Regression Models and Loss Reserving

Leigh J. Halliwell, FCAS, MAAA Consulting Actuary leigh@Ihalliwell.com

Casualty Loss Reserve Seminar
Atlanta, GA
September 12, 2006

Outline

- Introductory Example
- Linear (or Regression) Models
- The Problem of Stochastic Regressors
- Reserving Methods as Linear Models
- Covariance

The Formulation

$$
\begin{aligned}
& {\left[\begin{array}{l}
\mathbf{y}_{1}\left(t_{1} \times 1\right) \\
\mathbf{y}_{2\left(t_{2} \times 1\right)}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{X}_{1\left(t_{1} \times k\right)} \\
\bar{X}_{2\left(t_{2} \times k\right)}
\end{array}\right] \beta_{(k \times 1)}+\left[\begin{array}{c}
\mathbf{e}_{1\left(t_{1} \times 1\right)} \\
\mathbf{e}_{2\left(t_{2} \times 1\right)}
\end{array}\right],} \\
& \operatorname{Var}\left[\begin{array}{l}
\mathbf{e}_{1} \\
\mathbf{e}_{2}
\end{array}\right]=\left[\begin{array}{c:c}
\Sigma_{11}\left(t_{1} \times t_{1}\right) & \Sigma_{12}\left(t_{1} \times t_{2}\right) \\
\left.\hdashline \Sigma_{21}-t_{2} \times x_{1}\right) & \Sigma_{22}\left(t_{2} \times t_{2}\right)
\end{array}\right] \\
& =\sigma^{2}\left[\begin{array}{c:c}
\Phi_{11}\left(t_{1} \times t_{1}\right) & \Phi_{12}\left(t_{1} \times t_{2}\right) \\
\hdashline \Phi_{21}\left(t_{1} \times x_{1}\right) & \Phi_{22\left(t_{2} \times t_{2}\right)}^{-\left(t_{2}\right)}
\end{array}\right]
\end{aligned}
$$

Linear (Regression) Models

- "Regression toward the mean" coined by Sir Francis Galton (1822-1911).
- The real problem: Finding the Best Linear Unbiased Estimator (BLUE) of vector \mathbf{y}_{2}, vector \mathbf{y}_{1} observed.
- $\mathbf{y}=\mathrm{X} \beta+\mathbf{e} . \quad \mathrm{X}$ is the design (regressor) matrix. β unknown; e unobserved, but (the shape of) its variance is known.
- For the proof of what follows see Halliwell [1997] 325336.

Trend Example

$$
\begin{aligned}
& {\left[\begin{array}{l}
\mathbf{y}_{1(5 \times 1)} \\
\mathbf{y}_{2(3 \times 1)}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
1 & 2 \\
1 & 3 \\
1 & 4 \\
1 & 5 \\
1 & - \\
1 & 6 \\
1 & 7 \\
1 & 8
\end{array}\right] \beta_{(2 \times 1)}+\left[\begin{array}{l}
\mathbf{e}_{1(5 \times 1)} \\
\mathbf{e}_{2(3 \times 1)}
\end{array}\right],} \\
& \operatorname{Var}\left[\begin{array}{l}
\mathbf{e}_{1} \\
\mathbf{e}_{2}^{-}
\end{array}\right]=\sigma^{2}\left[\begin{array}{c:c}
\mathbf{I}_{(5 \times 5)} & 0_{(5 \times 3)} \\
\hdashline 0_{(3 \times 5)} & \mathbf{I}_{(3 \times 3)}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { The BLUE Solution } \\
& \hat{\mathbf{y}}_{2}=\mathrm{X}_{2} \hat{\boldsymbol{\beta}}+\Phi_{21} \Phi_{11}^{-1}\left(\mathbf{y}_{1}-\mathrm{X}_{1} \hat{\boldsymbol{\beta}}\right) \\
& \hat{\beta}=\left(X_{1}^{\prime} \Phi_{11}^{-1} X_{1}\right)^{-1} X_{1}^{\prime} \Phi_{11}^{-1} \mathbf{y}_{1} \\
& \operatorname{Var}\left[\mathbf{y}_{2}-\hat{\mathbf{y}}_{2}\right]=\sigma^{2}\left(\Phi_{22}-\Phi_{2 \text { 2 }} \Phi_{\text {process variance }}^{-1} \Phi_{12}\right) \\
& +\left(\mathrm{X}_{2}-\Phi_{21} \Phi_{11}^{-1} \mathrm{X}_{1}\right) \underset{\text { parameter variance }}{\operatorname{Vin}}[\hat{\beta}]\left(\mathrm{X}_{2}-\Phi_{21} \Phi_{11}^{-1} \mathrm{X}_{1}\right)^{\prime} \\
& \operatorname{Var}[\hat{\beta}]=\sigma^{2}\left(\mathrm{X}_{1}^{\prime} \Phi_{11}^{-1} \mathrm{X}_{1}\right)^{-1}
\end{aligned}
$$

Special Case: $\Phi=\mathrm{I}_{t}$
$\hat{\mathbf{y}}_{2}=\mathrm{X}_{2} \hat{\boldsymbol{\beta}}$

$$
\hat{\beta}=\left(\mathrm{X}_{1}^{\prime} \mathrm{X}_{1}\right)^{-1} \mathrm{X}_{1}^{\prime} \mathbf{y}_{1}
$$

$\operatorname{Var}\left[\mathbf{y}_{2}-\hat{\mathbf{y}}_{2}\right]=\sigma^{2} \mathrm{I}_{\mathrm{t}_{2}}+\mathrm{X}_{2} \operatorname{Var}[\hat{\beta}] \mathrm{X}_{2}^{\prime}$

$$
\operatorname{Var}[\hat{\beta}]=\sigma^{2}\left(\mathrm{X}_{1}^{\prime} \mathrm{X}_{1}\right)^{-1}
$$

Remarks on the Linear Model

- Actuaries need to learn the matrix algebra.
- Excel OK; but statistical software is desirable.
- X_{1} of is full column rank, Σ_{11} non-singular.
- Linearity Theorem: $\mathrm{A} \mathbf{y}_{2}=\mathrm{A} \hat{\mathbf{y}}_{2}$
- Model is versatile. My four papers (see References) describe complicated versions.

The Problem of Stochastic Regressor

- See Judge [1988] 571ff; Pindyck and Rubinfeld [1998] 178ff.
- If X is stochastic, the BLUE of β may be biased:

$$
\hat{\beta}=\left(x^{\prime} x^{-1} x^{\prime} y\right.
$$

$=\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}^{\prime}(\mathrm{X} \beta+\mathbf{e})$
$=\beta+\left(\mathrm{X}^{\prime} \mathrm{X}\right)^{-1} \mathrm{X}^{\prime} \mathrm{e}$
$E[\hat{\beta}]=\beta+E\left[\left(\mathrm{X}^{\prime} \mathrm{X}^{-1} \mathrm{X}^{\prime} \mathrm{e}\right]\right.$
$\neq \beta+E\left[\left(\mathrm{X}^{\prime} \mathrm{X}^{-1} \mathrm{X}^{\prime}\right] E[\mathrm{e}]=\beta\right.$

The Clue: Regression toward the Mean
To intercept or not to intercept?

What to do?

- Ignore it.
- Add an intercept.
- Barnett and Zehnwirth [1998] 10-13, notice that the significance of the slope suffers. The lagged loss may not be a good predictor.
- Intercept should be proportional to exposure.
- Explain the torsion. Leads to a better model?

The Lesson for Actuaries

- Loss is a function of exposure.
- Losses in the design matrix, i.e., stochastic regressors (SR), are probably just proxies for exposures. Zero loss proxies zero exposure.
- The more a loss varies, the poorer it proxies.
- The torsion of the regression line is the clue.
- Reserving actuaries tend to ignore exposures some even glad not to have to "bother" with them!
- SR may not even be significant.
- Covariance is an alternative to SR (see later).
- Stochastic regressors are nothing but trouble!

Galton's Explanation

- Children's heights regress toward the mean.
- Tall fathers tend to have sons shorter than themselves.
- Short fathers tend to have sons taller than themselves.
- Height = "genetic height" + environmental error
- A son inherits his father's genetic height:
\therefore Son's height $=$ father's genetic height + error.
- A father's height proxies for his genetic height.
- A tall father probably is less tall genetically.
- A short father probably is less short genetically.
- Excellent discussion in Bulmer [1979] 218-221.

Cf. also sportsci.org/resource/stats under "Regression to Mean."

Reserving Methods as Linear Models

- The loss rectangle: AY_{i} at age j
- Often the upper left triangle is known; estimate lower right triangle.
- The earlier AYs lead the way for the later AYs.
- The time of each $i j$-cell is known - we can discount paid losses.
- Incremental or cumulative, no problem. (But variance structure of incrementals is simpler.)

The Basic Linear Model

$$
\boldsymbol{y}_{i j}=a_{i j} x_{i} f_{j} r+\boldsymbol{e}_{i j} \quad \sum_{j} f_{j}=1
$$

- $y_{i j}$ incremental loss of $i j$-cell
- $a_{i j}$ adjustments (if needed, otherwise $=1$)
- x_{i} exposure (relativity) of AY_{i}
- f_{j} incremental factor for age j (sum constrained)
- r pure premium
- $e_{i j}$ error term of $i j$-cell

Familiar Reserving Methods $\mathbf{Y}=(\mathrm{X})(\beta)+\mathbf{e}$
$\boldsymbol{y}_{i j}=\left(f_{j}\right)\left(x_{i} r\right)+\boldsymbol{e}_{i j} \quad$ quasi Chain Ladder
$\boldsymbol{y}_{i j}=\left(x_{i} f_{j} r\right)(1)+\boldsymbol{e}_{i j} \quad$ Bornhuetter - Ferguson
$\boldsymbol{y}_{i j}=\left(x_{i} f_{j}\right)(r)+\boldsymbol{e}_{i j} \quad$ Stanard - Bühlmann
$\boldsymbol{y}_{i j}=\left(x_{i}\right)\left(f_{j} r\right)+\boldsymbol{e}_{i j} \quad$ Additive

- BF estimates zero parameters.
- BF, SB, and Additive constitute a progression.
- The four other permutations are less interesting.
- No stochastic regressors

Why not Log-Transform?

$$
\ln \boldsymbol{y}_{i j}=\ln x_{i}+\ln f_{j}+\ln r+\boldsymbol{e}_{i j}
$$

- Barnett and Zehnwirth [1998] favor it.
- Advantages:
- Allows for skewed distribution of $\ln y_{i j}$.
- Perhaps easier to see trends
- Disadvantages:
- Linearity compromised, i.e., $\ln (A \mathbf{y}) \neq \mathrm{A} \ln (\mathbf{y})$.
- $\ln (x \leq 0)$ undefined.
- Something Better: Simulation with non-normal error terms (robust estimation, Judge [1998], ch. 22)

The Ultimate Question

- Last column of rectangle is ultimate increment.
- There may be no observation in last column:
- Exogenous information for late parameters f_{j} or $f_{j} \beta$.
- Forces the actuary to reveal hidden assumptions.
- See Halliwell [1996b] 10-13 and [1998] 79.
- Risky to extrapolate a pattern. It is the hiding, not the making, of assumptions that ruins the actuary's credibility. Be aware and explicit.

Linear Transformations

- Results: $\hat{\mathbf{y}}_{2}$ and Var $\left[\mathbf{y}_{2}-\hat{\mathbf{y}}_{2}\right]$
- Interesting quantities are normally linear:
- AY totals and grand totals
- Present values
- Powerful theorems (Halliwell [1997] 303f):

$$
\begin{aligned}
E\left[\mathrm{~A} \hat{\mathbf{y}}_{2}\right] & =\mathrm{A} E\left[\hat{\mathbf{y}}_{2}\right] \\
\operatorname{Var}\left[\mathrm{A} \mathbf{y}_{2}-\mathrm{A} \hat{\mathbf{y}}_{2}\right] & =\mathrm{A} \operatorname{Var}\left[\mathbf{y}_{2}-\hat{\mathbf{y}}_{2}\right] \mathrm{A}^{\prime}
\end{aligned}
$$

- The present-value matrix is diagonal in the discount factors.

Transformed Observations

$$
\begin{aligned}
& {\left[\begin{array}{c}
\mathrm{A} \mathbf{y}_{1} \\
\hdashline \mathbf{y}_{2}
\end{array}\right] }=\left[\begin{array}{c}
\mathrm{AX} \\
1
\end{array}\right] \beta+\left[\begin{array}{c}
\mathrm{A} \mathbf{e}_{1} \\
\hdashline \mathrm{X}_{2}
\end{array}\right], \\
& \operatorname{Var}\left[\begin{array}{c}
\mathrm{A} \mathbf{e}_{2} \\
\hdashline \mathbf{e}_{2}
\end{array}\right]=\left[\begin{array}{c}
\mathrm{A} \Sigma_{11} \mathrm{~A}^{\prime} \\
\hdashline \Sigma_{21} \mathrm{~A}^{\prime} \\
\mathrm{A}_{12} \\
\Sigma_{22}
\end{array}\right]
\end{aligned}
$$

If A^{-1} exists, then the estimation is unaffected. Use the BLUE formulas on slide 7.

Example in Excel

Covariance

- An example like the introductory one:
- From Halliwell [1996a], $436 f$ and 446 f.
- Prior expected loss is $\$ 100$; reaches ultimate at age 2. Incremental losses have same mean and variance.
- The loss at age 1 has been observed as $\$ 60$.
- Ultimate loss: $\$ 120 \mathrm{CL}, \$ 110 \mathrm{BF}, \$ 100$ Prior Hypothesis.
- Use covariance, not the loss at age 1, to do what the CL method purports to do.

Generalized Linear Model

$$
\hat{\mathbf{y}}_{2}=(0.5 \cdot 100)(1)+\left(\rho \sigma^{2}\right)\left(1 \sigma^{2}\right)^{-1}(60-(0.5 \cdot 100)(1))
$$

$$
=50+10 \rho
$$

$\operatorname{Var}\left[\mathbf{y}_{2}-\hat{\mathbf{y}}_{2}\right]=\left(1-\rho^{2}\right) \sigma^{2}$
Result: $\rho=1 \mathrm{CL}, \rho=0 \mathrm{BF}, \rho=-1$ Prior Hypothesis

Conclusion

- Typical loss reserving methods:
- are primitive linear statistical models
- originated in a bygone deterministic era
- underutilize the data
- Linear statistical models:
- are BLUE
- obviate stochastic regressors with covariance
- have desirable linear properties, especially for present-valuing
- fully utilize the data
- are versatile, of limitless form
- force the actuary to clarify assumptions

References

Barnett, Glen, and Ben Zehnwirth, "Best Estimates for Reserves, PCAS LXXXVII (2000), 245-321.
Bulmer, M.G., Principles of Statistics, Dover, 1979.
Halliwell, Leigh J., "Loss Prediction by Generalized Least Squares, PCAS LXXXIII (1996), 436-489.
" , "Statistical and Financial Aspects of Self-Insurance Funding," Alternative Markets / Self Insurance, 1996, 1-46.
" , "Conjoint Prediction of Paid and Incurred Losses," Summer 1997 Forum, 241-379
" , "Statistical Models and Credibility," Winter 1998 Forum, 61152.

Judge, George G., et al., Introduction to the Theory and Practice of Econometrics, Second Edition, Wiley, 1988.
Pindyck, Robert S., and Daniel L. Rubinfeld, Econometric Models and Economic Forecasts, Fourth Edition, Irwin/McGraw-Hill, 1998.
Venter, Gary G., "Testing the Assumptions of Age-to-Age Factors," PCAS LXXXV (1998), 807-847.

