Stochastic Reserving:
Mack and Bootstrapping

Casualty Actuarial Society
Casualty Loss Reserve Seminar (CLRS)
Atlanta - September, 2006

Dave Clark Munich Re America

This material is being provided to you for information only, and is not permitted to be further
distributed without the express written permission of Munich Re America. This material is not
intended to be legal, underwriting, financial or any other type of professional advice. Examples
given are for illustrative purposes only.

© Copyright 2006 Munich Re America. All rights reserved. 1

1234
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Agenda:

» Refresher on Statistical Models
= Bootstrapping Method

» Mack Method

» Limitations and Caveats
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In Classical Statistics, we
assume that there is a fixed
“population” from which we
are sampling.

The world is simple, like an urn
with an unknown number of
red and black balls.

For Reserving: The historical loss development
data is viewed as a sample from a “population”
of possible outcomes.
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Key idea: A function of random variables is also a
random variable.

For example, given a sample = X; X; X3 ... Xy

The sample mean is also a random variable with an
expected value and variance to be estimated.

Similarly, our estimate of the future payments is a
function of the payments to date by year. This is
also a random variable with a mean and variance.
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We will look at two models.
» Additive Over-Dispersed Poisson (ODP)
= Multiplicative Chainladder (Mack)

Both of these models lead to the same
chainladder method to estimate ultimate losses,
but they include different variability assumptions
and so have different estimates of variability.

See Venter (1998) for ideas on tests to compare models.
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Additive Over-Dispersed Poisson Model

(England & Verrall)

Including Bootstrapping
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The Bootstrapping Method:

“Bootstrapping” is a method for calculating
the standard error of an estimate.

First we need to describe a model.
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Incremental Paid Loss Model:

m Expected Loss based on accident year (y) and
development period (d) factors: a, x By

= Incremental paid losses C, ;are independent
» Constant Variance/Mean Ratio o2

This can be modeled as an Over-Dispersed
Poisson (ODP) distribution
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ODP Model

E(Cyld) = a, Py
Var'(Cyld) = oZ-E(Cyld)

MLE for d, andp, = chainladder
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The Over-Dispersed Poisson (ODP) model is
attractive because:

» The maximum likelihood estimate (MLE) of the
expected values equal the chain-ladder
estimates.

= We can estimate the process variance as a
simple multiple of the estimated reserve.

&2 ~ 1 .z(cy,d A_éy,d )2

(n_ p) y.d Cy,d
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But what about the uncertainty in the estimate of
the mean (the “parameter variance”)?

E[(Cyvd —(fy,d )2} = Var(nyd) + Var(éyyd)

N J \ J
Y Y

Process Variance Parameter Variance
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The Parameter Variance component can be
evaluated in either of two ways:

= Analytically: Using the “delta method”

m Based on inverting the matrix of second derivatives
of the log-likelihood function

= Simulation: Using Bootstrapping

m Based on creating many “what if” triangles and
seeing how the reserve estimates from this differ
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Steps in Bootstrapping:

» Calculate Chainladder Ultimates

» Calculate “Expected” incremental triangle
Calculate residuals = (A-E)/(c°E"?)

Generate a pseudo-triangle from re-sampled
residuals

Calculate Chainladder Ultimates from pseudo-
triangle

Repeat, Repeat, Repeat
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Two Types of Bootstraps:

= Nonparametric
» Uses empirical residuals
= Does not require a distributional assumption
m Works best for large samples (at least 100 points)

s Parametric

= Uses simulations from a theoretical distribution
(e.g., ODP or Normal) with mean and variance

parameters selected from the original data
15
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Multiplicative / Autocorrelation Model
(Mack)
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The Distribution-Free calculation introduced by
Thomas Mack in 1993 is an alternative model
that is also consistent with the chainladder
method.

Here we do not assume independence of
incremental payments. Instead, we assume
that each payment is correlated with the earlier
payments for that accident year. It is the age-
to-age factors that are assumed to be
independent.

17

1234
Introduction to Stochastic Reserving

The Mack model is attractive because:

» The Best Linear Unbiased Estimator (“"BLUE")
for the reserves equals the chain-ladder
estimates.

m See Murphy 1994 for further details.

m The model is robust in handling [some]

negative development increments.
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Mack Model

Let Dy’d = Cyl1 + Cy’2 NPT Cy,d

E(Dy,d IDy,cH) = Ad—l.Dy,d—l

Var'(Dy’d |Dy,d—1) = 05,°D,4;

Y.
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Mack Model
Note that Ais an"age - to-age" factor

E(D d |Dy,d—1) = Ay -D d-1

Y Y.

E(Dy,d IDy,d—Z ) = Ad—l'Ad—Z'Dy,d—Z
E(Dy,d |Dy,d—3) = Ad-l'Ad-z'Ad-s'D d-3

Y.
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Mack Model

Variance can also be stated recursively

chr'(Dy,d | Dyld,l) = 05, Dy 44

VarDd,,ID,4,) = 02,-D 4, +Var(r, D4 ID,q )

2 2 2
od—lDy,d—l +A3104, 'Dy,d—Z
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The variance multiplier in the Mack model is
similar to what we saw for the ODP. However,
he defines a new sigma (o) for each
development age (d).

~2 1 Z (Dy,d - /1d—1 : Dy,d—l)z

%1 % o1) 4 D

y,d-1
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The Parameter Variance component can be
evaluated in either of two ways:

= Analytically: Using the formulas given in
Mack’s paper
m This is not the “delta method” from MLE, since Mack
does not explicitly make a distributional assumption

» Simulation: Using Bootstrapping

m Based on creating many “what if” triangles and
seeing how the reserve estimates from this differ
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Limitations & Caveats:

= Assumptions on independence and identical
distributions (iid) are weak — an unchanging
world is assumed!

= Concern of over-parameterization

= Models handle some zero or negative values, but
do not work for very sparse data

» Difficulty in variance of “tail” beyond triangle
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An Unchanging World:

Assumes that the future payments will be from a
distribution identical to the past.

e @

2002 2003 2004 2005 2006
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Over-Parameterization:

1234
Introduction to Stochastic Reserving

Tail Factor Extrapolation:

» Select a tail factor and include it as “quasi-data”
as though it were part of the original triangle

m This ignores the additional parameter variance
associated with the selection

» Extrapolate a tail-factor from the triangle
= Need some formula for extrapolated value
m For bootstrapping, this is done at each iteration
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E&V ODP Mack
10 Years 10 Years
55 Points 45 Points
19 Parameters 9 Parameters
+1 “sigma” o +9 “sigmas” o4
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Comparison of Standard Errors for Two Reserving Models

ODP - E&V
AY Diagonal Reserve
2 5,339,085 94,634
3 4,909,315 469,511
4 4,588,268 709,638
5 3,873,311 984,889
6 3,691,712 1,419,459
7 3,483,130 2,177,641
8 2,864,498 3,920,301
9 1,363,294 4,278,972
10 344,014 4,625,811
Total 30,456,627 18,680,856

"Distribution Free" Chainladder - Mack

AY Diagonal Reserve
2 5,339,085 94,634
3 4,909,315 469,511
4 4,588,268 709,638
5 3,873,311 984,889
6 3,691,712 1,419,459
7 3,483,130 2,177,641
8 2,864,498 3,920,301
9 1,363,294 4,278,972
10 344,014 4,625,811
Total 30,456,627 18,680,856

Process

70,554
157,153
193,204
227,610
273,250
338,448
454,107
474,426
493,279

991,281

Process

48,832
90,524
102,622
227,880
366,582
500,202
785,741
895,570
1,284,882

1,878,292

Completing the Triangle

to Res Parameter to Res Prediction to Res
74.6% 84,522 89.3% 110,099 116.3%
33.5% 148,248 31.6% 216,042 46.0%
27.2% 175,287 24.7% 260,871 36.8%
23.1% 200,836 20.4% 303,549 30.8%
19.3% 256,843 18.1% 375,012 26.4%
15.5% 361,732 16.6% 495,376 22.7%
11.6% 646,389 16.5% 789,957 20.2%
11.1% 932,791 21.8% 1,046,508 24.5%
10.7% 1,917,664 41.5% 1,980,091 42.8%

5.3% 2,773,841 14.8% 2,945,646 15.8%
to Res Parameter to Res Prediction to Res
51.6% 57,628 60.9% 75,535 79.8%
19.3% 81,338 17.3% 121,699 25.9%
14.5% 85,464 12.0% 133,549 18.8%
23.1% 128,078 13.0% 261,406 26.5%
25.8% 185,867 13.1% 411,010 29.0%
23.0% 248,023 11.4% 558,317 25.6%
20.0% 385,759 9.8% 875,328 22.3%
20.9% 375,893 8.8% 971,258 22.7%
27.8% 455,270 9.8% 1,363,155 29.5%
10.1% 1,568,532 8.4% 2,447,095 13.1%



Comparison of Standard Errors for Two Reserving Models

ODP - E&V

AY Diagonal Next CY
2 5,339,085 94,634

3 4,909,315 375,833
4 4,588,268 247,190
5 3,873,311 334,148

6 3,691,712 383,287
7 3,483,130 605,548

8 2,864,498 1,310,258
9 1,363,294 1,018,834
10 344,014 856,804
Total 30,456,627 5,226,536

"Distribution Free" Chainladder - Mack

AY Diagonal Next CY
2 5,339,085 94,634
3 4,909,315 375,833
4 4,588,268 247,190
5 3,873,311 334,148
6 3,691,712 383,287
7 3,483,130 605,548
8 2,864,498 1,310,258
9 1,363,294 1,018,834
10 344,014 856,804

Total 30,456,627 5,226,536

Process

70,554
140,604
114,029
132,577
141,991
178,473
262,529
231,500
212,295

524,331

Process

48,832
75,052
45,268
178,062
225,149
229,965
346,712
226,818
234,816

610,035

Next CY Diagonal

to Res Parameter to Res Prediction to Res
74.6% 84,522 89.3% 110,099 116.3%
37.4% 117,373 31.2% 183,155 48.7%
46.1% 75,063 30.4% 136,517 55.2%
39.7% 78,431 23.5% 154,039 46.1%
37.0% 81,651 21.3% 163,793 42.7%
29.5% 112,238 18.5% 210,832 34.8%
20.0% 225,048 17.2% 345,786 26.4%
22.7% 229,139 22.5% 325,725 32.0%
24.8% 358,489 41.8% 416,633 48.6%
10.0% 532,575 10.2% 747,368 14.3%
to Res Parameter to Res Prediction to Res
51.6% 57,628 60.9% 75,535 79.8%
20.0% 56,970 15.2% 94,225 25.1%
18.3% 27,163 11.0% 52,792 21.4%
53.3% 87,733 26.3% 198,502 59.4%
58.7% 102,068 26.6% 247,204 64.5%
38.0% 99,925 16.5% 250,737 41.4%
26.5% 151,271 11.5% 378,275 28.9%
22.3% 82,715 8.1% 241,429 23.7%
27.4% 75,503 8.8% 246,656 28.8%
11.7% 266,139 5.1% 665,562 12.7%



Some Comments on the Mack Variance Formulas
Dave Clark - May 2006

Recursive definition for expected value: E(Dik | DLH) =y E(DLH)
D, =cumulative loss for AY i at development period k
A, = weighted-average age-to-age factor from development period k —1 to k

The “process variance” is likewise modeled in a recursive form. The variance increases
when more development periods are included.

var(D,, | D) = oZ,-E(D,,,)
_ 2 O-kz—l
= E(D|k) {ﬂvi_l . E‘ Di,k—l )}

Var(Di,k | Di,k—z) = Var(D;, | D;y,) +Var(/1k_1 ‘Diyy | Di,k—z)
O'k24 ' E(Di,k—l)+ ﬂ“i—l 'O'szz : E(Di,k—Z)

- E(D, ) { iy s }

+
/1&—1 ) E(Di,k—l) /ﬁ—z ) E(Di,k—z)

Var(Di,k | Di,k—S) = Var(Di,k | Di,k—l) +Var(/1k_1 : Di,k—l | Di,k—2)+va‘r(ﬁ’k—l 'Zk—z ) Di,k—2 | Di,k—3)

= O-kz—l ) E(Di,k—l)+ /li—l 'O'kz-z . E(Di,k—2)+ ﬂ’i—l '/ﬁ—z 'O-k2—3 ) E(Di,k—3)

2

E(D- ) )2 { O-kz—l O_kz—z Oy_3 }

+ +
/ﬁ—l ) E(Di,k—l) /ﬁ—z ) E(Di,k-z) /li-s ) E(Di,k-a)

This expansion can continue for any number of development periods “n.”

var(D,, |D,,,) = E(Di,k)z-{i : Gfd }

The reserve (considering ultimate = age N ) is givenas: ~ E(R;) = E(D, )= D, ..

i-1

var(R,) = Var(D,, D, y..s) :E(Di,N)Z-{Z Grs }

d=1 /ﬁ\l—d ’ E(Di,N—d )




And then the mean squared error (MSE), including Parameter Variance is given as below:

MSE(D; | Dinui) = E(Diy ) - ‘i&ﬁ_d 1 1

Think of this as analogous to: ~ o° +

A

We remember that A, is the dollar-weighted average age-to-age factor, so the additional
term included for parameter variance is the total dollars in the denominator of the
estimator of each age-to-age factor ftk . This represents the variance due to the error in
the “sample mean” age-to-age factor.

A modest re-arrangement of this expression is also useful.
If we let LDF, = A4, -A,,, -4y, such that E(Di'N ): LDF, - D, , then we can re-write

the mean square error (MSE) expression as follows:

i-1 22 i-1 22 1
MSE(Di,N | Di,N+1—i) = E(Di,N ){Z% LDFd}"' E(Di,N )2 ) ijN_d N—d-1
d=1 /‘N—d d=1 /N—d ZDy,N—d

y=1

This form shows that “process variance” is proportional to the loss dollars in the accident
year, implying that the CV decreases for years with greater volume. By contrast, the
“parameter variance” is proportional to the loss dollars squared, implying that the CV
does not decrease even when loss volume increases.

When we want to calculate the covariance between the reserves for any two accident
years (say, i and j), the parameter variance terms becomes:

COV(Di,N,Dj,N|Di,N+1—iij,N+1—') = E(Di,N)'E(DJNN)' Y -

]

The MSE for the reserves overall includes the sum of the matrix of covariances terms.





