

Application of Big Data in Insurance

-----Early Warning and Damage Estimation of Catastrophe Risk

Sujin Zheng Hairuo Guo Shuning Song Haitao Hu

CAS Annual Meeting 2019.11.11 Hawaii

....

02 Contents

04 Conclusion

Background

question

i n s u r a n c e

Ex post risk management financing vehicle

Damage estimation of Catastrophe Risk Early Warning of Catastrophe Risk

Social media platforms

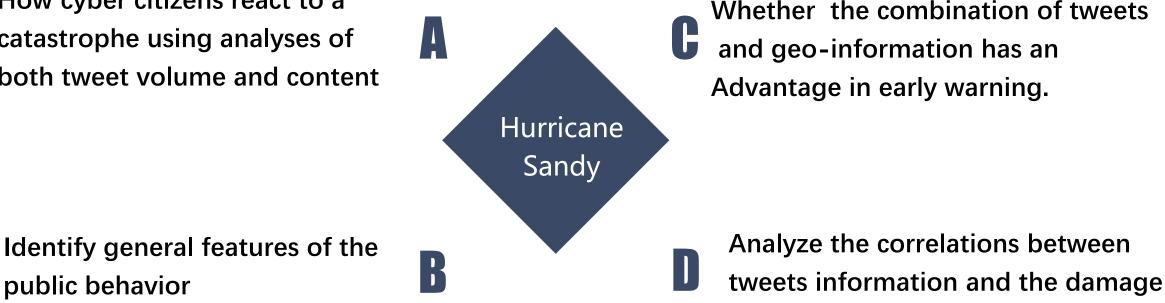
- Gather an **unprecedented scale** of **data** and information
- Offer possibilities to observe social responses in a timely and continuously manner
- Speculate on the implications of expressed social attitude
- Distinguish interactions on social media relating to significant events

Twitter Microblog

- Its **information network properties** accelerate information diffusion
- Its **social attributes** allow access to personal information such as geolocation, social connections, personal emotions
- Limitation of message length promote the rapid exchange of information
- It became a research **hotspot** in the field of emergency management

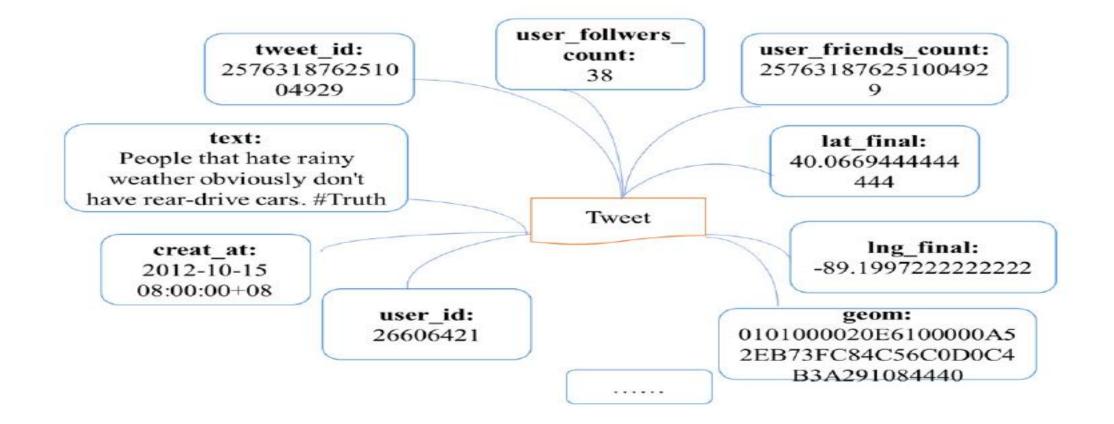
Case Study 1 : Hurricane Sandy

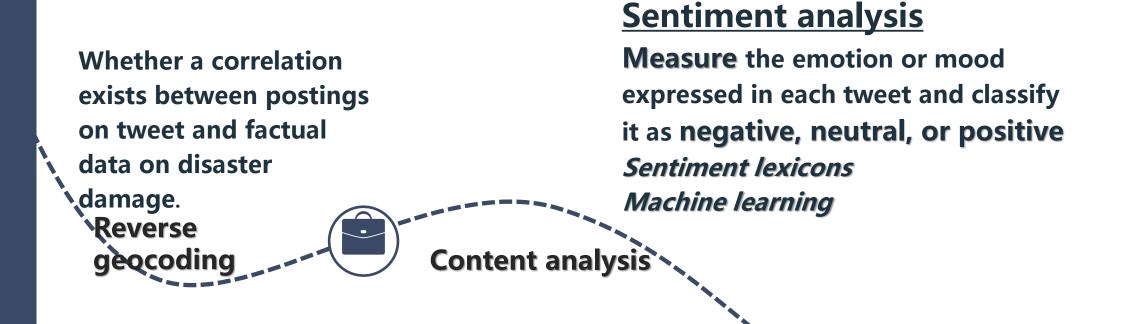
How cyber citizens react to a catastrophe using analyses of both tweet volume and content



Hurricane Sandy : the most destructive hurricane of 2012 the third-costliest hurricane in American history (Harvey,2017; Katrina,2005) damage: >\$70 billion

An example of the extracted tweets





Reverse geo-information of tweets into identifiable geographic information

frequency analysis Top hushtags and keywors **Import:** Tweets set $T = \{t_1, t_2, t_3, L_n\}$, sentiment lexicon *Dict*, emoticons set *Emotions*.

For each tweet t_i , the scoring formula $Scores(t_i)$ is:

$$Scores(t_i) = \sum_{w_{i,j} \in t_i} f(w_{i,j}, Dict) + \sum_{e_{i,j} \in t_i} \delta(e_{i,j}, Emotions)$$

Where $w_{i,j}$ and $e_{i,j}$ represent the word and emotion in tweet t_i respectively.

$$f(w_{i,j}, Dict) = Pos(w_{i,j}) - Neg(w_{i,j})$$

Each word $w_{i,j}$ in *Dict* has two numerical scores $Pos(w_{i,j})$ and $Neg(w_{i,j})$, which indicate the degree of positivity or negativity.

 $\delta(e_{i,j}, Emotions) = \begin{cases} Pos(e_{i,j}) \text{ if } e_{i,j} \text{ represents positive in Emotions} \\ Neg(e_{i,j}) \text{ if } e_{i,j} \text{ represents negative in Emotions} \end{cases}$

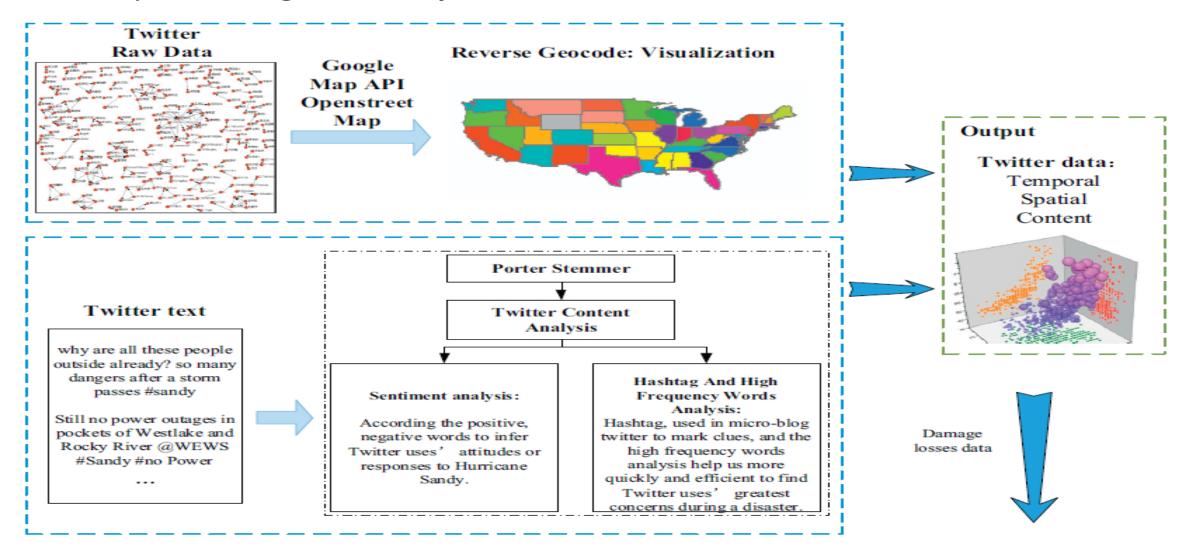
Output: For each tweet, $Scores(t_i)$ is calculated, where $Scores(t_i) > 0$ indicates positive emotional orientation and vice-versa.

Five topics of Twitter messages.

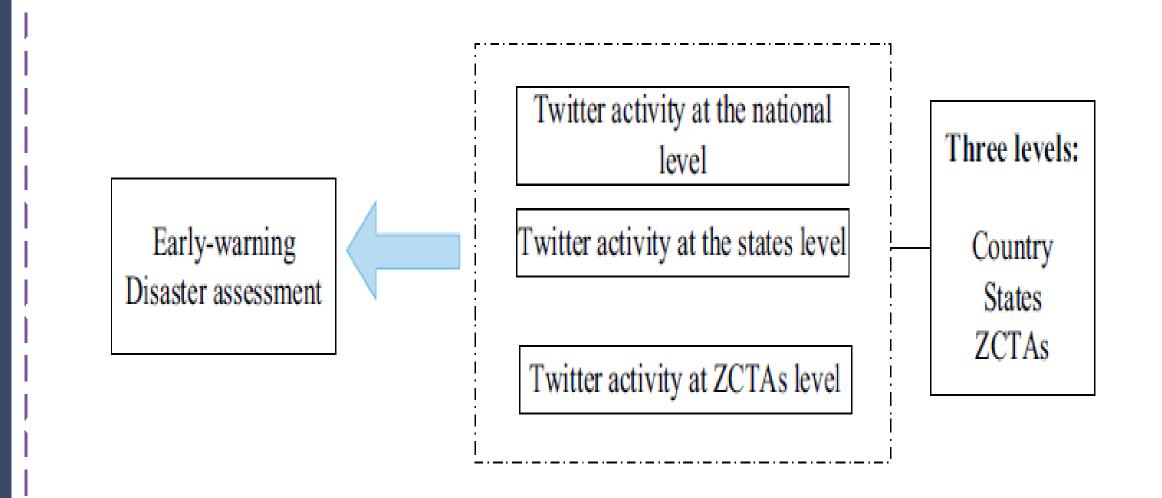
Topics	Description	Related words
Disaster-related	The most important role of Twitter during a disaster is information sharing and dissemination. When people use some words directly related to the disaster, which could attract people's attention as an early warning.	"disaster," "Franken-storm," "hurricane," "flood," "destroy," "Sandy," "storm," "tornado."
Weather-related	Hurricanes are often accompanied by climate changes, being different from other kinds of natural disasters.	"cold," "climate change," "black out," "climate."
Emotion-related	Emotional support is important during and after a disaster. When undergoing a disaster, people naturally express their personal feelings and concerns, providing social and emotional support, comfort, and sympathy to others.	"panic," "hope," "terrifying," "insane," "scared," "keep calm," "scary," "hungry," "fuck," "hate," "horrible," "pray for us," "omg," "god."
Action-related	When a disaster happens, the government plays an irreplaceable role in disaster relief and support. This category includes the words that people are using to appeal to the government to tack action.	"government," "MTA," "FEMA," "governor," "red cross," "federal," "Cuomo," "NY," "NY," "wall st," "CNN."
Situation- related	Situation updates and influence descriptions are important for early warnings and disaster assistance.	"power," "no power," "food," "house," "energy," "hospital," "airport," "electric," "electricity," "cancelled," "gas," "blocked," "emergency," "life," "warning," "lost," "help," "need," "keep safe," "safe," "stay home," "stay safe,"

"warning," "lost," "help," "need," "keep safe," "safe," "stay home," "stay safe," "recovery," "survived," "dead," "kill," "dying," "home," "problem," "move."

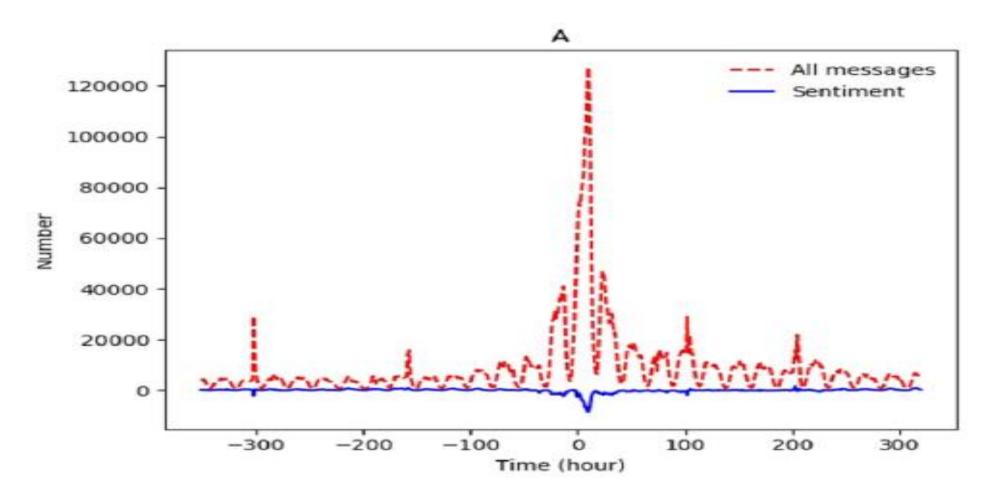
Data processing and analysis-1



Data processing and analysis-2

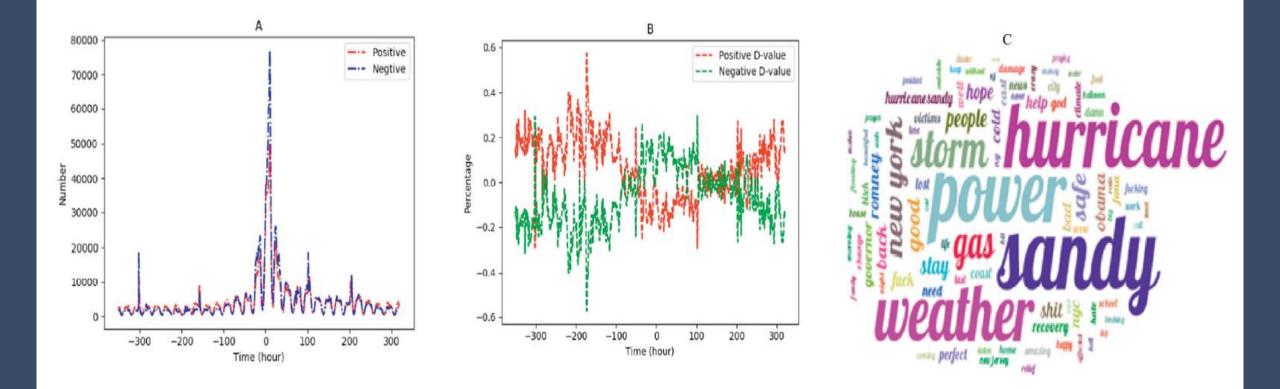


Tweet nationwide analysis--- volume of Twitter activity



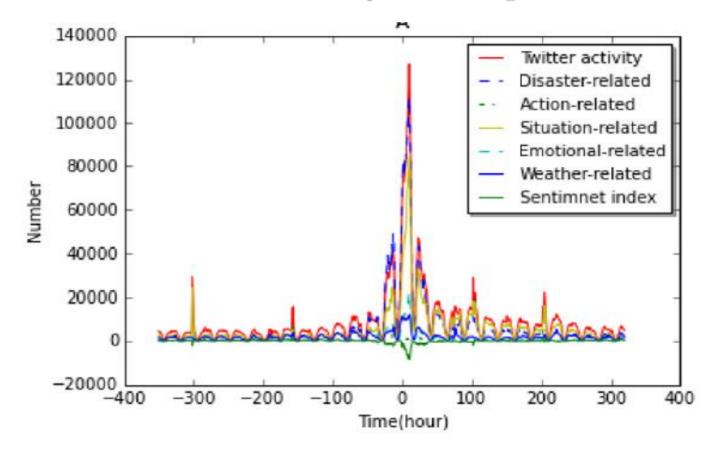
Horizontal axis is an offset representing the time of Sandy landfall, time 0 means 23:30 10.29

Tweet nationwide analysis--- <u>content features</u>

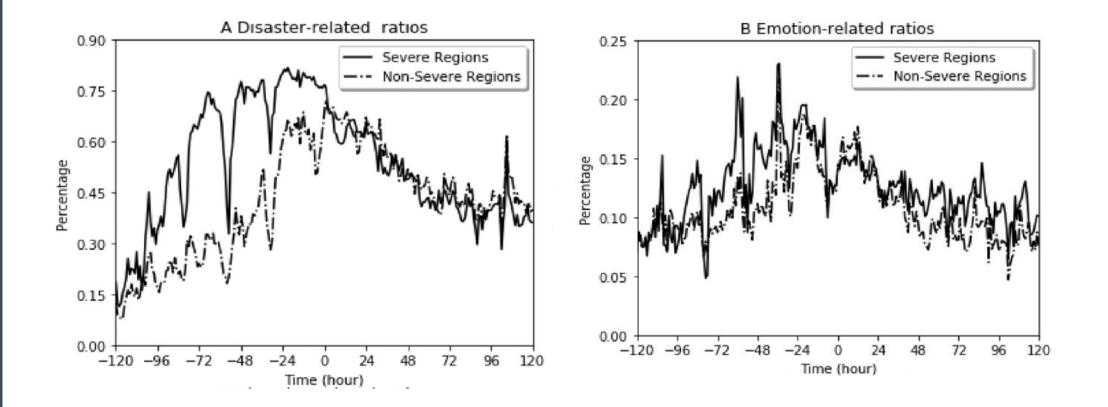


Tweet nationwide analysis——

consistency between Twitter activity, five topics and sentiment index

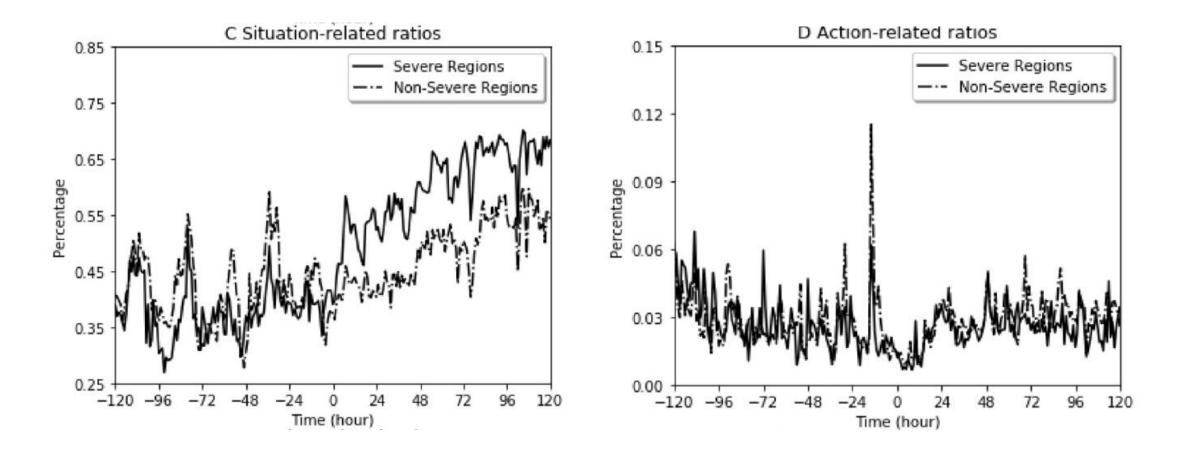


Tweet State analysis--- early warning



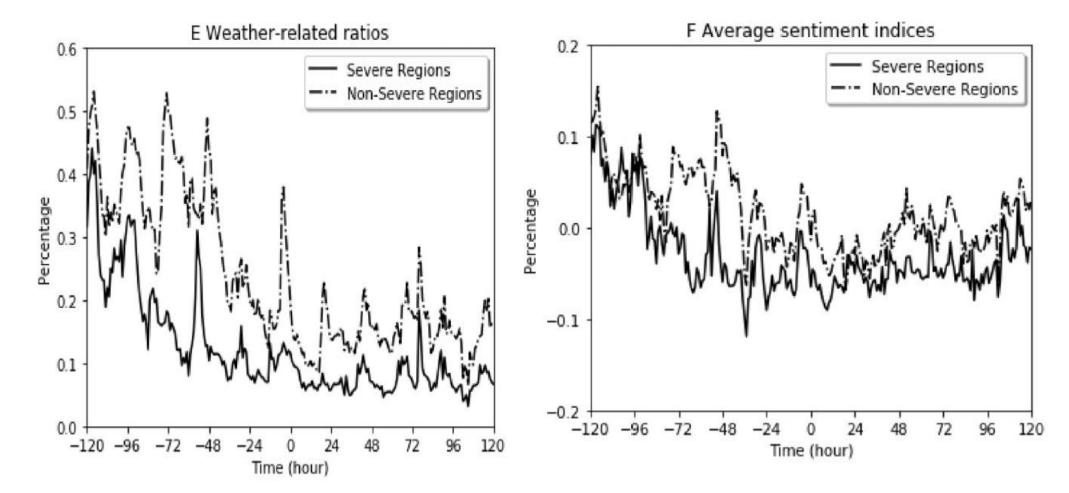
Severe Region : ten states(Connecticut, Delaware, Maryland, New Jersy, New York etc.) and District of Columbia——declaration of a state of emergency

Tweet State analysis--- early warning



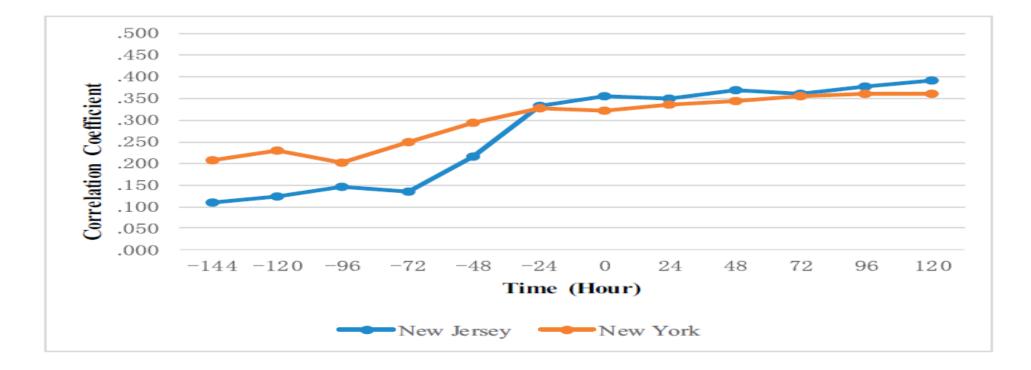
Severe Region : ten states(Connecticut, Delaware, Maryland, New Jersy, New York etc.) and District of Columbia——declaration of a state of emergency

Tweet State analysis--- early warning



Severe Region : ten states(Connecticut, Delaware, Maryland, New Jersy, New York etc.) and District of Columbia——declaration of a state of emergency

Tweet ZCTA analysis--- disaster assessment



Trend of correlation coefficient between the total damage losses(FEMA) and Twitter activity in New Jersey and New York

Case Study 2 : Typhoon Lekima

8.9.8:00/2019-8.14.8:00/2019

References

[1]Desheng Wu, Yiwen Cui, Disaster early warning and damage assessment analysis using social media data and geo-location information, Decision Support Systems.[J].111 (2018)
48-59.

[2]Sujin Zheng, Hairuo Guo, Shuning Song, Haitao Hu,

Thanks for listening

....