Estimating Tail Development Factors: What to do When the Triangle Runs Out

By Joseph Boor, FCAS

In many loss reserve analyses, especially those involving long-tail casualty lines, the loss development triangle may end before all the claims are settled and before the final costs of any year are known.  For example, it is quite common to analyze U. S. workers compensation loss reserve needs using the ten years of data available in Schedule P of the U. S. NAIC-mandated Annual Statement, while knowing that some of the underlying claims may take as long as fifty years to close.  In response to this, actuaries supplement the ‘link ratios’ they obtain from the available triangle data with a ‘tail factor’ that estimates the development beyond the last stage of development (last number of months of maturity, usually) for which a link ratio could be calculated.  

The tail factor is used just like a link ratio in that it estimates (1.0 + ratio of  (final costs after all claims are closed) to (the costs as of the last development stage used)).  It is of course included in the product of all the remaining link ratios beyond any given stage of development in calculating a loss development factor to ultimate for that stage of development.

This paper will discuss the methods of computing (really estimating to be precise) tail factors in common usage today.  It will also suggest both improvements in existing methods and a new method.  It will begin with the simplest methods and move forward in increasing complexity.

Method 1 – The Bondy Method.

The Bondy method involves simply using the last link ratio that could be estimated from the triangle (the link ratio of the last development stage present in the triangle, or the last stage where the triangle data could be deemed reliable for estimation) as the tail factor.  This ‘repeat the last link ratio’ approach probably seems crude and unreasonable for long-tailed lines, where link ratios decay slowly.  However, for fast decaying lines (such as accident year
 analysis of automobile extended warranty) this method may work when used as early as thirty-six or forty-eight months of maturity.  It must be recognized that in long-tailed lines the criticism is usually justified.

To truly understand this method it also may be best viewed in historical context.  The author of the method, Martin Bondy, developed this method well prior to the 1980’s.  It is commonly believed that during the 1960s and certainly part of the 1970s the courts proceeded at a faster pace and, ignoring the long-tail asbestos, environmental, and mass tort issues that would eventually emerge, general liability was believed to have a much shorter tail than we see today.

It is also of interest to note that there is a theoretical foundation that supports this in certain circumstances.  If one assumes that the ‘development portion’ of the link ratios (the link ratios minus one) are decreasing by one-half at each stage of development, and the last link ratio is fairly low, then the theoretically correct tail factor to follow a link ratio of 1+d is:

(1+.5d)*(1+.25d)*(1+.125d)*(1+.0625d)*…….

Or

1+(.5+.25+.125+.0625+….)*d + terms involving d2, d3, etc.

Which, per the interest theorem v+v2+v3+….=v/(1-v) is equivalent to:

1+1*d + terms involving d2, d3, etc.

Since d is ‘small’, the other terms will be smaller by an order of magnitude, making the implied tail factor under these assumptions very close to the Bondy tail factor, 1+d.  so the Bondy method is ‘nearly’ equivalent the tail implied by what will later be called the ‘exponential decay’ method.

Method 2 – The Modified Bondy Method.

In this method, the last link ratio available from the triangle, call it 1+d,  is modified by multiplying the development portion by 2.  The result is a development factor like 1+2d.  Alternately, the last entire link ratio may be squared, which yields nearly the same value.  This has many of the same issues and applications as the basic Bondy Method.  It does yield a more conservative tail than the Bondy Method itself.  However, for long-tail lines it is still not what would be considered a truly conservative approach, as we will see later.

A little algebra and the v+v2+v3+….=v/(1-v) theorem show that this is functionally equivalent to ‘exponential decay’ with a decay coefficient of 2/3.

Method 3 – Equalizing Paid and Incurred Development Ultimate Losses
This method is the first method discussed with a full theoretical background.  It is most useful when incurred loss development essentially stops after a certain stage (i.e., the link ratios are near to unity or unity).  Then, due to the absence of continuing development, the current case incurred (sometimes called reported) losses are a good predictor of the ultimate losses for the older or oldest years without a need for a tail factor.  A tail factor suitable for paid loss development can then be computed as the ratio of the case incurred losses to-date for the oldest (accident
) year in the triangle divided by the paid losses to-date for the same (accident) year.  That way, the paid and incurred development tests will produce exactly the same ultimate losses for that oldest year.

This method may also be generalized to the case where case incurred losses are still showing development near the tail.  In that case, the implied paid loss tail factor is (incurred loss development ultimate loss estimate for the oldest year)/paid losses to-date for the oldest year.  Of course, in that method the incurred loss development estimate for the oldest (accident) year is usually the case incurred losses for the oldest year multiplied by an incurred loss tail factor developed using other methods.

This method has an advantage in that it is based solely on the information in the triangle itself and needs no special assumptions.  Its weakness is that you must already have a reliable estimate of the ultimate loss for the oldest year before it can be used.  An ancillary weakness is the related fact that if the initial incurred loss development test is driven by a tail factor assumption, this becomes a test that is also based on not only that assumption, but also the assumption that the ratio of the case incurred loss to the paid loss will be the same for the less mature years once they reach the same level of maturity as the oldest year in the triangle.

An Example:

Assume that is just after year-end of 2000.  You have pulled the incurred loss triangle from a carrier by subtracting part 4 of Schedule P from part 2 of Schedule P.  You have also pulled a paid loss triangle from part 3 of Schedule P.  The triangles cover 1991-2000, so 1991 is the oldest year.  Say for the sake of argument that the incurred loss link ratios you develop are 2.0 for 12-24 months, 1.5 for 24-36, 1.25 for 36-48, 1.125 for 48-60, 1.063 for 60-72, 1.031 for 72-84, 1.016 for 84-96, 1.008 for 96-108, and 1.004 for 108-120.  This conveniently happens to match the exponential decay discussed for the Bondy method, so it makes sense to use 1.004 for the tail factor for development beyond 120 months.  Now assume that the latest available (i.e., at 12/31/2000, or 120 months maturity) the case incurred loss
 for 1991 is $50,000,000 and the corresponding paid loss is $40,000,000.  The incurred test ultimate using the 1.004 tail factor is $50,200,000.  The paid loss tail factor to equalize the ultimate would be $50,200,000 divided by $40,000,000 or 1.255.

Improvement 1 - Using Multiple Years to Develop The Tail Factor

As stated earlier, this method assumes that the current ratio of case incurred loss to paid loss that exists in the oldest year (1991 evaluated at 12/31/2000 in the example above) will apply to the other years when they reach that same level of maturity.  For a large high dollar volume triangle with relatively low underlying policy limits that may be a reasonable assumption, but for many reserving applications the 120 month ratio of case incurred to paid loss may depend on whether a few claims remain open or not.  Therefore, it may be wise to supplement the tail factor derived from the oldest available year with that implied by the following year or even the second following year.  This method is particularly useful when the ‘tail’ of the triangle has some credibility, but the individual link ratio estimates from the development triangle are not fully credible.

The process of doing so is fairly straightforward.  You merely compute the tail factor for each succeeding year by the method above, and divide each by the remaining link ratios in the triangle.  

An example using the data above may help clarify matters.  Given the data above, assume that 1992 has $50,000,000 of paid loss and $60,000,000 of case incurred loss.  Also, assume that your best estimate of the 108-120 paid loss link ratio is 1.01.  The incurred loss estimate of the ultimate loss, using the 108-120 link ratio (1.004) and the incurred loss tail factor (also 1.004) is $60,000,000*1.004*1.004, or $60,480,960.  The estimated (per incurred loss development) ultimate loss to paid loss ratio at 108 months would then be $60,480,960/$50,000,000, or approximately 1.210.  So, 1.210 would then be the tail factor estimate for 108 months.  Dividing out the 108-120 paid link ratio (assumed above to be 1.01) gives a tail factor for 120 months of 1.21/1.01 = 1.198.  By comparison, the previous analysis using 1991 instead of 1992 gave a 120-month tail factor estimate of 1.255, so it is possible that either 1991 has a high number of claims remaining open, or that 1992 has a low number.  Both indicate tail factors in the 120-125 approximate range, though, so averaging the estimates might be prudent.  Further, the use of averaging greatly limits the impact of unusually low or high case reserves being present  in the oldest year in the triangle.

Note also, that the improvement above involved simply moving to the year with one year less maturity.  A similar analysis could also be performed on 1993, except that two link ratios plus the tail factor are needed to compute the incurred loss estimate of ultimate, and two paid loss link ratios need to be divided out of the incurred loss ultimate estimate/paid loss to-date ratio for 1993.

Further, in this case the improvement involved reviewing the tail factors at various ages from the equalization of paid and incurred loss estimates of the ultimate loss.  The core process involves computing tail factors at different maturies, then dividing by the remaining link ratios to place them all at the same maturity.  As such, it can also be used be used in the context of other methods for computing tail factors that will be discussed later in this paper.

A Brief Digression – The Primary Activity Within Each Development Stage

When using multiple years to estimate a tail factor, it is relatively important that the years reflect the same general type of claims department activity as that which takes place in the tail.  For example, in the early 12 to 24 month stage of workers compensation, the primary development activity is the initial reporting of claims and the settlement and closure of small claims.  The primary factors influencing development are how quickly the claims are reported and entered into the system, and the average reserves (assuming the claims department initially just sets a ‘formula reserve’, or a fixed reserve amount for each claim of a given type such as medical or lost time) used when claims are first reported.  In the 24 to 36-48 month period, claims department activity is focused on ascertaining the true value of long-term claims and settling medium-sized claims.   After 48-60 months most of the activity centers around long-term claims.  So, the 12-24 link ratio has relatively little relevance for the tail, as the driver behind the link ratio is reporting and the size of initial formula reserves rather than the handling of long-term cases.  Similarly, if the last credible link ratio in the triangle is the 24 to 36 or 36 to 48 link ratio, they may be poor predictors of the required tail factor.

Method 4 – McClenahan’s Method-Exponential Decay of Paid Loss Itself

McLenahan’s method as discussed in [1] represents the first of several approaches that fit a theoretical curve to some aspect of the data at the maturities available in the triangle.  McClenahan’s method for fitting a tail to a set of data involved an assumption that the incremental paid loss of a single accident year would decay exponentially over increasing maturities of the accident year.  When combined with his assumption that essentially no activity transferred in the first few months of a claim, he assumed that the payments in a given incremental month of maturity (call it ‘m’) were

Ap(m-a)q.

In this case A is a constant of proportionality and 0<p<1, q=(1-p) represents the decay rate
 and ‘a’
 represents the average lag time until claims begin to be paid.  A theorem from the study of compound interest states that
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So A is actually the ultimate losses for the entire year.

Then, under this assumption, the additional payments or incurrals beyond x months are theoretically determined by the basic formula, at least once p and a are estimated.  And there are several ways to estimate p and a.  For convenience, p is monthly, but p12, the annual decay rate, may be defined as ‘r’
.   Then r may be estimated by reviewing the ratios of incremental paid between m+12 and m+24 months to the incremental paid between m and m+12 months.  McClenahan advised that a could be estimated by simply reviewing the average report lag (average date of report-average date of occurrence) for the line of business. Since a applies on a month-by-month basis it is technically incorrect to say that the average lag between the beginning of all loss reporting for an accident year is six months (the average lag between inception of the accident year and loss occurrence, at least for a full twelve month accident year) plus a months.  So, to simplify the tail calculation, the first twelve months can be excluded from the fit.  Then, a curve of the form

Ary , 
where y is the maturity of the accident year in years before each amount of incremental paid, can be fit to the incremental dollar amounts of paid loss (or incurred loss, as long as no downward development in incurred loss is present in the development pattern).

Then, McClenahan shows that the percentage remaining unpaid for an entire twelve month accident year at m months of (returning to p = r1/12) is

(1-p)*(pm+1-a+ pm+1-a-1+ pm+1-a-2+…+ pm+1-a--11)/(12*(1-p)) = pm-a--10 (1- p12)/12q

The tail factor at m months is of course unity divided by the percentage paid at m months, or 

1/(100% - percentage unpaid at m months).

Substituting our formula for the unpaid at 12 months, McClenahan’s method produces a tail factor of

1/{1 – [pm-a--10 (1- p12)/12q]}

Some algebra reduces that to

12q/{12q - pm-a--10 (1- p12) },

which provides a nice closed form expression for the tail.

An Example:

Assume that you begin with an 8-year triangle, and generate the following link ratios:

	12-24
	5.772

	24-36
	1.529

	36-48
	1.187

	48-60
	1.085

	60-72
	1.042

	72-84
	1.022

	84-96
	1.012

	
	


The first step is to covert them to a form of dollars paid (remember that there are different paid amounts for different accident years, so we just begin with one hundred dollars for the curve fitting and multiply by the successive link ratios.

	
	
	
	Equivalent

	Development
	Link
	Beginning
	Cumulative

	Stage
	Ratio
	Maturity
	Paid

	12-24
	5.772
	12
	$100.00

	24-36
	1.529
	24
	$577.23

	36-48
	1.187
	36
	$882.45

	48-60
	1.085
	48
	$1,047.38

	60-72
	1.042
	60
	$1,136.50

	72-84
	1.022
	72
	$1,184.66

	84-96
	1.012
	84
	$1,210.68

	
	
	96
	$1,224.75


Then subtract successive cumulative paid amounts to obtain incremental dollars paid at each stage of development that match the LDFs.

	
	
	
	Equivalent
	Incremental

	Development
	Link
	Beginning
	Cumulative
	Paid

	Stage
	Ratio
	Maturity
	Paid
	(Difference)

	12-24
	5.772
	12
	$100.00
	$100.00

	24-36
	1.529
	24
	$577.23
	$477.23

	36-48
	1.187
	36
	$882.45
	$305.22

	48-60
	1.085
	48
	$1,047.38
	$164.93

	60-72
	1.042
	60
	$1,136.50
	$89.12

	72-84
	1.022
	72
	$1,184.66
	$48.16

	84-96
	1.012
	84
	$1,210.68
	$26.02

	
	
	96
	$1,224.75
	$14.06


Then ratios of successive incremental paid amounts can be taken.

	
	
	
	Equivalent
	Incremental
	Year

	Development
	Link
	Beginning
	Cumulative
	Paid
	to Year

	Stage
	Ratio
	Maturity
	Paid
	(Difference)
	Ratio

	12-24
	5.772
	12
	$100.00
	$100.00
	

	24-36
	1.529
	24
	$577.23
	$477.23
	4.7723

	36-48
	1.187
	36
	$882.45
	$305.22
	0.6396

	48-60
	1.085
	48
	$1,047.38
	$164.93
	0.5404

	60-72
	1.042
	60
	$1,136.50
	$89.12
	0.5404

	72-84
	1.022
	72
	$1,184.66
	$48.16
	0.5404

	84-96
	1.012
	84
	$1,210.68
	$26.02
	0.5404

	
	
	96
	$1,224.75
	$14.06
	0.5404


As one can see, in this contrived example, the development stage-to-stage ratio is a constant r = .5404.  It’s twelve root p is p = r1/12 = .95.

That of course only provides p, the average delay must be found as well.  Because the answer is contrived to have a=7 months it will work for this example, but note that McClenahan suggests just looking at the report delay for the book of business to determine a.

Using d= 7 months and p = .95, the tail factor should is

12q/{12q - .95m-a--10 (1- .9512)},=  .6/{.6 - .017385(1- .5404)}= 1.0135.

Reviewing the link ratios prior to this, it certainly appears to be reasonable.  In fact, extending the payout to additional stages of development will confirm it’s accuracy.

Improvement 2 - Exact Fitting to the Oldest Year

A common problem with fitted curves is that the combination of the curve assumptions and the data in the middle of the triangle may create a curve that varies significantly from the development factors at the older stages.  McClenahan’s method is relatively unique in that the curve is fit to the incremental paid, rather than the link ratios (as will be done in most of the later methods).  Nevertheless, we can use this strategy by comparing the fitted value to the actual incremental paid loss at the latest stage.  This approach is especially helpful when the curve does not match the shape of the data itself.  For example, assume that the initial year-to-year decay was initially high at between 36
 and 48 months, 48 and 60 months, etc., but was much less at 84 to 96 months and 96 to 108 months, etc.   Then, the last incremental payments (say between 108 and 120) may be much higher percentagewise than what is implied by the fitted curve.

In that case, assuming that the data has enough volume for the 108 to 120 link ratio to have full credibility, one need merely multiply the ‘development portion’ of the tail factor (the tail factor minus one) times the ratio of the actual 108 to 120 increment to the fitted value.  Of course, one must be added to the final result to produce a proper tail factor.

For example, in the above data, the last incremental data shown is that from 96 to 108 months.  In that case the fitted value equals the actual value equals $14.06 off a 12 month base of $100 per a 96 to 108 link ratio of 1.012 and decay rate of .5404.  But what if we had the same decay rate overall, but the link ratio from 96 to 108 was 1.018.  In that case, the incremental paid would be $21.09, or 150% of the fitted value of $14.06.  Then the adjusted tail factor would be:

1+150%(fitted tail factor-1) = 1+150%(1.0135-1)=1+150%*.0135=1.0203.

Improvement 1 (Using Multiple Years to Estimate the Tail) Applied to This Method

For this method, and all the curve-fitting methods, improvement 1 can only be done in connection with improvement 2.  In essence, the concept is to create an exact fit to the next-to-oldest link ratio or implied paid loss, and perhaps the third-to-last link ratio as well.  Then, the implied tail factors can be averaged or otherwise combined into a single tail factor indication.  This method is particularly useful when the ‘tail’ of the triangle has some credibility, but the individual link ratio estimates from the development triangle are not fully credible.

	
	
	
	Equivalent
	Incremental
	Year
	Revised
	Equivalent
	Incremental

	Dev
	Link
	Ending
	Cumulative
	Paid
	to Year
	Link
	Cumulative
	Paid

	Stage
	Ratio
	Maturity
	Paid
	(Difference)
	Ratio
	Ratio
	Paid
	(Difference)

	12-24
	5.772
	12
	$100.00
	$100.00
	
	5.772
	$100.00
	$100.00

	24-36
	1.529
	24
	$577.23
	$477.23
	4.7723
	1.529
	$577.23
	$477.23

	36-48
	1.187
	36
	$882.45
	$305.22
	0.6396
	1.187
	$882.45
	$305.22

	48-60
	1.085
	48
	$1,047.38
	$164.93
	0.5404
	1.085
	$1,047.38
	$164.93

	60-72
	1.042
	60
	$1,136.50
	$89.12
	0.5404
	1.042
	$1,136.50
	$89.12

	72-84
	1.022
	72
	$1,184.66
	$48.16
	0.5404
	1.044
	$1,184.66
	$48.16

	84-96
	1.012
	84
	$1,210.68
	$26.02
	0.5404
	1.018
	$1,236.79
	$52.13

	
	
	96
	$1,224.75
	$14.06
	0.5404
	
	$1,259.05
	$22.26


For example, Let’s consider the case above, where the fitted annual decline is still .5404, the last link is once again 1.018, per the example used for improvement 2, but also the next-to-last 72-84 link is now 1.044 instead of 1.022.  In this case, the implied incremental paid off the $100 base is now $52.13 instead of the $26.02 in the chart above (which will match the fitted curve).  $52.13 is approximately twice $26.02, so the 72-84 activity would imply a tail factor of

1+200%(fitted tail factor –1) = 1+200%(1.0135-1) = 1+200%*.0135 = 1.0270.

The implied tail factor per the 84-96 link ratio is once again 1.0203, as can be seen through the fact that the implied paid loss per the $100 base in the 84-96 stage is $22.26 or roughly 158% of paid loss.  It now implies a tail factor of

1+158%(1.0135-1) =1+158%*.0135 = 1.0213.

So, averaging the two, a tail factor in the range of 1.024 might be optimal.

Method 5 – Skurnick’s Simplification of McClenahan’s Method

Skurnick’s approach in [3] is essentially the same as McClenahan’s.  The difference is that Skurnick does not include the delay constant.  Further, Skurnick does not calculate a single decay rate for the entire triangle using selected link ratios.  Rather Skurnick fits a curve to each accident year and uses each curve as the sole mechanism of projecting each year’s ultimate losses. Mathematically, his tail factor reduces to 
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where r and y are as before, in this case y denoting the number of years of development at which the tail factor will apply.

An Example

Consider the following incremental loss payouts:

	Development
	Accident Year

	Stage
	1992
	1991

	
	
	

	12
	4000
	1000

	24
	2000
	2000

	36
	1000
	1000

	48
	500
	500

	60
	250
	250

	72
	125
	125

	84
	62.5
	62.5

	96
	
	31.25


For illustration of the curve fitting process, the 1992 data produces the following table, when a curve is fit to the natural logarithms of the paid loss in each year (using the identity ln(A*ry) = ln(A)+y*ln(r) ).

	
	
	
	
	Fitted Line
	
	
	
	
	

	Development
	Stage
	Amount
	Log of
	Ln(A) =
	8.987
	EXP = A =
	8000
	Fitted
	Fit

	Stage
	in Years
	Paid
	Amount
	Ln(r) = 
	-.693
	EXP = r =
	0.5
	Curve
	Error

	
	
	
	
	
	
	
	
	
	

	12
	1
	4,000
	8.29405
	
	
	
	
	4,000
	0

	24
	2
	2,000
	7.600902
	
	
	
	
	2,000
	0

	36
	3
	1,000
	6.907755
	
	
	
	
	1,000
	0

	48
	4
	500
	6.214608
	
	
	
	
	500
	0

	60
	5
	250
	5.521461
	
	
	
	
	250
	0

	72
	6
	125
	4.828314
	
	
	
	
	125
	0

	84
	7
	63
	4.135167
	
	
	
	
	63
	0


The tail factor is then (1-.5)/(1-.5-.57)=.5/(1-.5-.007813) = 1.0159.

The above is of course a contrived example.  But consider the more typical case of the 1991 accident year.  In this case, the payments begin low, then decrease after reaching a ‘hump’ in the 24 month stage.  The eventual rate of decrease is still .5, but the curve fit produces:

	
	
	
	
	Fitted Line
	
	
	
	
	

	Development
	Stage
	Amount
	Log of
	Ln(A) =
	8.294
	EXP = A =
	4000
	Fitted
	Fit

	Stage
	in Years
	Paid
	Amount
	Ln(r) = 
	-0.578
	EXP = r =
	0.56123
	Curve
	Error

	
	
	
	
	
	
	
	
	
	

	12
	1
	1,000
	6.907755
	
	
	
	
	2,245
	-1,245

	24
	2
	2,000
	7.600902
	
	
	
	
	1,122
	878

	36
	3
	1,000
	6.907755
	
	
	
	
	561
	439

	48
	4
	500
	6.214608
	
	
	
	
	281
	219

	60
	5
	250
	5.521461
	
	
	
	
	140
	110

	72
	6
	125
	4.828314
	
	
	
	
	70
	55

	84
	7
	63
	4.135167
	
	
	
	
	35
	27

	96
	8
	31
	3.442019
	
	
	
	
	18
	14


Because of the hump shape ‘r’ is computed at a higher value, .5613, hence the tail factor is much larger at (1-.5613)/(1-.5613-.56137) = .4387/(.4387-.017554) =1.0417.  This serves as an introduction to the next improvement.

Improvement 3 – Limit Curve Fitting to the More Mature Years

Skurnick’s method is a prime candidate for this approach, because it is so common to have a ‘hump-shaped’ payout curve, whereas by the very nature of the exponential curve, exponential curves are monotonically decreasing.  So, it is logical to reconsider the tail this in light of the overall type of claims activity occurring near the tail.  

Going back to the ‘Brief Digression’ on types of claims activity, the type of claims activity most closely associated with the tail does not begin until after 48 or 60 months.  So, it would be logical to just fit the development curve to the paid after 60 months.  The result is shown below.

	
	
	
	
	Fitted Line
	
	
	
	
	

	Development
	Stage
	Amount
	Log of
	Ln(A) =
	8.987
	EXP = A =
	8000
	Fitted
	Fit

	Stage
	in Years
	Paid
	Amount
	Ln(r) = 
	-0.69
	EXP = r =
	0.5
	Curve
	Error

	
	
	
	
	
	
	
	
	
	

	72
	6
	125
	4.82831
	
	
	
	
	125
	0

	84
	7
	63
	4.13517
	
	
	
	
	63
	0

	96
	8
	31
	3.44202
	
	
	
	
	31
	0


As expected, this produces the correct decay rate value of ‘r’ = .5, and the corresponding tail factor of 1.0159.

A Note of Caution 

The above improvement is logical and generally works well with large volume high-credibility data.  When the triangle is of ‘medium’
 size and has a fairly high cap on loss size, the triangle will not have full credibility.  Therefore, a fit to paid data directly out of the triangle will likely lead to poor tail factor estimates.   Of note, that will hold not only for Skurnick’s method, but for all the curve-fitting methods.

Improvements 1 and 2 Applied to Skurnick’s Method

These have likely been discussed enough earlier in this paper to eliminate a need for examples, but both of these may be applied in using Skurnick’s method.

Method 1, using multiple ending years can be applied by simply fitting the curve to all the payments but the last year, computing the corresponding tail factor for the next-to-last stage of development, and dividing by the last link ratio.

Method 2 can be performed just as it was in McClenahan’s method.  For example, in the poor curve fit obtained when fitting to all of the 1991 data, the ‘development portion’ of the fitted tail, 1.0417-1=.0417 could be multiplied by the ratio of the actual incremental paid loss in the 96-108 stage (31, holding the place of the exact value 31.25) to the fitted value (rounded to 18).  Thus, the ‘corrected’ tail factor is even further off at 1+31*.417/18 = 1.0718.  This illustration of when improvement 2 does not improve the tail factor prediction is intended to further show what happens when the type of curve fitted is a poor match for the pattern of the data.

Method 6 – Exponential Decay of the Development Portion of the Link Ratios

This method is the first of several methods that extrapolate the tail factor off the loss development link ratios rather than the paid loss.  This method was referred to briefly in the discussion of the Bondy method as a possible source of theoretical underpinnings for the two Bondy methods.  The process is very simple.  Given a set of link ratios 1+d1, 1+d2, 1+d3,…. 1+dy, a curve of the form 
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is fit to the dm’s.  The easiest way to do so is by using a regression to the natural logarithms of the dm’s.  Then, for an ending dy of small size, the additional development can be estimated by using the previous approach of 
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This also automatically introduces Improvement 2 by fitting exactly to the last point.  Similar algebra would show that the tail factor is approximated by  
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For an ending  dy  of larger size, it may be necessary to simply project the link ratios for the next fifteen or so years (until the additional tail is immaterial), then multiply them all together to create a tail factor.  

An Example

Consider the following example link ratio data.

	Development
	Stage
	Link

	Stage
	in Years
	Ratio

	
	
	

	12
	1
	1.5

	24
	2
	1.25

	36
	3
	1.125

	48
	4
	1.0625

	60
	5
	1.03125

	72
	6
	1.015625

	84
	7
	1.007813


The astute reader will notice that is a pattern similar to that underlying the Bondy method.  In any event, to fit our exponential curve to the development portion, we first subtract unity to obtain the development portion of each link ratio.

	Development
	Stage
	Link
	Development

	Stage
	in Years
	Ratio
	Portion 'd'

	
	
	
	

	12
	1
	1.5
	0.5

	24
	2
	1.25
	0.25

	36
	3
	1.125
	0.125

	48
	4
	1.0625
	0.0625

	60
	5
	1.03125
	0.03125

	72
	6
	1.015625
	0.015625

	84
	7
	1.007813
	0.0078125


Then, as a precursor to curve fitting, we take the natural logarithms of the development portions, or “d’s”.

	Development
	Stage
	Link
	Development
	Log of

	Stage
	in Years
	Ratio
	Portion 'd'
	d'

	
	
	
	
	

	12
	1
	1.5
	0.5
	-0.69315

	24
	2
	1.25
	0.25
	-1.38629

	36
	3
	1.125
	0.125
	-2.07944

	48
	4
	1.0625
	0.0625
	-2.77259

	60
	5
	1.03125
	0.03125
	-3.46574

	72
	6
	1.015625
	0.015625
	-4.15888

	84
	7
	1.007813
	0.0078125
	-4.85203


Then, we fit a line to those logarithms.  Standard commercial spreadsheet software produces:

	Development
	Stage
	Link
	Development
	Log of
	Fitted Curve Values

	Stage
	in Years
	Ratio
	Portion 'd'
	d'
	Slope
	-0.6931

	
	
	
	
	
	Intercept
	0.0000

	12
	1
	1.5
	0.5
	-0.69315
	
	

	24
	2
	1.25
	0.25
	-1.38629
	
	

	36
	3
	1.125
	0.125
	-2.07944
	
	

	48
	4
	1.0625
	0.0625
	-2.77259
	
	

	60
	5
	1.03125
	0.03125
	-3.46574
	
	

	72
	6
	1.015625
	0.015625
	-4.15888
	
	

	84
	7
	1.007813
	0.0078125
	-4.85203
	
	


Then, our ‘D’, or development portion at time zero, is the exponent of the intercept, and the rate of reduction, ‘r’ is the exponent of the slope.  Taking the exponents and showing the fitted curve, we get:

	Development
	Stage
	Link
	Development
	Log of
	Fitted Curve Values
	
	
	Fitted

	Stage
	in Years
	Ratio
	Portion 'd'
	d'
	Slope
	-0.6931
	
	Curve

	
	
	
	
	
	Intercept
	0.0000
	
	

	12
	1
	1.5
	0.5
	-0.69315
	
	
	
	1.50000

	24
	2
	1.25
	0.25
	-1.38629
	r = exp(slope)
	0.5
	1.25000

	36
	3
	1.125
	0.125
	-2.07944
	D = exp(intercept)
	1
	1.12500

	48
	4
	1.0625
	0.0625
	-2.77259
	
	
	
	1.06250

	60
	5
	1.03125
	0.03125
	-3.46574
	
	
	
	1.03125

	72
	6
	1.015625
	0.015625
	-4.15888
	
	
	
	1.01563

	84
	7
	1.007813
	0.0078125
	-4.85203
	
	
	
	1.00781

	
	8
	
	
	
	
	
	1.00391

	
	9
	
	
	
	
	
	1.00195

	
	10
	
	
	
	
	
	
	1.00098

	
	11
	
	
	
	
	
	1.00049

	
	12
	
	
	
	
	
	
	1.00024

	
	13
	
	
	
	
	
	
	1.00012

	
	14
	
	
	
	
	
	
	1.00006

	
	15
	
	
	
	
	
	
	1.00003

	
	16
	
	
	
	
	
	
	1.00002

	
	17
	
	
	
	
	
	
	1.00001

	
	18
	
	
	
	
	
	
	1.00000

	
	19
	
	
	
	
	
	
	1.00000

	
	20
	
	
	
	
	
	
	1.00000

	
	21
	
	
	
	
	
	
	1.00000

	
	22
	
	
	
	
	
	
	1.00000


Then, for reference we compute the tail factor using both the ‘quick’ formula usable for small remaining ‘development portions’, and by multiplying the fifteen fitted link ratios that make up the tail.

	Quick Formula Tail
	

	1+1*(.5^8)/(1-.5) =
	1.00781

	
	
	

	Product of 8-22 Links
	1.00783


As one can see, the difference is negligible.

A More Realistic Example

The previous example was contrived to make the mathematics clear.  Consider the following set of more realistic data.

	Development
	Stage
	Link

	Stage
	in Years
	Ratio

	
	
	

	12
	1
	2

	24
	2
	1.25

	36
	3
	1.09

	48
	4
	1.05

	60
	5
	1.04

	72
	6
	1.03

	84
	7
	1.028

	96
	8
	1.02


A curve can be fit to the data using the methodology employed in the previous example.

	Development
	Stage
	Link
	Development
	Log of
	Fitted Curve Values
	
	Fitted
	Fit

	Stage
	in Years
	Ratio
	Portion 'd'
	d'
	Slope
	-0.4415
	
	Curve
	Error

	
	
	
	
	
	Intercept
	-0.5723
	
	
	

	12
	1
	2
	1
	0.0000
	
	
	
	1.3628
	-0.6372

	24
	2
	1.25
	0.25
	-1.3863
	r = exp(slope)
	0.643042
	1.2333
	-0.0167

	36
	3
	1.09
	0.09
	-2.4079
	D = exp(intercept)
	0.56422
	1.1500
	0.0600

	48
	4
	1.05
	0.05
	-2.9957
	
	
	
	1.0965
	0.0465

	60
	5
	1.04
	0.04
	-3.2189
	
	
	
	1.0620
	0.0220

	72
	6
	1.03
	0.03
	-3.5066
	
	
	
	1.0399
	0.0099

	84
	7
	1.028
	0.028
	-3.5756
	
	
	
	1.0257
	-0.0023

	96
	8
	1.02
	0.02
	-3.9120
	
	
	1.0165
	-0.0035

	108
	9
	1.018
	0.018
	-4.0174
	
	
	1.0106
	-0.0074


Note that the fit errors exhibit some cyclic behavior, negative as a group at first, then positive from 3-6 years, then negative again at 7-9 year maturities.  This suggests that the curve may be a poor fit.  This is borne out by the tail factor estimates:

	Quick Formula Tail
	

	1+D*(r^10)/(1-r) =
	1.019108

	
	
	

	Product of 8-22 Links
	1.019226

	
	
	

	After exact fit to last link

	1+.018*.0191/.01061
	1.032403


Once again the ‘quick approximation’ to the tail is almost identical to the theoretical tail.  However, note that because of the poor fit of the curve near the tail, the use of Improvement 2 (exact fitting to the last link ratio) produces a markedly different tail factor.  The question of which tail factor is best must now be answered.

To do so, Improvement 3 (fitting the curve solely to the mature years) is in order.  In this case, the curve will simply be fit to years 4 (48 months) and beyond.  That produces the following fit;

	Development
	Stage
	Link
	Development
	Log of
	Fitted Curve Values
	
	Fitted
	Fit

	Stage
	in Years
	Ratio
	Portion 'd'
	d'
	Slope
	-0.2073
	
	Curve
	Error

	
	
	
	
	
	Intercept
	-2.1900
	
	
	

	48
	4
	1.05
	0.05
	-2.9957
	
	
	
	1.0488
	-0.0012

	60
	5
	1.04
	0.04
	-3.2189
	r = exp(slope)
	0.812748
	1.0397
	-0.0003

	72
	6
	1.03
	0.03
	-3.5066
	D = exp(intercept)
	0.111915
	1.0323
	0.0023

	84
	7
	1.028
	0.028
	-3.5756
	
	
	
	1.0262
	-0.0018

	96
	8
	1.02
	0.02
	-3.9120
	
	
	
	1.0213
	0.0013

	108
	9
	1.018
	0.018
	-4.0174
	
	
	
	1.0173
	-0.0007


Which produces the following tail estimates:

	Quick Formula Tail
	

	1+D*(r^10)/(1-r) =
	1.075166

	
	
	

	Product of 10-24 Links
	1.075813

	
	
	

	After exact fit to last link

	1+.018*.075/.0173
	1.078035


Due to the low fit errors, as long as the 48-120 development triangle data that generated the link ratios is credible, this would strongly suggest that a tail factor of around 1.075 is needed.  Note also that the ‘quick approximation also works well in this instance.  In summary, this example illustrates the importance of restricting use of the fitted curve to the portion of the development data that it can reasonably fit.

Method 7 – Fitting an Inverse Power Curve to the Link Ratios

This method, the last
 of the curve fitting approaches to be discussed, was first articulated by Sherman [2].  In this case a curve of the form 1+a(tb (t representing the maturity in years) is fit to the link ratios.  The process is very similar to that used to fit the exponential curve, excepting that the ‘independent variable’ used in the curve fit is ln(t).

More specifically, the identity 

ln(1+d-1) = ln(d) ( ln(1+a(tb-1) = ln(a(tb) = ln(a) + b(ln(t)

can be used to create an opportunity to base the fitted curve on a simple regression.  Unfortunately, this author is not aware of any simple closed form approximation to the tail this curve generates, so the tail factor must be estimated by multiplying together the successive link ratios after the tail begins until the impact of additional link ratios is negligible.  

An Example
This may best be illustrated by using the initial dataset used for the exponential decay approach:

	Development
	Stage
	Link

	Stage
	in Years
	Ratio

	
	
	

	12
	1
	1.5

	24
	2
	1.25

	36
	3
	1.125

	48
	4
	1.0625

	60
	5
	1.03125

	72
	6
	1.015625

	84
	7
	1.007813


The first step is to calculate the development portion of each link ratio and take natural logarithms of the result.

	Development
	Stage
	Link
	Development
	Log of

	Stage
	in Years
	Ratio
	Portion 'd'
	d'

	
	
	
	
	

	12
	1
	1.5
	0.5
	-0.6931

	24
	2
	1.25
	0.25
	-1.3863

	36
	3
	1.125
	0.125
	-2.0794

	48
	4
	1.0625
	0.0625
	-2.7726

	60
	5
	1.03125
	0.03125
	-3.4657

	72
	6
	1.015625
	0.015625
	-4.1589

	84
	7
	1.007813
	0.0078125
	-4.8520


Those will represent the ‘dependent variable’ in our regression. Then for the independent variable, we take natural logarithms of the development stage/beginning maturity for the link ratio in years.

	Development
	Stage
	Link
	Development
	Log of
	Log of 

	Stage
	in Years
	Ratio
	Portion 'd'
	d'
	Stage in Yrs

	
	
	
	
	
	

	12
	1
	1.5
	0.5
	-0.6931
	0.0000

	24
	2
	1.25
	0.25
	-1.3863
	0.6931

	36
	3
	1.125
	0.125
	-2.0794
	1.0986

	48
	4
	1.0625
	0.0625
	-2.7726
	1.3863

	60
	5
	1.03125
	0.03125
	-3.4657
	1.6094

	72
	6
	1.015625
	0.015625
	-4.1589
	1.7918

	84
	7
	1.007813
	0.0078125
	-4.8520
	1.9459


Then, we compute the regression parameters.

	Development
	Stage
	Link
	Development
	Log of
	Log of 
	Fitted Curve Parameters
	

	Stage
	in Years
	Ratio
	Portion 'd'
	d'
	Stage in Yrs
	
	
	

	
	
	
	
	
	
	Slope = 
	-2.10512
	=b

	12
	1
	1.5
	0.5
	-0.6931
	0.0000
	Intercept =
	-0.20881
	

	24
	2
	1.25
	0.25
	-1.3863
	0.6931
	a = exp(intercpt)
	0.811553
	

	36
	3
	1.125
	0.125
	-2.0794
	1.0986
	
	
	

	48
	4
	1.0625
	0.0625
	-2.7726
	1.3863
	
	
	

	60
	5
	1.03125
	0.03125
	-3.4657
	1.6094
	
	
	

	72
	6
	1.015625
	0.015625
	-4.1589
	1.7918
	
	
	

	84
	7
	1.007813
	0.0078125
	-4.8520
	1.9459
	
	


Following that, we compute the fitted curve values and the fit error. 

	Development
	Stage
	Link
	Fitted Curve Parameters
	
	Fitted
	Fit

	Stage
	in Years
	Ratio
	
	
	
	Curve
	Error

	
	
	
	Slope = 
	-2.10512
	=b
	
	

	12
	1
	1.5
	Intercept =
	-0.20881
	
	1.8116
	0.3116

	24
	2
	1.25
	a = exp(intercpt)
	0.811553
	
	1.1886
	-0.0614

	36
	3
	1.125
	
	
	
	1.0803
	-0.0447

	48
	4
	1.0625
	
	
	
	1.0438
	-0.0187

	60
	5
	1.03125
	
	
	
	1.0274
	-0.0038

	72
	6
	1.015625
	
	
	
	1.0187
	0.0030

	84
	7
	1.007813
	
	
	1.0135
	0.0057

	
	8
	
	
	1.0102
	

	
	9
	
	
	
	
	1.0080
	

	
	10
	
	
	
	
	1.0064
	

	
	11
	
	
	
	
	1.0052
	

	
	12
	
	
	
	
	1.0043
	

	
	13
	
	
	
	
	1.0037
	

	
	14
	
	
	
	
	1.0031
	

	
	15
	
	
	
	
	1.0027
	

	
	16
	
	
	
	
	1.0024
	

	
	17
	
	
	
	
	1.0021
	

	
	18
	
	
	
	
	1.0018
	

	
	19
	
	
	
	
	1.0016
	

	
	20
	
	
	
	
	1.0015
	

	
	21
	
	
	
	
	1.0013
	

	
	22
	
	
	
	
	1.0012
	


And, the tail factor estimates are:

	Fitted Tail =
	1.056977
	

	
	
	

	Exact Fit to last link
	

	1+0.056977*0.007813/0.0135

	=
	1.032975
	.


Even with the utility this adds in the fit, the initial fit produces a tail factor of over 1.05, when the previous exponential decay analysis suggested only 1.07813.  The exact fit correction does produce a number that is much closer to the theoretical tail.

Again, one approach is to fit solely to the mature years.  That approach produces the following regression calculations:

	Development
	Stage
	Link
	Development
	Log of
	Log of 
	Fitted Curve Parameters
	

	Stage
	in Years
	Ratio
	Portion 'd'
	d'
	Stage in Yrs
	
	
	

	
	
	
	
	
	
	Slope = 
	-3.69867
	=b

	48
	4
	1.0625
	0.0625
	-2.7726
	1.3863
	Intercept =
	2.413854
	

	60
	5
	1.03125
	0.03125
	-3.4657
	1.6094
	a = exp(intercpt)
	11.17696
	

	72
	6
	1.015625
	0.015625
	-4.1589
	1.7918
	
	
	

	84
	7
	1.007813
	0.0078125
	-4.8520
	1.9459
	.
	
	


And then it produces the following fitted curve:

	Development
	Stage
	Link
	Fitted Curve Parameters
	
	Fitted
	Fit

	Stage
	in Years
	Ratio
	
	
	
	Curve
	Error

	
	
	
	Slope = 
	-3.69867
	=b
	
	

	48
	4
	1.0625
	Intercept =
	2.413854
	
	1.0663
	0.0038

	60
	5
	1.03125
	a = exp(intercpt)
	11.17696
	
	1.0290
	-0.0022

	72
	6
	1.015625
	
	
	
	1.0148
	-0.0008

	84
	7
	1.007813
	
	
	
	1.0084
	0.0006

	
	8
	
	
	
	
	1.0051
	

	
	9
	
	
	
	
	1.0033
	

	
	10
	
	
	
	1.0022
	

	
	11
	
	
	1.0016
	

	
	12
	
	
	
	
	1.0011
	

	
	13
	
	
	
	
	1.0008
	

	
	14
	
	
	
	
	1.0006
	

	
	15
	
	
	
	
	1.0005
	

	
	16
	
	
	
	
	1.0004
	

	
	17
	
	
	
	
	1.0003
	

	
	18
	
	
	
	
	1.0003
	

	
	19
	
	
	
	
	1.0002
	

	
	20
	
	
	
	
	1.0002
	

	
	21
	
	
	
	
	1.0001
	

	
	22
	
	
	
	
	1.0001
	


And, the tail it produces, although it remains higher than the theoretical tail (at a certain level, the slower decay of the inverse power curve as compared to an exponential curve makes it inevitable that it will produce a higher tail) is much closer to the theoretical tail.

	Fitted Tail =
	1.017077
	

	
	
	

	Exact Fit to last link
	

	1+0.017077*0.007813/0.0084

	=
	1.015884
	


The  More Realistic Example

Going back to the exponential decay, a tail was fit to the link ratios shown below:

	Development
	Stage
	Link

	Stage
	in Years
	Ratio

	
	
	

	12
	1
	2

	24
	2
	1.25

	36
	3
	1.09

	48
	4
	1.05

	60
	5
	1.04

	72
	6
	1.03

	84
	7
	1.028

	96
	8
	1.02

	108
	9
	1.018


We fit a curve as before:

	Development
	Stage
	Link
	Development
	Log of
	Log of 
	Fitted Curve Parameters
	

	Stage
	in Years
	Ratio
	Portion 'd'
	d'
	Stage in Yrs
	
	
	

	
	
	
	
	
	
	Slope = 
	-1.82492
	=b

	12
	1
	2
	1
	0.0000
	0.0000
	Intercept =
	-0.18424
	

	24
	2
	1.25
	0.25
	-1.3863
	0.6931
	a = exp(intercpt)
	0.83174
	

	36
	3
	1.09
	0.09
	-2.4079
	1.0986
	
	
	

	48
	4
	1.05
	0.05
	-2.9957
	1.3863
	
	
	

	60
	5
	1.04
	0.04
	-3.2189
	1.6094
	
	
	

	72
	6
	1.03
	0.03
	-3.5066
	1.7918
	
	
	

	84
	7
	1.028
	0.028
	-3.5756
	1.9459
	
	

	96
	8
	1.02
	0.02
	-3.9120
	2.0794
	
	

	108
	9
	1.018
	0.018
	-4.0174
	2.1972
	
	
	


And then compute the fitted curve values.  Since the link ratios decay so slowly, we project thirty years of additional development in lieu of fifteen.

	Development
	Stage
	Link
	Fitted Curve Parameters
	
	Fitted
	Fit

	Stage
	in Years
	Ratio
	
	
	
	Curve
	Error

	
	
	
	Slope = 
	-1.82492
	=b
	
	

	12
	1
	2
	Intercept =
	-0.18424
	
	1.8317
	-0.1683

	24
	2
	1.25
	a = exp(intercpt)
	0.83174
	
	1.2348
	-0.0152

	36
	3
	1.09
	
	
	
	1.1120
	0.0220

	48
	4
	1.05
	
	
	
	1.0663
	0.0163

	60
	5
	1.04
	
	
	
	1.0441
	0.0041

	72
	6
	1.03
	
	
	
	1.0316
	0.0016

	84
	7
	1.028
	
	
	1.0149
	1.0239

	96
	8
	1.02
	
	
	1.0111
	1.0187

	108
	9
	1.018
	
	
	
	1.0151
	-0.0029

	
	10
	
	
	
	
	1.0124
	

	
	11
	
	
	
	
	1.0105
	

	
	12
	
	
	
	
	1.0089
	

	
	13
	
	
	
	
	1.0077
	

	
	14
	
	
	
	
	1.0067
	

	
	15
	
	
	
	
	1.0059
	

	
	16
	
	
	
	
	1.0053
	

	
	17
	
	
	
	
	1.0047
	

	
	18
	
	
	
	
	1.0043
	

	
	19
	
	
	
	
	1.0039
	

	
	20
	
	
	
	
	1.0035
	

	
	21
	
	
	
	
	1.0032
	

	
	22
	
	
	
	
	1.0030
	

	
	23
	
	
	
	
	1.0027
	

	
	24
	
	
	
	
	1.0025
	

	
	25
	
	
	
	
	1.0023
	

	
	26
	
	
	
	
	1.0022
	

	
	27
	
	
	
	
	1.0020
	

	
	28
	
	
	
	
	1.0019
	

	
	29
	
	
	
	
	1.0018
	

	
	30
	
	
	
	
	1.0017
	

	
	31
	
	
	
	
	1.0016
	

	
	32
	
	
	
	
	1.0015
	

	
	33
	
	
	
	
	1.0014
	

	
	34
	
	
	
	
	1.0013
	

	
	35
	
	
	
	
	1.0013
	

	
	36
	
	
	
	
	1.0012
	

	
	37
	
	
	
	
	1.0011
	

	
	38
	
	
	
	
	1.0011
	

	
	39
	
	
	
	
	1.0010
	


That produces the following tail data.

	Fitted Tail =
	1.114487

	
	

	Exact Fit to last link

	1+0.11451*0.018/0.0151

	=
	1.136502


For comparison, the final ‘best estimates’ using the exponential decay were in the 1.03-1.05 range.  But, those estimates were based off a fit to just the mature years.  So, let us merely fit the curve to the 48+ month data.

	Development
	Stage
	Link
	Development
	Log of
	Log of 
	Fitted Curve Parameters
	

	Stage
	in Years
	Ratio
	Portion 'd'
	d'
	Stage in Yrs
	
	
	

	
	
	
	
	
	
	Slope = 
	-1.28108
	=b

	48
	4
	1.05
	0.05
	-2.9957
	1.3863
	Intercept =
	-1.18688
	

	60
	5
	1.04
	0.04
	-3.2189
	1.6094
	a = exp(intercpt)
	0.305171
	

	72
	6
	1.03
	0.03
	-3.5066
	1.7918
	
	
	

	84
	7
	1.028
	0.028
	-3.5756
	1.9459
	
	
	

	96
	8
	1.02
	0.02
	-3.9120
	2.0794
	
	
	

	108
	9
	1.018
	0.018
	-4.0174
	2.1972
	
	
	


However, in this case, the tail is even higher, per the fit

	Development
	Stage
	Link
	Fitted Curve Parameters
	
	Fitted
	Fit

	Stage
	in Years
	Ratio
	
	
	
	Curve
	Error

	
	
	
	Slope = 
	-1.28108
	=b
	
	

	48
	4
	1.05
	Intercept =
	-1.18688
	
	1.0517
	0.0017

	60
	5
	1.04
	a = exp(intercpt)
	0.305171
	
	1.0388
	-0.0012

	72
	6
	1.03
	
	
	
	1.0307
	0.0007

	84
	7
	1.028
	
	
	
	1.0252
	-0.0028

	96
	8
	1.02
	
	
	
	1.0213
	0.0013

	108
	9
	1.018
	
	
	
	1.0183
	0.0003

	
	10
	
	
	
	1.0160
	

	
	11
	
	
	
	1.0141
	

	
	12
	
	
	
	
	1.0126
	

	
	13
	
	
	
	
	1.0114
	

	
	Etc.
	
	
	
	
	Etc.
	


The estimated tail is:

	Fitted Tail =
	1.208566

	
	

	Exact Fit to last link

	1+0.2086*0.018/0.0183

	=
	1.20518


So, this illustrates how this method is generally more conservative than the exponential decay method.

Method 8 – Fitting an Inverse Power Curve With Lag to the Link Ratios

In his use of the inverse power curve, Sherman [2] noted that the fit could sometimes be improved by adding a lag parameter to the curve.  He used the formula

1+d ( 1+a((t-c)b.

In this case, the curve fit is slightly more complex.  An example will illustrate the process.

We first set the lag equal to one (unity) to begin the process, then fit the curve

	Development
	Stage
	Link
	Development
	Log of
	Stage 
	Log of Rev.
	Fitted Curve Parameters
	

	Stage
	in Years
	Ratio
	Portion 'd'
	d'
	Minus Lag
	Stage in Yrs
	Lag = 
	1
	

	
	
	
	
	
	
	
	Slope = 
	-1.0273
	=b

	48
	4
	1.05
	0.05
	-2.9957
	3.0000
	1.0986
	Intercept =
	-1.8324
	

	60
	5
	1.04
	0.04
	-3.2189
	4.0000
	1.3863
	a = exp(intercpt)
	0.1600
	

	72
	6
	1.03
	0.03
	-3.5066
	5.0000
	1.6094
	
	
	

	84
	7
	1.028
	0.028
	-3.5756
	6.0000
	1.7918
	
	
	

	96
	8
	1.02
	0.02
	-3.9120
	7.0000
	1.9459
	
	
	

	108
	9
	1.018
	0.018
	-4.0174
	8.0000
	2.0794
	
	
	


Then compute the fitted curve, and the total squared fit error

	Development
	Stage
	Link
	Fitted Curve Parameters
	
	Fitted
	Fit
	Squared

	Stage
	in Years
	Ratio
	Lag = 
	1
	
	Curve
	Error
	Error

	
	
	
	Slope = 
	-1.027387872
	=b
	
	
	

	48
	4
	1.05
	Intercept =
	-1.832444677
	
	1.0385
	-0.0115
	1.32E-04

	60
	5
	1.04
	a = exp(intercpt)
	0.160021887
	
	1.0306
	-0.0094
	8.79E-05

	72
	6
	1.03
	
	
	
	1.0254
	-0.0046
	2.12E-05

	84
	7
	1.028
	
	
	
	1.0217
	-0.0063
	4.00E-05

	96
	8
	1.02
	
	
	
	1.0189
	-0.0011
	1.22E-06

	108
	9
	1.018
	
	
	
	1.0167
	-0.0013
	1.58E-06

	
	
	
	
	
	
	
	

	
	
	
	
	
	
	
	2.84E-04


Then in order to estimate the optimum lag, we use a bisection process, finding the lowest value of the squared error across a group of value, and progressively narrowing the range.  The computations were as follows, and only 7 steps were needed

	Stage 1
	
	Stage 2
	
	Stage 3
	

	
	Squared
	
	Squared
	
	Squared

	Lag
	Error
	Lag
	Error
	Lag
	Error

	
	
	-1
	7.06E-04
	-0.5
	1.58E-04

	-1
	7.06E-04
	-0.5
	1.58E-04
	-0.25
	4.86177E-05

	0
	1.32E-05
	0
	1.32E-05
	0
	1.32454E-05

	1
	2.84E-04
	0.5
	9.22E-05
	0.25
	3.28903E-05

	2
	7.50E-04
	1
	2.84E-04
	0.5
	9.22146E-05

	3
	1.08E-03
	
	
	
	

	
	
	
	
	
	

	
	
	
	
	
	

	Stage 4
	
	Stage 5
	
	Stage 6
	

	
	Squared
	
	Squared
	
	Squared

	Lag
	Error
	Lag
	Error
	Lag
	Error

	-0.25
	4.86177E-05
	-0.125
	2.2949E-05
	-0.0625
	1.62499E-05

	-0.125
	2.2949E-05
	-0.0625
	1.625E-05
	-0.03125
	1.43034E-05

	0
	1.32454E-05
	0
	1.3245E-05
	0
	1.32454E-05

	0.125
	1.72333E-05
	0.0625
	1.366E-05
	0.03125
	1.30419E-05

	0.25
	3.28903E-05
	0.125
	1.7233E-05
	0.0625
	1.36599E-05

	
	
	
	
	
	

	
	
	
	
	
	

	Stage 7
	
	
	
	
	

	
	Squared
	
	
	
	

	Lag
	Error
	Final Selection 
	0.02
	

	0
	1.32454E-05
	
	
	
	

	0.015625
	1.30389E-05
	
	
	
	

	0.03125
	1.30419E-05
	
	
	
	

	0.046875
	1.32502E-05
	
	
	
	

	0.0625
	1.36599E-05
	
	
	
	


Then, that lag value may be used in the final curve fit.

	Development
	Stage
	Link
	Fitted Curve Parameters
	
	Fitted

	Stage
	in Years
	Ratio
	Lag = 
	0.02
	
	Curve

	
	
	
	Slope = 
	-1.253797784
	=b
	

	48
	4
	1.05
	Intercept =
	-1.23628766
	
	1.0511

	60
	5
	1.04
	a = exp(intercpt)
	0.290460507
	
	1.0386

	72
	6
	1.03
	
	
	
	1.0307

	84
	7
	1.028
	
	
	
	1.0253

	96
	8
	1.02
	Fitted Tail =
	1.230663894
	
	1.0214

	108
	9
	1.018
	
	
	
	1.0185

	
	10
	
	Exact Fit to last link
	
	1.0162

	
	11
	
	1+0.2307*0.018/0.0185
	
	1.0144

	
	12
	
	=
	1.224464865
	
	1.0129

	
	13
	
	
	
	
	1.0117

	
	14
	
	
	
	
	1.0106

	
	15
	
	
	
	
	1.0097

	
	16
	
	
	
	
	1.0090

	
	17
	
	
	
	
	1.0083

	
	18
	
	
	
	
	1.0077

	
	19
	
	
	
	
	1.0072

	
	20
	
	
	
	
	1.0068

	
	21
	
	
	
	
	1.0064

	
	22
	
	
	
	
	1.0060

	
	23
	
	
	
	
	1.0057

	
	24
	
	
	
	
	1.0054

	
	25
	
	
	
	
	1.0051

	
	26
	
	
	
	
	1.0049

	
	27
	
	
	
	
	1.0047

	
	28
	
	
	
	
	1.0045

	
	29
	
	
	
	
	1.0043

	
	30
	
	
	
	
	1.0041

	
	31
	
	
	
	
	1.0039

	
	32
	
	
	
	
	1.0038

	
	33
	
	
	
	
	1.0036

	
	34
	
	
	
	
	1.0035

	
	35
	
	
	
	
	1.0034

	
	36
	
	
	
	
	1.0032

	
	37
	
	
	
	
	1.0031

	
	38
	
	
	
	
	1.0030

	
	39
	
	
	
	
	1.0029


Which provides a slightly smaller tail

	Fitted Tail =
	1.2306

	
	

	Exact Fit to last link

	1+0.2307*0.018/0.0185

	=
	1.2244


Summarizing, we can note that while the lag factor may sometimes mitigate the size of the tail, the inverse power in general tends to produce a higher tail than the exponential fit.  Although it has not been illustrated herein with actual data, the inverse power curve also generally indicates higher tail factors than McClenahan’s and Skurnick’s methods, as those methods tend to produce results that are very similar to that of the exponential decay
.

Method 9 – Using Tail Factors From Benchmark Data

As was shown above, the various curve-fitting techniques can produce widely varying estimates of the needed tail factors.  That can make it difficult to assess precisely what tail factor is optimal in a given situation.  As an alternative, many actuaries review benchmark data in selecting tail factors
.  Benchmark data may come from one of several sources.  Perhaps the most common is the use of the data triangles that can be developed from Best’s Aggregates and Averages for each of the Schedule P lines.  The two larger rating bureaus, the National Council on Compensation Insurance and Insurance Serves Office; as well as the Reinsurance Association of America, all publish benchmark loss development data.  At it’s simplest, this method involves copying the derived remaining development factor at the maturity desired for the tail factor.

Method 10 – Using Benchmark Tail Factors Adjusted to Company Development Levels

This method is very similar to merely applying improvement 2, but the fit is to multiple years.  In effect, the ratios of development from the triangle to benchmark development at earlier (though still mature, remembering improvement 3) stages are used to estimate how to adjust the benchmark tail factor.  Of note, generally just the development portions (‘d’ of 1+d) are compared.

An Example 

Consider the following two patterns:

	
	Link
	

	
	Ratio
	

	
	Estimated
	Benchmark

	Months of
	By
	Link

	Maturity
	Triangle
	Ratio

	12
	2.000
	2.000

	24
	1.450
	1.350

	36
	1.200
	1.150

	48
	1.150
	1.100

	60
	1.100
	1.050

	72
	1.080
	1.030

	84
	1.050
	1.025

	96
	1.035
	1.020

	108
	1.010
	1.010

	
	
	

	Tail
	
	1.050


We then simply compute the ratio of the ‘development portion’ of our triangle-based link ratios to the development portion of the matching benchmark link ratios.

	
	Link
	
	Ratio of

	
	Ratio
	
	Triangle

	
	Estimated
	Benchmark 
	Development

	Months of
	by
	Link
	to

	Maturity
	Triangle
	Ratio
	Benchmark

	12
	2.000
	2.000
	100%

	24
	1.450
	1.350
	129%

	36
	1.200
	1.150
	133%

	48
	1.150
	1.100
	150%

	60
	1.100
	1.050
	200%

	72
	1.080
	1.030
	267%

	84
	1.050
	1.025
	200%

	96
	1.035
	1.020
	175%

	108
	1.010
	1.010
	100%

	
	
	
	

	Tail
	
	1.050
	

	
	
	
	

	Chosen Ratio
	
	200%

	Implied Tail
	1.088
	
	


In this case, we judgmentally select that the triangle development is roughly 175% of benchmark, so the .05 development portion of the tail becomes .0875(.088.  So, the entire tail factor, including unity is 1.088.

An Important Note

It is important to consider that adjusting the benchmark tail for actual triangle link ratios is only helpful as long as the link ratios, or at least the broad pattern of link ratios has statistical reliability (prediction accuracy).  If not, the uncertainty surrounding the true long-term link ratios of the block of business with cause the adjusted tail to lack prediction accuracy.
Method 11 – The Author’s Method - Adjusting the Ending Case Using Ratios of Paid Loss to Case Reserve Disposed of

This method, developed by the author, is the one method that relies solely on the triangle itself and does not involve curve fitting assumptions or external data.  For data triangles with high statistical reliability as predictors, this can represent an optimum estimation process.

This method involves simply determining the ratio of case reserves to paid loss for the oldest year in the triangle, then adjusting the case reserves by an estimate of the ratio of the unpaid loss to carried case reserves.  That estimate of (true unpaid loss)/(case reserves) is based on how many dollars of payments are required to ‘eliminate’ a dollar of case reserve.  

The mathematical formula requires computing a triangle containing incremental rather than cumulative paid losses.  In effect, for each point in the paid loss triangle, one need only subtract the previous value in the same row (the first column is of course unchanged).  The next step begins with a triangle of case reserves.  The incremental case reserve disposed of is calculated as the case reserve in the same row before the data point, less the current case reserve.  That represents (as the beginning case reserve – the ending case reserve) the case reserve disposed of.  Then the ratios of incremental paid to reserve disposed of at the same points in the triangles are computed.  Reviewing these, the adjustment ratio for the ending case reserves is estimated.

An Example

This method requires two triangles, one of paid loss and one of case reserves.  Consider the following set of triangles: 

	Cumulative Paid Loss Triangle
	
	
	
	

	
	12
	24
	36
	48
	60
	72

	1991
	1,000
	2,000
	2,500
	2,800
	2,950
	3,100

	1992
	1,100
	2,400
	3,000
	3,500
	3,900
	

	1993
	1,300
	2,500
	3,000
	3,400
	
	

	1994
	1,200
	2,300
	3,100
	
	
	

	1995
	1,400
	2,800
	
	
	
	

	1996
	1,490
	
	
	
	
	


	Triangle of Case Reserves Outstanding (Cumulative Case Incurred-Cumulative Paid)

	
	12
	24
	36
	48
	60
	72

	1991
	1,500
	1,300
	900
	750
	600
	500

	1992
	2,000
	1,700
	1,300
	900
	600
	

	1993
	1,900
	1,700
	1,300
	1,000
	
	

	1994
	2,100
	2,100
	1,500
	
	
	

	1995
	2,300
	2,000
	
	
	
	

	1996
	2,500
	
	
	
	
	


First, we compute the incremental paid loss by subtracting the previous cell in each row of the cumulative paid loss triangle from the current cell.

	Incremental Paid Loss Triangle
	
	
	
	

	
	12
	24
	36
	48
	60
	72

	1991
	1,000
	1,000
	500
	300
	150
	150

	1992
	1,100
	1,300
	600
	500
	400
	

	1993
	1,300
	1,200
	500
	400
	
	

	1994
	1,200
	1,100
	800
	
	
	

	1995
	1,400
	1,400
	
	
	
	

	1996
	1,490
	
	
	
	
	


Then we subtract the current cell from the previous cell in the care reserve triangle to obtain the triangle of case reserves disposed of.

	Triangle of Incremental Case Reserves Disposed Of
	
	
	

	
	12
	24
	36
	48
	60
	72

	1991
	
	200
	400
	150
	150
	100

	1992
	
	300
	400
	400
	300
	

	1993
	
	200
	400
	300
	
	

	1994
	
	100
	600
	
	
	

	1995
	
	300
	
	
	
	

	1996
	
	
	
	
	
	


Then we divide the actual final costs paid (the incremental paid loss), by the assumption-based case reserves eliminated.

	Ratio of Paid Loss to Reserves Eliminated
	
	
	

	
	12
	24
	36
	48
	60
	72

	1991
	
	500%
	125%
	200%
	100%
	150%

	1992
	
	433%
	150%
	125%
	133%
	 

	1993
	
	600%
	125%
	133%
	 
	 

	1994
	
	1100%
	133%
	
	
	

	1995
	
	467%
	
	
	
	

	1996
	
	
	
	
	
	


Because the early development involves not just elimination of case through payments, but also substantial emergence of IBNR claims, the 12 and 36 columns are presumably distorted. In many lines the 48 month column would still be heavily affected by newly reported large claims, but presumably this is medium-tail business.  Looking at the various ratios it would appear that they average around 140%, so we will use that as our adjustment factor for the case reserves.

Pulling the $500 of case left on the 1991 year at 72 months, and the cumulative paid on the 1991 year of  $3,100, the development portion of the paid loss tail factor would be ($500/$3,100)*140% = .161*140% = .226.  So, the paid loss tail factor would be 1.226.

For the incurred loss tail factor, first note that only the ‘development portion’ of the 140%, or 40%, need be applied (the remaining case is already contained in the incurred).  Second, a ratio of the case reserves to incurred loss is technically needed (replacing 1.61 with $500/($500+$3,100) = .139).  Multiplying the two numbers creates an estimate of the development portion of the tail at .4(.139=.056.  So, the incurred loss tail factor estimate would be 1.056.

Another Important Note

As is the case with most of the other methods, this method has strengths and weaknesses.  Significant strengths of this method are that it requires only the data already in the triangle and that it does not require additional assumptions.  The weakness is that it can be distorted if the adequacy of the ending case has changed significantly from the previous year.  The reader is advised to also follow Improvement 1 and also evaluate the tail at the next-to-oldest year.

Summary

Several different methods for assessing tail development were presented, as well as some refinements.  Hopefully, this will help the reader in his or her actuarial practice.
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� It should be noted that policy year automobile extended warranty represents an entirely different situation.


� Accident year is used here for illustration.  Under similar circumstances, this method would also work in policy year, reinsurance contract year, etc. development.


� To be technically correct, this would be loss and defense and cost containment under 2003 accounting rules.


� McClenahan’s model actually incorporates additional variables for trend, etc that may be collapsed into ‘p’ for purposes of this analysis. 


� In Mclenahan’s original paper, ‘d’ is used instead of ‘a’.  But, since I have used ‘d’ to denote the development portion of the link ratio or development factor, I am using ‘a’ to denote the average payment lag.


� Please note that the usage of ‘r’ in this context is different than the usage in McClenahan’s original paper.  It is used merely because it represents an annual rate.


� Note that because of the delay d before payments, etc. begin, the apparent decay between 12 and 24 months and 24 to 36 months is a distortion of the true annual decay. 


� This method is also referred to as the ‘Geometric Curve’ method.


� It is very difficult to quatify ‘medium’ in a manner that will work across the different lines of insurance and still be meaningful years in the future.  At the time this was written, an example of a ‘medium’  volume triangle might be a very large workers compensation self-insurance fund.


� This method was outlined in  Sherman’s paper, but likely was already heavily used by actuaries before Sherman’s paper was published..


� Sherman also discussed the fitting of a lognormal curve to the cumulative paid (or implied cumulative paid) and the fit of a logarithmic curve to the link ratios.  However, the lognormal fit does not lend itself to easy spreadsheet mathematics, and the logarithmic fit to the link ratios does not produce a unique tail factor.  Further, a Sherman discussed, the inverse power curve is a preferable approach.


� That is because they are simply based on exponential decay of the payments rather than the link ratios.  A little analysis will show that their decay patterns about equal for ‘large’ maturities.  If in doubt, simply consider their asymptotic properties.


� It is also common for actuaries to review benchmark data to supplement the portion of the reserve triangle following 72, 60, 48, or even 36 months when the overall triangle has medium credibility and hence has less than medium credibility in the portion that is dominated by activity on a smallish number of claims.
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