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CREDIBILITY REDUCES PREDICTIVE VARIANCE

• Actuarial credibility minimizes sum of squared errors between estimates and true mean

• Also minimizes variance of prediction errors; Stein’s Theorem from 1959 says some degree of 
weighting towards mean always reduces error variance when 3 or more cells being estimated

• Shrinks estimates towards overall mean, so estimates are biased towards grand mean, but 
estimation errors are reduced –error bands are smaller but no longer symmetric

• Buhlmann’s least squares credibility from 1968 same as the James-Stein estimator from 1961
• They assume normal distributions and he minimizes squared errors and calls it non-parametric

• But least squares = MLE for normal distributions, so both are really making the same assumptions. 
Also credibility doesn’t work well unless distributions close to normal.

• Credibility factor Z from ratio of variance components. In actuarial terminology this is: 
expected process variance / variance of hypothetical means

• But James-Stein considers cases where you don’t know the variance of the hypothetical 
means (though you could get close from historical baseball statistics in the example)
• Estimate that as sample variance*(N – 1)/(N – 3) when there are N means being estimated
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BATTING AVERAGE EXAMPLE

• Used in many papers by Efron, Morris, 
Van Slyke… This one from 
http://statweb.stanford.edu/~ckirby/bra
d/LSI/chapter1.pdf

• 18 MLB players after 45 at bats in 1970
• Estimate true average for each – to be 

measured by end of season average 350 
or so at bats later

• Credibility weights each average against 
overall mean with Z = 0.212

• A lot of shrinkage towards mean, as 
early average volatile

• Reduces predictive variance by a factor 
of 3.5, so to 28% of what it would be by 
MLE – which is predicting each mean by 
its early-season average 
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EXTENDING THIS TO REGRESSION

• One direction for credibility for regression is Charles Hachemeister’s paper on that from the 
1974 Berkeley credibility conference, reproduced at 
https://www.casact.org/pubs/forum/92spforum/92sp307.pdf

• I worked for Charlie starting late 1977 and he trained me to be a research actuary. I was at 
that conference as well as a new actuarial trainee but didn’t understand any of it.

• My 2008 ASTIN Bulletin paper with Jose Couret on workers comp hazard group frequency by 
injury type was an application of this. See 
https://www.casact.org/library/astin/vol38no1/73.pdf

• We had data on injury-type frequency by hazard group over time, so within and between 
variances and covariances in all directions, and could apply credibility to weight injury-type 
frequencies with those in the other hazard groups and to other injury types in that group.

• However in usual regressions you do not have all those variances. Other approaches have 
been developed for shrinkage of fitted values towards the mean to reduce error variances, 
based on shrinking the regression coefficients. Theorem: ∃ some degree of shrinkage that is 
better than none
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SHRINKAGE REDUCES PREDICTIVE VARIANCE 
IN LINEAR MODELS

• 1970 paper by Hoerl and Kennard introduced ridge regression

• This minimizes negative loglikelihood (NLL) plus λ*sum of squared parameters, for some factor λ

• Pushes parameters closer to zero, depending on how much each one improves the NLL

• But first you standardize all variables by subtracting their means from each, and dividing all 
regressor variables by their standard deviations to make their scales comparable

• Add back mean of dependent variable to the regression estimate of its differences from mean

• All fitted differences from mean are shrunk towards zero as they are linear combinations of mean 
zero variables, and their coefficients have been shrunk. So biased but with less error.

• All fitted values are shrunk toward the overall mean, just like in credibility – and best λ always > 0

• Now it is common not to standardize the dependent variable, and then not to shrink the constant 

• Select λ by cross-validation: leave out maybe a rotating 10% of the data in 10 separate 
regressions, and measure NLL of the left out parts, then add these up to give a penalized NLL –
look for λ that minimizes that penalized NLL
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LASSO (LEAST ABSOLUTE SHRINKAGE AND 
SELECTION OPERATOR)

• Minimize NLL + λΣj|βj| for parameters βj.

• First appeared in Santosa, Fadil; Symes, William W. 
(1986), but reinvented and popularized by 
Tibshirani, Robert (1996).

• Using absolute values shrinks some parameters to 
exactly zero

• That’s why the term selection 

• Can start off with a lot of parameters and it gets 
the best combination of them for each λ.

• When fitting you get a graph like this that shows 
how the coefficients of the model increase as L1 
norm (i.e., Σ|βj|) increases and λ decreases.

• In this case, parameters are negatively correlated 
so they come in and out of the model
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RANDOM EFFECTS

• Assume parameters (i.e., “effects”) are (typically) iid normal (0, σ2)
• Maximize joint likelihood, which is probability of parameters times 

the likelihood, where likelihood = the probability of data given 
parameters. Joint likelihood is then the joint density of the 
parameters and the data, by definition of conditional distribution.

• From normal distribution, – log of probability of parameters βj, for 
fixed σ2, is:    (some constant) + Σjβj

2/2σ2. 
• Maximizing the joint likelihood means minimizing NLL + Σjβj

2/2σ2, so 
is ridge regression with λ = 1/2σ2.

• But if σ2 is not fixed, it gets estimated as well when maximizing joint 
likelihood.  A way to estimate λ.

• If parameters are double exponential (i.e., |βj| are exponential), this 
instead produces lasso. Called Bayesian lasso for reasons coming.
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BAYESIAN VERSION

• Joint likelihood is also the probability of the data times the probability of the 
parameters given the data, again by the definition of conditional distribution

• Probability of the data is an unknown constant. Thus joint likelihood is 
proportional to the conditional distribution of the parameters given the data 

• MCMC (Markov Chain Monte Carlo) is a way to generate a sample of a 
distribution if it is known up to a constant. It has to integrate to 1.0.

• So it can approximate the probability distribution of the parameters given the 
data – which is what Bayesians call the posterior. This terminology is a bit 
antiquated, as doing it does not require subjective probability or Bayes 
Theorem, and we can do it all as frequentist random effects

• The ridge regression or lasso estimate from maximizing the joint likelihood is 
the mode of the conditional distribution of the parameters given the data. 
Frequentists routinely calculate this mode so why not the whole distribution?
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PENALIZED LIKELIHOOD
MEASURING GOODNESS OF FIT

• Good penalized likelihood measures are the small sample AIC – denoted AICc – and 
the HQIC – Hannan-Quinn Information Criterion

• They add a penalty to the NLL. With sample size N and k parameters, penalties are:
• AICc:  k * N/[N – k – 1]                       HQIC:  k * ln[ln(N)]

• Goal is to take out the sample bias in the NLL, so the penalized NLL would be the NLL 
for a new, independent  sample when using the parameters fit to this sample

• But shrunk parameters don’t act like full parameters – they use up fewer degrees of 
freedom – so we don’t know the right k to use

• Can use cross validation to do penalized likelihood – leave out say 1/5 of sample for 
fitting, get NLL of the left out points and repeat 4 times and add up left out NLLs

• Or subtract the penalty from LL
• Extreme case of this is leave-one-out (loo), where each point is used by itself as the 

left-out subsample
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LOO

• Sounds like a lot of work

• But if you have the whole conditional distribution of the parameters given the data, 
there is a good, simple approximation

• Estimate the left-out likelihood of a point as a weighted average of its likelihoods 
across the sample of parameter sets, where worse-fitting samples get more weight

• A technique called importance sampling gives each parameter set a weight inversely 
proportional to the point’s likelihood using those parameters. The left-out estimate is 
then the harmonic mean of the likelihoods of the point.

• This turns out to be a volatile estimate. Using a kind of extreme-value adjustment for 
the very bad reciprocal likelihoods gets an improvement called Pareto-smoothed 
importance sampling. There is software in R to do this.

• This is a good estimate, and gives a good estimate of LL adjusted for sample bias.
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USING LOO

• The penalized LL – just called loo – gives fit comparisons for different models.
• Can be used to optimize λ.
• But a problem is there is some random estimation error in the bias adjustment
• Maximizing loo by a search over all parameters will very likely result in a model 

where loo is over-estimated. Different than picking best loo from a few choices.
• An alternative is to make the random-effects σ also a random effect – or in 

Bayesian terms, specify a prior for σ. Sometimes called a hyper prior.
• Choices of this prior seem not to make much of a difference in the final model. 
• Usually the resulting σ – and so λ – gets as good a loo as any λ does – and often a 

slightly better one, apparently resulting from having a distribution of λs
• Called the fully-Bayesian estimate – optimizing loo isn’t a Bayesian step
• Also is fully frequentist as all the so-called parameters are random effects – there 

are no fixed effects in this approach – i.e., no parameters in the frequentist sense
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COLLISION SEVERITY BY AGE AND USE
FU / WU VARIANCE PAPER 2007

• 8 age of driver classes, 4 use classes: pleasure, drive to 
work short, drive to work long, business use

• Log of severity regressed for by age and use class
• Exponentiating the model gives a multiplicative model 
• Regression uses 0,1 dummy variables for all but 1st age 

and 1st use:  age 1, use 1 is the constant term
• Other cells: log severity = constant + age effect + use 

effect + ε. Then severity = Age effect * Use effect*eε

• Fitted value is sumproduct of parameter vector and 
vector of dummies for the point plus the constant term

• In matrix notation, let y be the column vector of log 
severities shown, x be the design matrix, b be the 
vector of parameters, and c the constant

• Then fitted value vector y = c + xb

12Age Use ln_s a2 a3 a4 a5 a6 a7 a8 u2 u3 u4
1 1 5.52 0 0 0 0 0 0 0 0 0 0
1 2 5.62 0 0 0 0 0 0 0 1 0 0
1 3 5.50 0 0 0 0 0 0 0 0 1 0
1 4 6.68 0 0 0 0 0 0 0 0 0 1
2 1 5.36 1 0 0 0 0 0 0 0 0 0
2 2 5.70 1 0 0 0 0 0 0 1 0 0
2 3 5.70 1 0 0 0 0 0 0 0 1 0
2 4 5.89 1 0 0 0 0 0 0 0 0 1
3 1 5.52 0 1 0 0 0 0 0 0 0 0
3 2 5.52 0 1 0 0 0 0 0 1 0 0
3 3 5.70 0 1 0 0 0 0 0 0 1 0
3 4 5.84 0 1 0 0 0 0 0 0 0 1
4 1 5.43 0 0 1 0 0 0 0 0 0 0
4 2 5.43 0 0 1 0 0 0 0 1 0 0
4 3 5.68 0 0 1 0 0 0 0 0 1 0
4 4 5.91 0 0 1 0 0 0 0 0 0 1
5 1 5.03 0 0 0 1 0 0 0 0 0 0
5 2 5.31 0 0 0 1 0 0 0 1 0 0
5 3 5.47 0 0 0 1 0 0 0 0 1 0
5 4 5.55 0 0 0 1 0 0 0 0 0 1
6 1 5.34 0 0 0 0 1 0 0 0 0 0
6 2 5.31 0 0 0 0 1 0 0 1 0 0
6 3 5.46 0 0 0 0 1 0 0 0 1 0
6 4 5.87 0 0 0 0 1 0 0 0 0 1
7 1 5.34 0 0 0 0 0 1 0 0 0 0
7 2 5.31 0 0 0 0 0 1 0 1 0 0
7 3 5.54 0 0 0 0 0 1 0 0 1 0
7 4 5.83 0 0 0 0 0 1 0 0 0 1
8 1 5.26 0 0 0 0 0 0 1 0 0 0
8 2 5.28 0 0 0 0 0 0 1 1 0 0
8 3 5.56 0 0 0 0 0 0 1 0 1 0
8 4 5.84 0 0 0 0 0 0 1 0 0 1



FIRST A STRAIGHT REGRESSION ON LOGS
WITH T-STATISTICS

• Age 5 and use 4 most significant 

• Ages below group 5 not at all so 
as well as use 2. Can leave out 
those variables, which mean they 
get the constant

• Older ages somewhat significant

• Use 3 a little less important

• R-squared is fraction of variance 
explained by the model. Adjusted 
is for number of parameters

• Fit is from R lm function
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NOW TRY LASSO AND BAYESIAN LASSO

• Use R glmnet function for lasso

• Use rstan for MCMC for Bayesian lasso
• Run in R but write regression function in rstan

• glmnet has a cross-validation function 
called cv.glmnet

• Produces estimates for a minimum λ called 
lambda.min and a larger one called 
lambda.1se. Can make one called Mid at 
their geometric mean.

• glmnet gives graph for parameter values 
as 1/λ increases and adds in parameters

• Parameters from these methods 
compared on next slide
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PARAMETER COMPARISON

Regr Min Mid 1 se MCMC t

c 5.61 5.49 5.47 5.48 5.49 58.7

a2 -0.17 . . . 0.01 -1.4

a3 -0.19 . . . -0.01 -1.6

a4 -0.22 -0.02 . . -0.03 -1.9

a5 -0.49 -0.29 -0.21 -0.08 -0.24 -4.3

a6 -0.33 -0.14 -0.05 . -0.11 -2.9

a7 -0.33 -0.13 -0.05 . -0.10 -2.8

a8 -0.35 -0.15 -0.07 . -0.12 -3.0

u2 0.08 0.02 . . 0.02 1.0

u3 0.22 0.16 0.11 0.02 0.13 2.8

u4 0.57 0.51 0.46 0.37 0.47 7.0

• MCMC generally between Min and Mid here

• Used prior of uniform[-5,5] for log of double-
exponential s, which is related to λ. Mean was -1.9. 
Uniform[-10,10] for log constant. Mean was 1.7.

• Can take out variables if mean near 0, spread big

• Stan gives graph of posteriors, here with 80% 
ranges
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FITTING CURVES ACROSS PARAMETERS

• Actuaries have used for fitting curves to loss development parameters
• Now a big focus in statistics is building up curves in small sections
• Using line segments for this is called piecewise linear, or linear splines
• Cubic splines are used in some actuarial estimation as well
• O’Sullivan penalized cubic splines are generalizations that apply shrinkage to 

cubic splines – not closed form but functions to do it available in R
• These are the prime tool used in semi-parametric regression for putting these 

not-quite-parametric curves across the parameters – see: 
http://semiparametric-regression-with-r.net/

• Cross-validation used for determining how much shrinkage to use – also for 
selecting where to put knots that link the splines. 

• Several steps and a lot of work – programs available now but kind of black box
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ACTUARIAL SEMI-PARAMETRIC REGRESSION:  
SHRINKING SLOPE CHANGES OF LINEAR SPLINES

• Papers by Barnett, Zehnwirth, Gluck, Venter, Șahin, Gutkovich, Gao, …
• Originally used other forms of shrinkage but now use Bayesian shrinkage 

– including generalizations of Bayesian lasso with other shrinkage priors
• Set up as a regression with slope-change dummy variables, so parameter 

shrinkage shrinks the slope changes. If any of those goes to 0 then old 
slope continues. Thus also finds where the knots are needed.

• Cross-validation gives estimate of how well a model would fit a new 
sample from the same population but there is estimation error

• Automated optimization of a cross-validation measure has high risk of 
finding a model where the implied population fit is exaggerated

• Fully Bayesian approach avoids this. Simple and automatic procedure.
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Example: 
Comparison of 
piecewise linear 
done in Stan vs. 
O’Sullivan splines 
from link above

Very similar fits

Can also be done 
to make curves 
across parameters 
in regressions
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Fu/Wu collisi0n severity data can 
use piecewise linear fits to any or 
all of the parameter types

Here it is done for age groups. 
Lines are for each use

Top graph is original fit, with 
parameters by age and use. 
Bottom is with piecewise linear fit 
by ages. Note that the slope 
flattens out for the last 3 age 
groups

For both, pleasure use and short 
drive to work classes got same fit, 
shown in red, between the two 
actuals, which are the dotted lines

Using this kind of trend gave a bit 
better fit by loo.



SLOPE CHANGE DUMMY VARIABLES

• Focus on dummy variable for age 2 slope change
• An observation from age 1 doesn’t use this 

variable, so its dummy is 0 there
• The slope change for age 2 is the slope for age 1 

to age 2, and is also the parameter for age 2, so 
the dummy is 1 at age 2.

• At age 3, the slope is the slope change for age 3 
plus the slope at age 2. So the parameter is the 
parameter at age 2 plus this slope, so the 
contribution of the age 2 variable is 2.

• At age 4, the dummy is 3, etc.
• The dummy for age j at age i is max(0, 1 + i – j)
• Same for the use class slope change dummies.
• Here age 5 is not a slope change but is a 

separate parameter – modeling judgment call

20Age Use ln_sa2 a3 a4 a5 a6 a7 a8 u2 u3 u4
1 1 5.52 0 0 0 0 0 0 0 0 0 0
1 2 5.62 0 0 0 0 0 0 0 1 0 0
1 3 5.50 0 0 0 0 0 0 0 2 1 0
1 4 6.68 0 0 0 0 0 0 0 3 2 1
2 1 5.36 1 0 0 0 0 0 0 0 0 0
2 2 5.70 1 0 0 0 0 0 0 1 0 0
2 3 5.70 1 0 0 0 0 0 0 2 1 0
2 4 5.89 1 0 0 0 0 0 0 3 2 1
3 1 5.52 2 1 0 0 0 0 0 0 0 0
3 2 5.52 2 1 0 0 0 0 0 1 0 0
3 3 5.70 2 1 0 0 0 0 0 2 1 0
3 4 5.84 2 1 0 0 0 0 0 3 2 1
4 1 5.43 3 2 1 0 0 0 0 0 0 0
4 2 5.43 3 2 1 0 0 0 0 1 0 0
4 3 5.68 3 2 1 0 0 0 0 2 1 0
4 4 5.91 3 2 1 0 0 0 0 3 2 1
5 1 5.03 4 3 2 1 0 0 0 0 0 0
5 2 5.31 4 3 2 1 0 0 0 1 0 0
5 3 5.47 4 3 2 1 0 0 0 2 1 0
5 4 5.55 4 3 2 1 0 0 0 3 2 1
6 1 5.34 5 4 3 0 1 0 0 0 0 0
6 2 5.31 5 4 3 0 1 0 0 1 0 0
6 3 5.46 5 4 3 0 1 0 0 2 1 0
6 4 5.87 5 4 3 0 1 0 0 3 2 1
7 1 5.34 6 5 4 0 2 1 0 0 0 0
7 2 5.31 6 5 4 0 2 1 0 1 0 0
7 3 5.54 6 5 4 0 2 1 0 2 1 0
7 4 5.83 6 5 4 0 2 1 0 3 2 1
8 1 5.26 7 6 5 0 3 2 1 0 0 0
8 2 5.28 7 6 5 0 3 2 1 1 0 0
8 3 5.56 7 6 5 0 3 2 1 2 1 0
8 4 5.84 7 6 5 0 3 2 1 3 2 1



LOSS RESERVING

• Semi-parametric approach works well 
for that

• Graph shows row and column factors 
from full regression vs. semi-
parametric regression done in Stan

• Examples (and code) in my paper 
“Loss Reserving Using Estimation 
Methods Designed for Error 
Reduction” at the Variance Articles in 
Press site: 

• https://www.variancejournal.org/articl
espress/articles/Loss-Reserving-
Venter.pdf
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WRAP-UP

• Shrinking parameters in regressions also shrinks fitted values towards the mean and reduces 
the estimation and prediction variance, like shrinking towards the mean does in credibility 
theory

• There are random-effects and Bayesian forms of shrinkage – very similar 
• Big advantages of Bayesian are:

• Getting parameter uncertainty distributions
• Easy and good penalized LL called loo
• Can use fully Bayesian approach to simplify selecting degree of shrinkage

• Semi-parametric regression builds up customized curves across parameter types
• There is a fully Bayesian form of this from shrinking piecewise linear slope changes
• Not restricted to normal residuals – same thing works with GLM and even more general 

distributions of residuals.  Also non-linear models. If you can write down the model’s 
equations, you can put it in Stan, and then build curves across the parameters.

• All approaches give reduced error models for ratemaking and reserving

22


	Credibility-like Shrinkage in Linear Models for Pricing and Reserving
	Credibility Reduces predictive Variance
	Batting Average Example
	Extending this to regression
	Shrinkage reduces predictive variance in linear models
	lasso (least absolute shrinkage and selection operator)
	Random effects
	Bayesian version
	Penalized Likelihood�measuring goodness of fit
	loo
	Using loo
	Collision Severity by age and use�fu / wu variance paper 2007
	first a straight regression on logs�with t-statistics
	Now try Lasso and Bayesian Lasso
	Parameter comparison
	Fitting curves across Parameters
	Actuarial semi-parametric regression:  shrinking slope changes of Linear Splines
	Slide Number 18
	Slide Number 19
	Slope change dummy variables
	Loss reserving
	Wrap-Up

