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Look for business criteria that would lead to how to 

allocate 

Two or three that are somewhat intuitive all lead to 

incremental marginal allocation for a specific large class 

of risk measures 

If allocation is for pricing purposes – including risk-

adjusted return, etc. one more criteria seems 

necessary 

Almost all risk measures look like means from 

adjusted probability distributions, so will do that 

Allocation Criteria 



Two main reasons: 

–Pricing related – including risk-adjusted return, etc. 

–Identifying risk concentrations – tail might be driven largely by a 

few businesses for instance 

Different allocations with different criteria might be 

used for different reasons 

Basically they all come down to allocation of risk 

measures, so that will be the focus from here 

Total company risk measure usually less than sum of 

individual unit risk measures, so we are not charging 

the units for risk but giving them diversification credits 

Why Allocate Capital? 



If a unit makes a small proportional change to its 

volume (decreasing its quota share reinsurance, 

perhaps) the resulting change in the company risk 

measure all gets allocated to that unit. 

–A practical requirement if internal competitive businesses 

guarding against each other 

–Consistent with economic principle of marginal-cost pricing 

If a unit with better than average risk-adjusted profit 

increases slightly in volume, the company risk-adjusted 

profit will increase. 

–Called suitability 

Criteria 



Two are basically equivalent 

–If additional capital from growing the unit is applied to that 

unit, and the unit gets higher-than-average profit on that 

capital, then company return on capital increases 

–Otherwise at a minimum, suitability is not guaranteed 

Both will occur iff: 

–Allocation of the risk measure is incremental marginal 
• The increase in the company risk measure due to a small proportional increase in the 

business unit volume, grossed up to the volume of the unit, is the allocated risk measure 

–And those incremental marginal allocations add up to the total 

company risk measure 

Implications 



Can think of the risk measure for the company as a 

multivariate function of the business unit random vars 

Then the allocation to the unit is the derivative of the 

company risk measure wrt the volume of the unit 

There is a theorem of Euler about such derivatives 

adding up to the function 

It happens if the function is homogeneous degree one 

–F(ax) = aF(x) 

Holds for almost all risk measures, but not variance: 

std dev, VaR, TVaR, … 

So When Do They Add Up? 



Say business unit random variable Xi part of company 

Y with risk measure = Q. 

TVaR allocation: E[Xi | TVaR(Y) = Q] 

–If TVaR(Y) is estimated as average of 200 largest loss 

simulations of the company, where every unit is part of the 

simulation, then average loss of Xi in those simulations is a 

reasonable estimate of E[Xi | TVaR(Y) = Q] 

VaR allocation: E[Xi | VaR(Y) = Q] 

–If Q is the value of Y for a single simulation, the value of Xi at 

that simulation is not a good estimate of E[Xi | VaR(Y) = Q] 

–Actually there are better estimates of VaR(Y) – will return to 

this later 

 

 

What Are the Derivative-Based Allocations 



The allocation is std dev(Xi) * correlation(Xi,Y) 

–For derivation see Venter, Major and Kreps 2006, Marginal 

Decomposition of Risk Measures, ASTIN Bulletin 36: 375-413 

–Basically takes derivative using L’Hopital’s rule. 

Sometimes called diversified standard deviation 

Shows diversification benefit as the correlation 

Small units will have small impacts on Y so the 

correlation will be low – suggesting they should grow 

But as they do, correlation will increase 

 

For Standard Deviation 



Used mainly for risk-adjusted profit and return 

Say you are pricing a risk X by EX + 0.3*std(X) 

Transformed mean will be a value like that, > mean 

Example: exponential transform F* 𝑦 =
𝑒𝑘𝐹 𝑦 −1

𝑒𝑘−1
 

–Starts at 0, gets to 1, rises more slowly at first then steeper 

–𝑓∗ 𝑦 =  
𝑒𝑘𝐹 𝑦 𝑘𝑓(𝑦)

𝑒𝑘−1
 𝑠𝑜 

𝑓∗(𝑦)

𝑓(𝑦)
=

𝑒𝑘𝐹 𝑦 𝑘

𝑒𝑘−1
 

–Maybe k < 7. Numerator starts at k so ratio starts small but 

gets slightly greater than k.  

–Ratio called the Radon-Nikodym derivative 

 

Risk Measure by Probability Transform 



Comes from financial pricing theory about consistency of 

prices of different parts of the distribution, like layers 

–Would use transform of whole distribution – same k – for pricing 

all layers 

–Also in simulation of many business units, would use transformed 

probabilities of whole company for each scenario, and use those 

to get target risk prices for each unit 

Extends range of available risk measures 

Makes it easier to calibrate to market prices 

In complete markets there would be a unique transform 

but we have to look for transforms that seem to work. 

Advantages of Transforms 



VaR(0.99) is the mean when all the probability is 

moved to the 99th percentile 

TVaR(0.99) is the mean when losses above the 99th 

percentile have their probabilities multiplied by 100 

and all others get zero 

Standard deviation less obvious but will get to it 

EX + kVaR(0.99), etc. is what we want to express as a 

transform 

Should work since linear combination of means 

Most Risk Measures Are Actually Transforms 



Say v is the VaR at a selected percentile, with f(v)=p 

and the loaded losses are EX + kv. 

Let s = 1 – kv/(v – EX) and r = kv/p(v – EX) 

Set f*(v) = (r+s)p and f*(x) = sf(x) otherwise. 

Integral of f* = E*(1) = s+rp = 1 so this is a distribution 

E*(X) = sEX + rpv = EX – [kvEX – kv2]/(v – EX) = EX 

+ kv(v – EX)/(v – EX) = EX + kv 

Thus the transformed mean is the VaR loaded price. 

Only risk load is for X=v; still layers below v get a 

positive load – but layers above v get a negative load 

–Not a great transform for real pricing 

 

VaR Loading as a Transform 



Risk-loaded losses calculated as mean under 

transformed probabilities 

Take aggregate layer with retention 0 and limit b < 

VaR (for now transforming aggregate probabilities) 

 

Here f* is lower than f by a factor of s. Subtracting EX: 

 

Which is > 0. For a < b this would be less positive, so 

the layer from a to b would also have a positive load 

The unlimited layer with retention VaR would have 

price lower than expected by a factor of s  

 

 

Pricing Layers with Transforms – VaR Example 



Consider the transform f*(x)/f(x) = 1 + k(X – EX)/stdX 

Probability > 0 for k < CV(X) as f*(0)/f(0) = 1 – k/CV 

E*(X) =    E[X + k(X2 – XEX)/stdX]   =                    

EX + k[EX2 – (EX)2]/stdX = EX + kstdX 

E*(1) = 1 + E[k(X – EX)/stdX] = 1 

 

Standard Deviation as a Transform 



F*(x) = F[F-1(F(x)) – k] 

Find the standard normal percentile corresponding to 

F(x), decrease it by k, then find the (lower) standard 

normal probability there. Puts more probability > x. 

Has fit well to some empirical prices 

Wang Transform 



HdgFnd, Inc. has a fairly risky insurance business with 

500 of annual expected losses offshore in Reunion. 

Its losses are gamma distributed with std dev 380. 

It wants to double its insurance volume and wants to 

start a cat business as well as high-limits casualty. 

The cat portfolio is lognormal with mean 250, CV=2. 

The casualty has 5 expected losses per year – Poisson 

Severity is Pareto F(x) = x/(x+b) with limit 1000, EX=50 

Limited mean is b*log(1+1000/b) giving b = 11.077 . 

Example 



Simulated 10,000 scenarios and computed k in 

Exponential, Wang, and StDev transforms to give a 

loading of 20% overall. Transformed probabilities 

starting at the largest losses: 

Simulation Look 
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Some simulation randomness shows in moments 

The new lines have higher correlations to the total than 
their % of expected losses as when they are high it is often 
enough to make total high as well 

Biggest pricing difference is in cat business 

Selecting a transform a judgment call based on market 
prices and business goals 

Some Numbers from Simulation 



Allocating VaR 

Doesn’t work for risk-based return but maybe for 

identifying risk concentrations 

 Just looking at makeup of 1:100 simulation doesn’t work – 

simple simulation example 

𝐸 𝑌 𝐹 𝑌 = 1 − 𝛼) 

𝑟 𝑋𝑗 = 𝐸 𝑋𝑗 𝐹 𝑌 = 1 − 𝛼  

 

VaR Line 1 Line 2 Line 3 Total 

98.99% 10.06 1.40 1.62 13.08 

99% 8.51 2.90 1.68 13.09 

99.01% 11.04 0.51 1.56 13.12 

VaR Line 1 Line 2 Line 3 

98.99% 77% 11% 12% 

99% 65% 22% 13% 

99.01% 84% 4% 12% 

A 0.01% change in 𝛼 
leads to  significant 
changes in LOB VaRs and 
the estimated allocated 
capital to each line. 

Simulation is 3 gammas 
each with mean 1.5 and 
stdev 2, 1, ½. 

 



Even estimating VaR by value at one simulation is not optimal – 
simulation error 

Say trying to estimate 99th percentile 

Every simulation can be regarded as a Bernoulli trial for getting 
a number less than the 99th percentile, with a 99% probability of 
success 

Out of N simulations, the number of successes is binomial in N 
and 0.99. Say N=10,000. Then the probability that the true 99th 
percentile is closest to say the 9870th ranked simulation can be 
approximated by the average of the binomial probabilities at 
9870 and 9871. 

Taking the weighted average of all the simulations by those 
probabilities would give another estimate of that percentile 

Then the same weighted average of the business losses at those 
same scenarios can be used to allocate VaR 

That binomial has stdev about 10, so 40 scenarios up & down, 
even with a normal distribution for weights, should be enough 

Improved Allocation 



Binomial method is a simplification of a method from 

Harrell and Davis (1982) “A new distribution-free quantile 

estimator,” Biometrika 69 3: 635-40, designed for 

estimation of percentiles in small samples, which 

interpolated the binomial with the beta distribution. 

A simpler alternative is fuzzy VaR, which takes the mean 

from a uniform distribution around the target simulation. 

Another interesting alternative is kernel smoothing, e.g., 

see Tasche (2009) “Capital allocation for credit portfolios 

with kernel estimators,” Quantitative Finance 9: 5:581-595, 

or Electronic copy at: http://ssrn.com/abstract=953735. 

 

 

VaR Continued 



Again takes a weighted average of scenarios, but instead 

of taking a range of scenarios around the 9900th, takes a 

range of values around the value v at the 9900th. 

Based on rules of thumb from the kernel smoothing 

business but could be changed by users 

Set h = 1.06*stdev(X)/N0.2. For N=10,000 ~ stdev/6 

Give weight to a simulated value of y proportional to 

the standard normal density at (y – v)/h. 

Doesn’t depend on what percentile you are after 

Probably sticking to y within half a stdev(X) from v is ok 

Kernel Smoothing 



Allocation of VaR in 3 Gamma Case 

Method Description Line 1 Line 2 Line 3 

VaR Using one simulation 84% 4% 12% 

Fuzzy VaR Average 100 simulations 78% 12% 10% 

Kernel VaR Normal KDE 70% 17% 13% 

Binomial VaR Binomial  71% 16% 13% 

Beta VaR Interpolated Binomial 71% 16% 13% 



Allocation used transforms of aggregate probabilities but 
occurrence pricing needs frequency and severity distributions 

My PCAS 2004 discussion of Ruhm’s paper on distribution-
based pricing addresses several issues 

One is that transforms have to be applied to the ground-up 
distributions then the same probabilities used for every layer 

Transforming layer probabilities leads to problems that Ruhm 
illustrates 

Also I show methods based on Møller (2003) “Stochastic orders 
in dynamic reinsurance markets,” ASTIN Colloquium Papers for 
simultaneously transforming frequency and severity 

Occurrence Layer Pricing by Transforms 



Møller has a method for building related transforms, 

but most come down to increasing the ground-up 

frequency mean by 1 / the largest reduction factor for 

the severity. Usually this multiplies l by f(0)/f*(0). 

For instance, the exponential transform for HdgFnd 

used k = 1.1382. Since f(0)/f*(0) = [ek – 1]/k = 1.86, so 

this would be the increase in frequency mean if this 

transform were used for severity. This factor 

approaches unity as k goes to zero. 

This approach guarantees positive loads even for deals 

around small losses with reduced severity probabilities 

 

Frequency and Severity Transforms 



Møller introduces some transforms. Using his names 

but my notation, with g(y) for severity and l as the 

frequency mean, two of these are: 

Minimum martingale measure 

–g*(y)/g(y) = [1 + ky/EY] / [1+k], which at y=0 is 1/[1+k] 

Minimum entropy martingale measure 

–g*(y)/g(y) =(1+k)y / E[(1+k)Y], with l* = lE[(1+k)Y] 

–For this it helps to have k small and keep units in large chunks 

like millions. For instance in the HdgFnd example, the severity 

limit is 1000. 1.0011000 = 2.717, which could be a reasonable 

probability increase at the limit. But that 1000 represents 

1,000,000,000, which could be a strange power on 1+k. 

Møller’s Transforms 


