

Mack Mean

 Under these assumptions, the best estimate of the age-to-age factor is a weighted average

$$E[F(d)] = \sum_{w} \frac{c(w,d)}{\sum_{w} c(w,d)} \times \frac{c(w,d+1)}{c(w,d)} = \frac{\sum_{w} c(w,d+1)}{\sum_{w} c(w,d)}$$

The Ultimate estimate is:

 $E[c(w,n)|D] = c(w,d) \times F(d) \times F(d+1) \times ... \times F(n-1)$

where D is known data

Mack Variance

- Since the mean is weighted, the variance is also weighted.
- Variance associated with one age-to-age factor or column of losses, σ_d^2 :

$$\sigma_d^2 = \frac{1}{N - d - 1} \sum_{j=1}^{N - d} c(j, d) \left(\frac{c(j, d + 1)}{c(j, d)} - F(d) \right)^2$$

Milliman J___

Exercises using Mack Data

- Compute the weighted average age-toaverage factors for each column
- Compute the weighted variances for age 1 for the factors in the exercise triangle
- Bonus: Calculate weighted averages and variances for age 1 in the complete Mack data triangle

Answer (Variance of Column 1) Computation of σ_I^2 for Development Age 1 Accident Year (w) F(w,1) - F(1)] Deviation (1) $[(3) - 2.334]^2$ 1981 1982 106 40.425 1,450.90 153,795.4 1983 3,410 2.637 313.3 5,655 2.043 Weighted Average [F(1)] 2.334 Σ (5) = 156,930.9 $\sigma_1^2 = \Sigma(5) / (N-d-1) =$ 52,310.3 Milliman J___ Page II.7

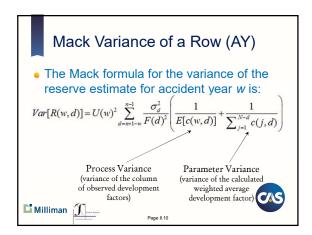
Variance of	Ultimates

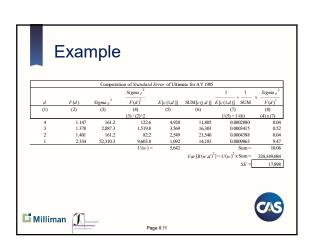
- We want variance of future payments or future incurred loss changes
- $MSE[c(w,n)] = E[\{c(w,n) E[c(w,n)]\}^2 | D]$ where D is
- Iterative rule of expectations
- MSE[c(w,n)] = Var[c(w,n)|D]+ {E[c(w,n)|D] -
- Mean squared error = process variance of Ultimate + Parameter variance of estimate of ultimate
- Does not take into account changes in underlying model in the future.

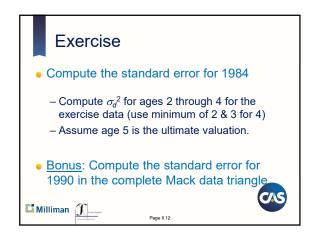
Page II.8

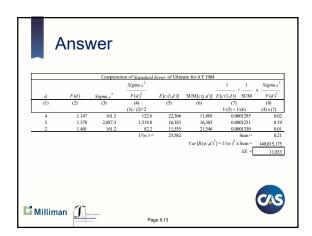
Variance of Ultimates

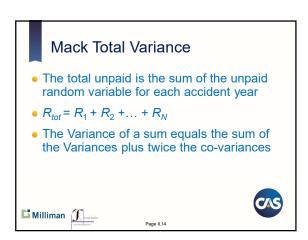
• Iterative computation to get variance of ultimate

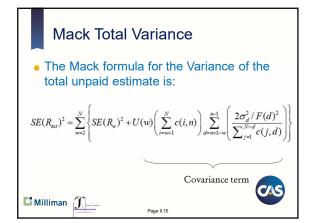

 $Var[c(w,n)] = E[c(w,n-1)]\sigma_{n-1}^2 + E[c(w,n-1)]^2 F(n-1)^2 =$ $c(w, n-k+1)F(n-k+1)...F(n-2)\sigma_{n-1}^2 +$ $\{E[c(w,n-2)]^2F(n-2)^2F(n-1)^2+E[c(w,n-2)]F(n-1)^2\sigma_{n-2}^2\}$

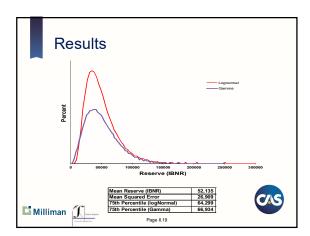

• Variance of unpaid = variance of ultimate

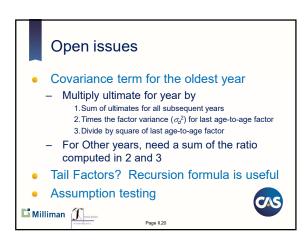


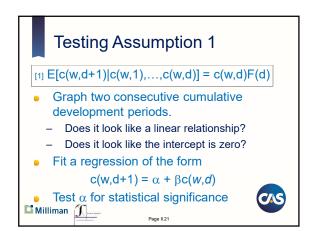


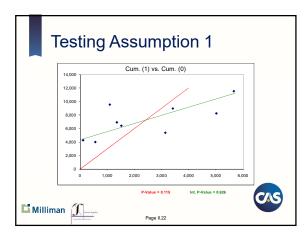

Page II.9

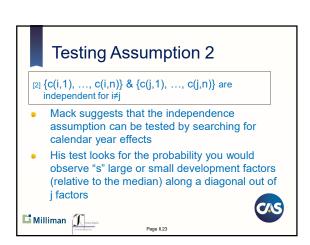


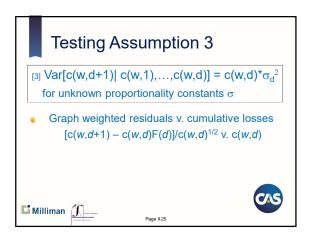


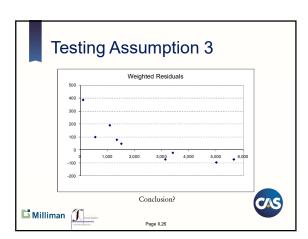


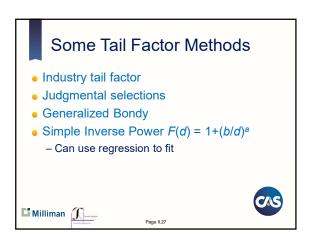


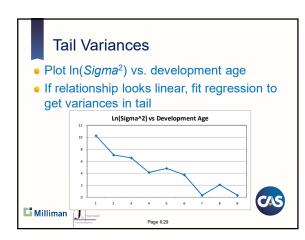

Calculation Pointers It is easiest to set up a set of triangles to perform the calculations - First create a row of column sums of cumulative losses x the last observation Create a triangle of weighted squared deviations of development factors from their mean Create a projected runoff triangle that computes each estimate of cumulative losses, E[c(w,d)], for all future periods - Create a triangle of inverses of projected runoff plus inverse of sum of cumulative losses - A spreadsheet showing the calculation for the Mack data is provided Milliman J Page II.16 **Using Mack Parameters** • We have a mean and a variance for unpaid (or IBNR) amounts. Now what? • To get confidence intervals or probability distribution, assumptions must be made • Assume unpaid (or IBNR) amounts follow a probability distribution, say the Gamma Use mean and variance of unpaid (or IBNR) amounts to derive parameters for distribution • Use this distribution to estimate percentiles and other statistics for unpaid (or IBNR) amounts Milliman J **Group Exercise** • Compute the variance of the total reserve amount using the Mack data Assume total reserve amount follows a lognormal (or Gamma) distribution and compute the parameters $\mu \& \sigma$. Compute the 75th percentile of the reserve (IBNR) amount. Refer to Mack Model workbook for results Milliman J___


Page II.18








Testing Assumption 2											
	De	velopment Fa	ctors								
		1	2	3	4	5	6	7	8	9	
	1	1.650	1.319	1.082	1.147	1.195	1.113	1.033	1.003	1.009	
	2	40.425	1.259	1.977	1.292	1.132	0.993	1.043	1.033		
	3	2.637	1.543	1.163	1.161	1.186	1.029	1.026			
	4	2.043	1.364	1.349	1.102	1.113	1.038				
	5	8.759	1.656	1.400	1.171	1.009					
	6	4.260	1.816	1.105	1.226						
	7	7.217	2.723	1.125							
	8	5.142	1.887								
	9	1.722									
Median		4.260	1 599	1 163	1 166	1.132	1.033	1.033	1.018	1.009	
mcou.		4.200		nove Median	1.100		Now Median	1.000	1.010	1.000	
				JOYC MICCION		-					
Conclusion?											
Millir 🚨	nan	α									
	aii	J. 1-	- Angeles		Page	II.24					

