Rebalancing the off-Balance Factor Using the Complement of Credibility

Joseph Boor, FCAS, Ph.D., CERA/Jeffery Smith, FCAS, MAAA Presentation to 2019 Casualty Actuarial Society Annual Meeting

September 10-13, 2019

Antitrust Notice

- The Casualty Actuarial Society is committed to adhering strictly to the letter and spirit of the antitrust laws. Seminars conducted under the auspices of the CAS are designed solely to provide a forum for the expression of various points of view on topics described in the programs or agendas for such meetings.
- Under no circumstances shall CAS seminars be used as a means for competing companies or firms to reach any understanding expressed or implied that restricts competition or in any way impairs the ability of members to exercise independent business judgment regarding matters affecting competition.
- It is the responsibility of all seminar participants to be aware of antitrust regulations, to prevent any written or verbal discussions that appear to violate these laws, and to adhere in every respect to the CAS antitrust compliance policy.

Key Point of Presentation

- Off-balance from credibility arises when post-credibility (or "after credibility process") rates by class don't weight to the total average rate.
- Current practice is to spread off-balance with factor multipled by all rates.
- Key Point: You get more accurate and more reasonable rates when you just spread the off-balance from credibility across the complement of credibility terms $(1-Z) \times ...$

Why is Using the Complement of Credibility Term Better?

• For a fully credible or "nearly fully credible", the current process alters a rate that is known to be proper and then modifies it.

- This takes a rate that's right and makes it wrong.

• As we'll see, the present process is suboptimal

Example—Similar to Data Seen in Actual Practice

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	(Data)	(Data)	(2)/(1)	(Data)	(Data)	((3)/(5))-1.0	[Comb(6)]	$(1.0+(6))\times(7)-1.0$
							/[Wtd.(6)]	
	On-Level	Trended			Permssble			Revised
	Earned	Ultimate	Loss		Loss	Indicated	Off-Balance	Indicated
Coverage	Premium	Losses	Ratio	Credibility	Ratio	Changes	Factor	Changes
A	\$ 450,000	\$ 900,000	200.0 %	25 %	65 %	52.3 %		63.0 %
В	\$ 500,000	\$ 500,000	100.0 %	27 %	65 %	14.3 %		22.3 %
C	\$ 1,000,000	\$ 800,000	80.0 %	38 %	65 %	8.7 %		16.3 %
D	\$ 3,000,000	\$ 1,400,000	46.7 %	65 %	65 %	-18.3 %		-12.6
E	\$ 5,000,000	\$ 3,800,000	76.0 %	100 %	65 %	16.9 %		25.1 %
Wtd. Average						6.9 %		14.4 %
Comb. Total	\$ 9,950,000	\$ 7,400,000	74.4 %	100 %	65 %	14.4 %	1.070	

Made up Example-Class Pure Premium Ratemaking-Worse Experience in Smaller Classes

(3)	(1)	Main Calculations for Class Rates										
	(4)	(5)	(6)	(7)								
(1)/(2)	(1)×C	Sqrt((4)/683)	(3)×(5) +A(1.0-(5))	(6) × E								
Raw ate " <i>L</i> "	Expected Claim Count	Credibility of Class	Credibility Adjusted Rate	Corrected (Rate								
\$ 3,137 \$ 1,356 \$ 1,808	65 78 93	31 % 34 % 37 %	\$ 1,324 \$ 800 \$ 994	\$ 1,564 \$ 946 \$ 1,174								
D-L not shown												
\$ 313	577	92 %	\$ 329	\$ 389								
\$ 240	692	100 %	\$ 240	\$ 283								
\$ 269	831	100 %	\$ 269	\$ 317								
\$ 518	4,661	%	\$ 438	\$ 518								
ues for A	II Classes											
A =Needed Overall Average Rate\$518B = Severity (Computed Outside the Table)\$200C = A/B = Expected Claims/Exposure2.588D = Average Z-Adjusted Rate\$438E = A/D = Off-Balance Factor1.1814												
	1)/(2) Raw ate "L" \$ 3,137 \$ 1,356 \$ 1,808 D \$ 313 \$ 240 \$ 269 \$ 518 ues for A age Rate Outside aims/Ex Rate Factor	1)/(2) (1)×C Expected Claim ate "L" Count \$ 3,137 65 \$ 1,356 78 \$ 1,808 93 D-L not show \$ 313 577 \$ 240 692 \$ 269 831 \$ 518 4,661 ues for All Classes age Rate Outside the Table) aims/Exposure Rate Factor	(3) $(1) \times C$ Sqrt((4)/683) I)/(2) (1) $\times C$ Sqrt((4)/683) Expected Claim Credibility ate "L" Count of Class \$ 3,137 65 31 % \$ 1,356 78 34 % \$ 1,808 93 37 % D-L not shown \$ 313 \$ 313 577 92 % \$ 240 692 100 % \$ 269 831 100 % \$ 518 4,661 % ues for All Classes ams/Exposure Rate Factor Rate Factor Factor Factor	(3)(4)(3)1)/(2)(1)×CSqrt((4)/683)(3)×(5) +A(1.0-(5))Raw ate "L"Claim CountCredibility of ClassAdjusted Rate\$ 3,1376531 % \$ 1,324\$ 1,324 \$ 800\$ 1,3567834 % \$ 800\$ 800 \$ 994\$ 1,8089337 % \$ 994\$ 994 \$ 240D-L not shown \$ 313577 \$ 92 % \$ 240\$ 329 \$ 240\$ 269831100 % \$ 269\$ 269 \$ 269\$ 5184,661%\$ 438 \$ 200 aims/Exposureage Rate\$ 518 \$ 2.588 Rate\$ 518 \$ 4.38 \$ 1.1814								

Skipped Example-Using Loss Ratio Method or Assigning Complement to the Overall Average Relativity Instead of Pure Premium Method

• As long as the complement is multiplied by something containing the overall claims costs—same resulting rates.

What About When Complement of Credibility is Multiplied by the Current Relativity

	Main Calculations for Class Relativities											
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	
	(Data)	(Data)	(1)/(2)	(3)/	(1) × C	$\sqrt{((5)/683)}$	(Data)	(4) × (6)	[Avg(8)]	A/(9)	[Cls O (3)])	
				[Cls O (3)]		v		$+(1.0-(6))\times(7)$	\times [(3) for Class O]		×(8)×(10)	
				Dout	Evported			Cradibility		Off Dalance		
			Raw	Relativity	Claim	Credibility	Current		Average	Correction	Final	
Class	Exposure	Losses	Rate	Indication	Count	of Class	Relativity	Relativity	Rate	Factor	Rates	
A	25	\$ 78,427	\$ 3137	11.682	65	31 %	8	9.133			\$ 2550	
B	30	\$ 40,687	\$ 1356	5.05	78	34 %	6	5.68			\$ 1586	
C	36	\$ 65,073	\$ 1808	6.731	93	37 %	5	5.639			\$ 1575	
					D-l	_ not shown	•	1	1			
M	223	\$ 69,726	\$ 313	1.165	577	92 %	1.25	1.172			\$ 327	
N	267	\$ 64,108	\$ 240	0.892	692	100 %	1	0.892			\$ 249	
0	321	\$ 86,197	\$ 269	1	831	100 %	1	1			\$ 279	
Tatal (Aug	1001	¢ 020 011	¢ = 1 0	1 000	4661		1 026	1 050	¢ 400	1 0 2 0	¢ =10	
Total/Avg	1801	⇒ 932,211	\$ 518	1.928	4661		1.836	1.858	\$ 499	1.038	\$ 518	
	Reference Values for All Classes : Continue Values A-C from earlier Table											

General Results

- Present method takes rates that are right (fully credible rates) and makes them wrong.
- Especially when small classes have different loss experience than large classes, off-balance generated by smaller classes impacts large classes that did not generate off-balance.
- Off balance may be smaller, especialy when complement is close to experience data, but can also be large.

What to Do About It?-Classical Credibility

- Maximum (optimum) Plausibility approach-Leave the Credible Data Alone
 - No change to fully credibile rates.
 - Assuming overall change is proper and must be matched, assign off-balance to rates where it is most plausible the rate is wrong (small classes).
 - Only two unbiased estimators of classes' losses to allocate across, overall rate and class rates, using class rates generates obvious bias. Allocate soloely across the overall rate in (1 - Z) term.

Does Allocating the Balance Across the Complement Term Make a Difference?—Difference From First Example

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
	(Data)	(Data)	(2)/(1)	(Data)	(Data)	((3)/(5))-1.0	(1.0-(4))*(5)	((1)*(7)	(1)×[Comb (6)]	(9)×(8)	(6)+	Prev. Col.(8)
									-[Wtd(6)]	[Total (8)]	[(10)/(1)]	
										Off-Balance		
									Dollar	Correction		
	On-Level	Trended			Permssble		Complmnt of	Dollar	Deficiency	Pro-Rated	Off-Balance	Indications
	Earned	Ultimate	Loss		Loss	Indicated	Credibility	Amount of	in Base	by Dollars in	Corrected	Under Old
Coverage	Premium	Losses	Ratio	Credibility	Ratio	Changes	Term	Complement	Calculation	Complement	Indications	Off-Balance
A	\$ 450,000	\$ 900,000	200.0 %	25 %	65 %	52.3 %	48.6	\$ 218,865		\$ 105,474	75.7 %	63.0 %
В	\$ 500,000	\$ 500,000	100.0 %	27 %	65 %	14.3 %	47.8	\$ 238,758		\$ 115,061	37.3 %	22.3 %
C	\$ 1,000,000	\$ 800,000	80.0 %	38 %	65 %	8.7 %	40.6	\$ 406,070		\$ 195,691	28.2 %	16.3 %
D	\$ 3,000,000	\$ 1,400,000	46.7 %	65 %	65 %	-18.3 %	22.8	\$ 682,500		\$ 328,906	(7.4) %	(12.6) %
E	\$ 5,000,000	\$ 3,800,000	76.0 %	100 %	65 %	16.9 %	0.0	\$ 0			16.9 %	25.1 %
Wtd Average						6.9 %					14.4 %	14.4 %
Comb Total	\$ 9,950,000	\$ 7,400,000	74.4 %	100 %	65 %	14.4 %		\$ 1,546,192	\$ 745,132	\$ 745,132		

Allocation of Off-Balance /using Complement of Credibility

	Main Calculations for Class Rates											
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)
i	e_i	l_i	L_i		Z_i	$Z_iL_i + (1 - Z_i)M$	$R_i \times e_i$	$e_i(1-Z_i)$	$e_i(1-Z_i)M \times C$	$e_i \times r_i$	$final r_i$	old r_i
	(Data)	(Data)	(1)/(2)	(1)×C	Sqrt of	(3)×(5)	$(6) \times (1)$	((1)×(1.0-(5))	(8)×H	$(5) \times (3) \times (1)$	$(5) \times (10)/(1)$	Prev Col. 7
					((4)/683)	+A(1.0-(5))		× A		+(9)		
									Complement			
			D .	Expected		Credibility	Losses in	Losses From	Losses	Off-Balance	Off-Balance	Indications
Class	_		Raw	Claim	Credibility	Adjusted	Adjusted	Complement	After Off-Balance		Corrected	Under Old
Class	Exposure	Losses	Rate "L"	Count	of Class	Rate	Rates	of Credibility	Correction	Total Losses	(Rate	(Off-Balance
Δ	25	\$ 78 427	\$ 3 1 37	65	31 %	\$ 1 324	\$ 33 097	\$ 8 958	\$ 15 465	\$ 39 605	\$ 1 584	\$ 1564
B	30	\$ 40,687	\$ 1,356	78	34 %	\$ 800	\$ 24,012	\$ 10,293	\$ 17,771	\$ 31 489	\$ 1,050	\$ 946
C	36	\$ 65.073	\$ 1.808	93	37 %	\$ 994	\$ 35.787	\$ 11.752	\$ 20.290	\$ 44.324	\$ 1.231	\$ 1.174
	D-L not shown											
M	223	\$ 69,726	\$ 313	577	92 %	\$ 329	\$ 73,422	\$ 9,338	\$ 16,122	\$ 80,206	\$ 360	\$ 389
N	267	\$ 64,108	\$ 240	692	100 %	\$ 240	\$ 64,108	-	-	\$ 64,108	\$ 240	\$ 283
0	321	\$ 86,197	\$ 269	831	100 %	\$ 269	\$ 86,197	-	-	\$ 86,197	\$ 269	\$317
Total	1,801	\$ 932,211	\$ 518	4,661		\$ 438	\$ 789,053	\$ 197,065	\$ 340,223	\$ 932,211	\$ 518	\$ 518
		Reference '	Values for A	All Classes								
	A =Neede	ed Overall A	verage Rate	9		\$518						
	B = Sever	rity (Compu	ted Outside	the Table)		\$200						
	C = A/B	= Expected	Claims/Ex	posure		2.588						
	D = Tota	I Losses in [Data			\$932,211						
	E = Total	Losses in A	djusted Ra	tes		\$789,053						
	F = D - E	= Off-Balan	ice in \$			\$143,158						
	G = Tota	Losses in ($(1-Z_i)$ Teri	m		\$197,065						
	H = 1.0+	F/G = Off	Balance Fa	ctor		1.742						

Is This Actually Better?

- Rates of fully credibile classes not distorted.
- Classes that generate the off-balance are most responsible for absorbing it.
- No method, that isn't an additional credibility method, and uses the two unbiased estimators for each class (overall rate and class loss data) generates more plausible results.
 - "This could happen." The calculations could actually hit the true underlying loss costs.

Do Large Off-Balances Actually Happen in Regular Actuarial Work?

- Not just listed as "off-balance", could be "effect of changes in relativity factor", or some other adjustment (credibilityinduced) needed to achieve overall rate level.
- Some off-balances are per data differences, e.g., relativitiesper 5 years of countrywide data, in state indication. For data differences, old method likely best.
- If you say "my off-balance has never been over 0.5%, well "If it's immaterial, it's immaterial how you handle it".
 - If you may ever have to change, it's easier to start when it doesn't matter.

Bailey's Best Estimate Z = P/(P + K) Credibiliy

- Excellent idea that is underutilized—Maybe because of processing limitations in 1945
- By design, gives the most accurate estimate of rate needs
 - Much attention give to removing overlap factor with GLMs, or adding new predictors to improve rate accuracy.
 - If just converted to best estimate credibility (example later) could pers get even better results.

Optimum Off-Balance Approach for Best Estimate Credibility

- This also requires allocating the off-balance using the complement of credibility term.
- Why? If you start with the post-credibility (credibility-weighted class loss rate and the overall loss rate) rates as the "right", but require that the results weight to the overall average rate, "constrained optimization" shows that allocating the difference according to the complement of credibility produces the least expected square error.
- One example (second one) rerun with best estimate credibility on next page.

Second Example Data Rerun as Best Estimate

	First Step: Calculation of Basic Variance Parameters										
		I. Sum of S	Squared Di	fferences fro	m Sample Mean	s Within Cla	asses "i" = α^2 =			7.379E+9	
		II. Sum of	Exposures	Times Squa	red Differences	Between Cla	iss Sample Means	" L_i 's" and Overa	II Mean " M " = β^2 =	3.941E+8	
		III. = I./((1 + 1))	total(1)-15	(="n") = P	rocess Variance	$= s^2 =$				4,131,869	
	IV. = [II $(n-1.0)$ III.]/[total(1)- n /total(1)]= Variance of Hypothetical Means = σ^2 =										
V. III./IV = Credibility Constant= K =											
	Second Step: Main Calculations for Class Rates										
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	
i	e_i	l_i	L_i	Z_i	R_i	$R_i] \times e_i$	$e_i(1-Z_i)$	$e_i(1-Z_i)M \times C$	$e_i imes r_i$]	final r_i	
	(Data)	(Data)	(1)/(2)	(1)/	(3)×(4)	$(5) \times (1)$	$(1) \times (1.0-(5))$	$(7) \times A \times F$	(6)+(8)	$(5) \times (9) / (1)$	
				$((1)+V_{.})$	$+A \times (1.0-(4))$						
								Additional			
					Credibility	Losses in	Off-Balance	Losses From	Off-Balance	Off-Balance	
			Raw	Credibility	Adjusted	Adjusted	Correction	Off-Balance	Corrected	Corrected	
Class	Exposure	Losses	Rate "l"	of Class Rate Rates Basis Correction Total Losses		(Rate					
		•			•	• • • •	• • • • •	•	•		
A	25	\$ 78,427	\$ 3,137	53 %	\$ 1,907	\$ 47,681	\$ 12	\$ 3,265	\$ 50,945	\$ 2,038	
B	30	\$ 40,687	\$ 1,356	58 %	\$ 1,000	\$ 30,008	\$ 13	\$ 3,542	\$ 33,550	\$ 1,118	
C	36	\$ 65,073	\$ 1,808	62 %	\$ 1,317	\$ 47,396	\$ 14	\$ 3,811	\$ 51,207	\$ 1,422	
		¢ co 700	¢ 010	01.0/	•••		wn	¢ = = = 0 0	¢ 70 440	¢ arc.	
	223	\$ 69,726	\$ 313	91%	\$ 331	\$ 73,849	\$ 20	\$ 5,598	\$ 79,448 \$ 75,470	\$ 350	
	267	\$ 64,108	\$ 240	92 %	\$ 261	\$ 69,789	\$ 20	\$ 5,684	\$ 15,473	\$ 282	
	321	\$ 86,197	\$ 269	94 %	\$ 285	\$ 91,353	\$ 21	\$ 5,757	\$ 97,110	\$ 303	
Total	1,801	\$ 932,211	\$ 518		\$ 478	\$ 860,709	\$ 257	\$ 71,501	\$ 932,211	\$ 518	
		Reference	Values for	or All Classe	es						
	A = Over	all Average	Rate			\$518					
	B = Tota	Loss in Cre	edibility Ad	justed Rates	5	\$860,709					
	C= Total Losses in Data \$932,211										
	D = C-B	= Shortfall				\$71,501					
	E =Total	Off-Balance	e Correction	n Basis		\$257					
	F = D/E	= Off-Balar	nce Factor			278.13					

Calculation of Best Estimate Credibillity and Best Estimate Allocation of the Off=Balance

- Calculations not too bad-allocating the off-balance is the easiest part.
- Not hard to do the top variance estimates in R.
- It was diferent in Bailey's time.

Non-Bailey Situations Where Off-Balance Should be Allocated Using $1-{\it Z}$

- Bailey formula = Z = P/(P + K); K = (Expected process variance)/(Variance of hypothetical means).
- Allocatiion across (1 Z)'s still optimal when expected process variance differs among classes.
- When variance of hypothetical means varies among classes allocate by
 - (Variance of hypothetical means for this class) $\times (1 Z)$.

Bühlmann's Complement of Credibility

- Not new, but was 'new to me"
- Standard ratemaking uses exposure-weighted average of loss rates, Bühlmann's complement of credibility = loss rates weighted with the credibility of each class.
- Then post-credibility rates weight exactly to overall rate—no off-balance allocation needed.
- Results exactly equal results of allocating off-balance across the complement of credibilty.

Consequences of Matching Bühlmann's Complement of Credibility

- Given all the data for all the classes, each final Bühlmann credibility weighted rate, or (1-Z) off-balance allocated rate is the expected loss rate for the class.
- If there is enough data for Central Limit Theorem to govern the distribution, mean of normal from above = maximum likelihood estimate.
- Allocating off-balance gives (in context) minimum expected squared difference from post credibility rates, mean estimate of loss costs, and (often) maximum likelihod estimate.

Why Not Just Use Bühlmann's Complement of Credibility

- Doesn't work for capped data
- Presentation of calculations is less intuitive.
 - Our audience usually includes more than actuaries: company mahangers, underwriters, financial staff, and in my case, regulators and judges.
 - Helpful to make the presentation as intuitive as possible.

Test Correction

- Test Correction vs. Off-Balance Correction: Off-balance correction spreads off-balance resulting from credibility, test correction spreads that off-balance <u>plus</u> the off-balance resulting from capping.
- Often requires multiple iterations- classes fall in and out of capping
- Allocating off-balance by (1−Z) is "scalable". You can just increase the amount multiplied by (1−Z)'s to offset capping, while still getting first type of optimum estimate.
- Bühlmann's complement of credibility not suitable for test correction process.

Test Correction Example - Best Estimate Data-First Step Follows

	First Step: Calculations Using Uncapped Rates									
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
	(Data)	Prev. Table col.(5)	Prev. Table col.(10)	(1)*(3)	(Data)	.85*(5)	1.15*(5)	(3) within (6).(7)	(1)*(8)	Y=Knocked Out
Class	Exposures	Credibility Adjusted Rate	Pre-Cap Test Corrected Rate (Set 0)	Losses in Pre-Cap Test Corrected Rate	Present Rate	Cap Below	Cap Above	Capped Rates (Set 0)	Total Losses in Capped Rates	Is Rate Knocked Out of TCF by Capping?
A B C	25 30 36	\$ 1,907 \$ 1,000 \$ 1,317	\$ 2,038 \$ 1,118 \$ 1,422	\$ 50,945 \$ 33,550 \$ 51,207 D-L not sho	\$ 2,000 \$ 1,500 \$ 1,200	\$ 1,700 \$ 1,275 \$ 1,020	\$ 2,300 \$ 1,725 \$ 1,380	\$ 2,038 \$ 1,275 \$ 1,380	\$ 50,945 \$ 38,250 \$ 49,680	Y Y
M	223	\$ 331	\$ 356	\$ 79,448	\$ 350	\$ 298	\$ 403	\$ 356	\$ 79,448	
N	267	\$ 261	\$ 282	\$ 75,473	\$ 250	\$ 213	\$ 288	\$ 282	\$ 75,473	
0	321	\$ 285	\$ 303	\$ 97,110	\$ 300	\$ 255	\$ 345	\$ 303	\$ 97,110	
Total	1,801	\$ 478	\$ 518	\$ 932,211	\$ 489	\$	\$	\$ 513	\$ 923,362	
		Second Step: Tes	t Correction Step Po	st Capping						
	(11)	(12)	(13)	(14)	(15)	(16)	(17)			
	Prev. Table col.(7)	(11)) Less	F*(10)	(4)+(13)	(14)/(1)	(15) within	Y=Knocked			
		Knockouts				(5),(6)	Out			
Class	Original Test Correction Basis	Test Correction Basis Less Knockouts	Additional Losses for Test Correction	Revised Test Corrected Total Losses	Test Corrected Rate (Set 1)	Capped Rates (Set 1)	Is Rate Knocked Out of TCF by Capping?			
A B C	\$ 12 \$ 13 \$ 14	\$ 12 \$ \$	\$ 598 \$ 648 \$ 698	\$ 51,543 \$ 34,198 \$ 51,905	\$ 2,062 \$ 1,140 \$ 1,442	\$ 2,062 \$ 1,275 \$ 1,380	Y Y			
∥ M	\$ 20	\$ 20	\$ 1.025	\$ 80.473	\$ 361	\$ 361	l	1		
N	\$ 20	\$ 20	\$ 1.041	\$ 76.513	\$ 286	\$ 286				
0	\$ 21	\$ 21	\$ 1,054	\$ 98,164	\$ 306	\$ 306				
Total	\$ 257	\$ 174	\$ 13,091	\$ 945,302	\$ 525	\$ 517				
		Reference Values	for All Classes							
	A = (Prev. Table) G $B = Total Loss in S$ $C = Total Losses in$ $D = C-B = Shortfa$ $E = Total Test Corr$ $F = D/E = Test Corr$	Overall Average Rate Set 0 Rates Data II ection Basis on Non- orrection Factor	in Data Capped Classes (12)			\$518 \$923,632 \$932,362 \$8,849 \$174 50.92				

Test Correction Example - Best Estimate Data-Last Step Follows

	First Step: Calculations Using Rates from First Iteration										
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	
	(Data)	Prev. Table col.(5)	Prev. Table col.(14)	(1)*(3)	(Data)	.85*(5)	1.15*(5)	(3) within (6),(7)	(1)*(8)	Y=Knocked Out	
Class	Exposures	Credibility Adjusted Rate	Pre-Cap Test Corrected Rate (Set 1)	Losses in Pre-Cap Test Corrected Rate	Present Rate	Cap Below	Cap Above	Capped Rates (Set 1)	Total Losses in Capped Rates	Is Rate Knocked Out of TCF by Capping?	
A B C	25 30 36	\$ 1,907 \$ 1,000 \$ 1,317	\$ 2,062 \$ 1,140 \$ 1,442	\$ 51,543 \$ 34,198 \$ 51,905 D-L not sho	\$ 2,000 \$ 1,500 \$ 1,200	\$ 1,700 \$ 1,275 \$ 1,020	\$ 2,300 \$ 1,725 \$ 1,380	\$ 2,062 \$ 1,275 \$ 1,380	\$ 51,543 \$ 38,250 \$ 49,680	Y Y	
M	223	\$ 331	\$ 361	\$ 80,473	\$ 350	\$ 298	\$ 403	\$ 361	\$ 80,473		
N	267	\$ 261	\$ 286	\$ 76,513	\$ 250	\$ 213	\$ 288	\$ 286	\$ 76,513		
0	321	\$ 285	\$ 306	\$ 98,164	\$ 300	\$ 255	\$ 345	\$ 306	\$ 98,164		
Total	1,801	\$ 478	\$ 1,978	\$ 945,302	\$ 489			\$ 517	\$ 931,786		
		Second Step: Test	t Correction Step Po	st Capping	1	1			1	1	
	(11)	(12)	(13)	(14)	(15)	(16)	(17)				
	Prev. Table col.(7)	(11)) Less Knockouts	F*(10)	(4)+(13)	(14)/(1)	(15) within (5),(6)	Y=Knocked Out				
Class	Original Test Correction Basis	Test Correction Basis Less Knockouts	Additional Losses for Test Correction	Revised Test Corrected Total Losses	Test Corrected Rate (Set 2)	Capped Rates (Set 2)	Is Rate Knocked Out of TCF by Capping?				
A B C	\$ 12 \$ 13 \$ 14	\$ 12 \$ \$	\$ 32 \$ 35 \$ 38	\$ 51,575 \$ 34,233 \$ 51,943 D-L not sho	\$ 2,063 \$ 1,141 \$ 1,443 wn	\$ 2,063 \$ 1,275 \$ 1,380	Y Y				
M	\$ 20	\$ 20	\$ 55	\$ 80,528	\$ 361	\$ 361					
N	\$ 20	\$ 20	\$ 56	\$ 76,569	\$ 286	\$ 286					
0	\$ 21	\$ 21	\$ 57	\$ 98,221	\$ 306	\$ 306					
Total	\$ 257	\$ 155	\$ 704	\$ 946,006	\$ 525	\$ 518					
		Reference Values	for All Classes				-				
	A = (Prev. Table) G $B = Total Loss in S$ $C = Total Losses in$ $D = C-B = Shortfa$ $E = Total Test Corr$ $F = D/E = Test Corr$	Overall Average Rate Set 1 Rates Data II ection Basis on Non-G prrection Factor	in Data Capped Classes (12)			\$518 \$931,786 \$932,362 \$424 \$155 2.74					

Overall considerations-Part 1

- We are all likely to agree the ratemaking process is improved when we consider that higher credibility classifications should not be impacted by the additional rate need effect when class changes alone do not address the full rate need; Making a Correct Rate, Wrong.
- In allocating the remaining rate need, the choice of credibility method is crucial; if our method says the credibility is higher or lower than in fact it is, than we must recognize that our allocation of the remaining rate need, so some extent will be off.

Overall considerations-Part 2

- Parameter shift also has effects on the credibility beyond what our standard, or even more sophisticated credibility methods suggest, we should always keep this in mind; generally parameter shift implies actual credibility is different than what our methods might suggest.
- The methodology suggested by the paper implies a better rate making process; not withstanding that fact, there are always real world factors such as finite IT resources which may not always have sufficient time to implement more dynamic rate making processes, or real world demands on how far rate changes can go on limited credibility classes.

Bottom Line

If you have an off-balance from credibility or capping, you're best off spreading it across the complement of credibility terms.

???