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Introductory ExampleIntroductory Example
A pilot is flying straight from X to Y.  Halfway along (s)he

realizes that (s)he’s ten miles off course.  What does (s)he

do?

X

Y
?
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Linear (Regression) ModelsLinear (Regression) Models
“Regression toward the mean” coined by Sir Francis 

Galton (1822-1911).

The real problem: Finding the Best Linear Unbiased 

Estimator (BLUE) of vector y2, vector y1 observed.

y = Xβ + e.  X is the design (regressor) matrix.  β

unknown;  e unobserved, but (the shape of) its variance 

is known.

For the proof of what follows see Halliwell [1997] 325-

336.
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The FormulationThe Formulation
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Trend ExampleTrend Example

( )

( )
( )

( )

( )

( ) ( )

( ) ( )
⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎦

⎤
⎢
⎣

⎡
+

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=⎥
⎦

⎤
⎢
⎣

⎡

××

××

×

×
×

×

×

3353

35552

2

1

132

151
12

132

151

I0
0I

,

81
71
61
51
41
31
21
11

σ

β

e
e

e
e

y
y

Var



L. J. Halliwell, LLC Regression Models.ppt

7

The BLUE SolutionThe BLUE Solution
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Special Case: Φ = ItSpecial Case: Φ = It
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Estimator of the Variance ScaleEstimator of the Variance Scale
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Remarks on the Linear ModelRemarks on the Linear Model
Actuaries need to learn the matrix algebra.

Excel OK; but statistical software is desirable.

X1 of is full column rank, Σ11 non-singular.

Linearity Theorem: 

Model is versatile.  My four papers (see References) 

describe complicated versions.
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X1 of is full column rank, Σ11 non-singular.

Linearity Theorem: 

Model is versatile.  My four papers (see References) 
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The Problem of Stochastic RegressorsThe Problem of Stochastic Regressors

See Judge [1988] 571ff; Pindyck and Rubinfeld [1998] 
178ff.

If X is stochastic, the BLUE of β may be biased:

See Judge [1988] 571ff; Pindyck and Rubinfeld [1998] 
178ff.

If X is stochastic, the BLUE of β may be biased:
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The Clue: Regression toward the MeanThe Clue: Regression toward the Mean
To intercept or not to intercept?To intercept or not to intercept?
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What to do?What to do?

Ignore it.

Add an intercept.

Barnett and Zehnwirth [1998] 10-13, notice that the 

significance of the slope suffers.  The lagged loss may 

not be a good predictor.

Intercept should be proportional to exposure.

Explain the torsion.  Leads to a better model?
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Galton’s ExplanationGalton’s Explanation
Children's heights regress toward the mean.

Tall fathers tend to have sons shorter than themselves.
Short fathers tend to have sons taller than themselves.

Height = “genetic height” + environmental error
A son inherits his father’s genetic height:
∴ Son’s height = father’s genetic height + error.

A father’s height proxies for his genetic height.
A tall father probably is less tall genetically.
A short father probably is less short genetically.

Excellent discussion in Bulmer [1979] 218-221.
Cf. also sportsci.org/resource/stats under “Regression to Mean.”
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The Lesson for ActuariesThe Lesson for Actuaries
Loss is a function of exposure.
Losses in the design matrix, i.e., stochastic 
regressors (SR), are probably just proxies for 
exposures.  Zero loss proxies zero exposure.
The more a loss varies, the poorer it proxies.
The torsion of the regression line is the clue.
Reserving actuaries tend to ignore exposures –
some even glad not to have to “bother” with them!
SR may not even be significant.
Covariance is an alternative to SR (see later).
Stochastic regressors are nothing but trouble!
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Reserving Methods as Linear ModelsReserving Methods as Linear Models

The loss rectangle: AYi at age j
Often the upper left triangle is known; estimate 
lower right triangle.

The earlier AYs lead the way for the later AYs.

The time of each ij-cell is known – we can 
discount paid losses.
Incremental or cumulative, no problem.  (But 
variance structure of incrementals is simpler.)

The loss rectangle: AYi at age j
Often the upper left triangle is known; estimate 
lower right triangle.

The earlier AYs lead the way for the later AYs.
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The Basic Linear ModelThe Basic Linear Model

yij incremental loss of ij-cell

aij adjustments (if needed, otherwise = 1)

xi exposure (relativity) of AYi

fj incremental factor for age j (sum constrained)

r pure premium

eij error term of ij-cell

yij incremental loss of ij-cell

aij adjustments (if needed, otherwise = 1)

xi exposure (relativity) of AYi

fj incremental factor for age j (sum constrained)

r pure premium

eij error term of ij-cell
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Familiar Reserving MethodsFamiliar Reserving Methods
( )( )
( )( )
( )( )
( )( )
( )( ) Additive

Bühlmann-Stanard
Ferguson-rBornhuette1

LadderChain  quasi
X

ijjiij

ijjiij

ijjiij

ijijij

rfx
rfx

rfx
rxf

ey
ey
ey
ey

+=
+=
+=
+=

+β= eY

BF estimates zero parameters.
BF, SB, and Additive constitute a progression.
The four other permutations are less interesting.
No stochastic regressors
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Why not Log-Transform?Why not Log-Transform?

Barnett and Zehnwirth [1998] favor it.
Advantages:

Allows for skewed distribution of ln yij.
Perhaps easier to see trends

Disadvantages:
Linearity compromised, i.e., ln(Ay) ≠ A ln(y).

ln(x ≤ 0) undefined.

Something Better: Simulation with non-normal error 
terms (robust estimation, Judge [1998], ch. 22)

Barnett and Zehnwirth [1998] favor it.
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Perhaps easier to see trends
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Linearity compromised, i.e., ln(Ay) ≠ A ln(y).
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terms (robust estimation, Judge [1998], ch. 22)

ijjiij rfx ey +++= lnlnlnln
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The Ultimate QuestionThe Ultimate Question

Last column of rectangle is ultimate increment.
There may be no observation in last column:

Exogenous information for late parameters  fj or fjβ.
Forces the actuary to reveal hidden assumptions.
See Halliwell [1996b] 10-13 and [1998] 79. 

Risky to extrapolate a pattern.  It is the hiding, 
not the making, of assumptions that ruins the 
actuary’s credibility.  Be aware and explicit.
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Linear TransformationsLinear Transformations

Results:        and                
Interesting quantities are normally linear:

AY totals and grand totals
Present values 

Powerful theorems (Halliwell [1997] 303f):

The present-value matrix is diagonal in the 
discount factors.
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Transformed ObservationsTransformed Observations
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If A-1 exists, then the estimation is unaffected.  
Use the BLUE formulas on slide 7.
If A-1 exists, then the estimation is unaffected.  
Use the BLUE formulas on slide 7.
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Example in ExcelExample in Excel

WC Example.lnk
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CovarianceCovariance

An example like the introductory one:
From Halliwell [1996a], 436f and 446f.
Prior expected loss is $100; reaches ultimate at age 2.  
Incremental losses have same mean and variance.
The loss at age 1 has been observed as $60.
Ultimate loss: $120 CL, $110 BF, $100 Prior Hypothesis.

Use covariance, not the loss at age 1, to do 
what the CL method purports to do.

An example like the introductory one:
From Halliwell [1996a], 436f and 446f.
Prior expected loss is $100; reaches ultimate at age 2.  
Incremental losses have same mean and variance.
The loss at age 1 has been observed as $60.
Ultimate loss: $120 CL, $110 BF, $100 Prior Hypothesis.

Use covariance, not the loss at age 1, to do 
what the CL method purports to do.
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Generalized Linear ModelGeneralized Linear Model
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Off-diagonal element

Result: ρ = 1 CL, ρ = 0 BF, ρ = −1 Prior HypothesisResult: ρ = 1 CL, ρ = 0 BF, ρ = −1 Prior Hypothesis
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ConclusionConclusion
Typical loss reserving methods:

are primitive linear statistical models
originated in a bygone deterministic era
underutilize the data

Linear statistical models:
are BLUE
obviate stochastic regressors with covariance
have desirable linear properties, especially for 
present-valuing
fully utilize the data
are versatile, of limitless form
force the actuary to clarify assumptions
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