

Hurricane 

Sandy

Identify general features of the 

public behavior

Whether  the combination of tweets

and geo-information has an 

Advantage in early warning. 

Analyze the correlations between 

tweets information and the damage  



landfall

➢ Hurricane Sandy：the most destructive hurricane of 2012
the third-costliest hurricane in American history
(Harvey,2017; Katrina,2005)
damage: >$70 billion

New Jersey

2012.10.2
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23:00
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23:00
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Tweet data

New York: 500 thousands

New Jersey: 470 

thousands

Hurricane damage losses 

data
1.FEMA’s Enterprise

Coordination& Information 

Management(ECIM) reporting 

team

2.https://www.fema.gov/what-

disaster-assistance



➢ An example of the extracted tweets

单击此处添加本章节的简要内容。本模
板精心设计，模板所有素材均可自由编
辑替换移动。
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Reverse  
geocoding

Reverse geo-information 

of tweets into 

identifiable geographic 

information

Whether a correlation 

exists between postings 

on tweet and factual 

data on disaster 

damage. 

Content analysis

frequency analysis
Top hushtags and keywors

Sentiment analysis
Measure the emotion or mood 

expressed in each tweet and classify 

it as negative, neutral, or positive

Sentiment lexicons  

Machine learning
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➢ Data processing and analysis-1
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➢ Data processing and analysis-2
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Horizontal axis is an offset representing the time of Sandy landfall, time 0 means 
23:30 10.29

Tweet nationwide analysis--- volume of Twitter  activity 
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Tweet nationwide analysis--- content features  



STEP
01

STEP
02

Tweet nationwide analysis——
consistency between Twitter activity, five topics and sentiment index  
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Severe Region：ten states(Connecticut, Delaware, Maryland, New Jersy, New York 
etc.) and District of Columbia——declaration of a state of emergency

Tweet state analysis--- early warning 
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Severe Region：ten states(Connecticut, Delaware, Maryland, New Jersy, New York 
etc.) and District of Columbia——declaration of a state of emergency

Tweet state analysis--- early warning 
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Severe Region：ten states(Connecticut, Delaware, Maryland, New Jersy, New York 
etc.) and District of Columbia——declaration of a state of emergency

Tweet state analysis--- early warning 
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Trend of correlation coefficient between the total damage losses(FEMA) and 
Twitter activity in New Jersey and New York

Tweet  ZCTA analysis--- disaster assessment 



Case Study 2：Typhoon Lekima 8.9.8:00/2019-8.14.8:00/2019

Hurricane 

Sandy
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Thanks for listening


