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Reducing the Variance of Reserve Estimates 
Gary G Venter 

ABSTRACT 
Actuaries who use the well-known reserve variance formulas of Mack and 

Murphy find that they tend to give quite high variances. Here we look at 

ways to reduce the variance through three basic methods: find better fitting 

models; reduce the number of parameters; use exposure information. 

 

INTRO 
Thomas Mack (1993) introduced the world to finding statistical modeling as-

sumptions for the chain-ladder method and calculating the variance of the re-

sulting estimate. The assumptions he outlined are quite intuitive from the 

viewpoint of what actuaries might imagine is happening behind the scenes 

when they are applying development factors. Basically, the numbers that ap-

pear in each cell of a triangle are a factor times the previous cell, plus a ran-

dom element. Venter (1998) and others have suggested that this is best ar-

ranged as factors applying to previous cumulatives to produce new incremen-

tals. After all, it is the incrementals that need predicting. Having a good pre-

diction of new cumulatives can be misleading, as they consist in large part of 

old cumulatives1. 

 

Having a model like Mack’s allows for testing of the assumptions, which sev-

eral authors have discussed2. While which model works best for a particular 

                                              
1 Panning (2006) shows that modeling cumulatives from cumulatives can, in some models, accumu-

late correlated residuals that violate regression assumptions. 
2 Mack(1994), Venter (1998), Barnett and Zehnwirth (2000) among others. 
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data set is an empirical matter, the chain-ladder often fails because incre-

mental losses are not plausible as a percent of the previous cumulative. An 

alternative modeling paradigm is that losses at each lag are a fraction of the 

yet-unknown ultimate losses. This is an element of the Bornheutter-Ferguson 

approach, so such models can be regarded as parameterized versions of BF. 

We will call them multiplicative fixed-effects models, since each cell’s ex-

pected loss is a product of row and column (and perhaps diagonal) factors. 

 

POISSON – CONSTANT SEVERITY MODEL 
A convenient starting point for multiplicative fixed-effects models is the Pois-

son – constant severity model (PCS). This model postulates that each cell has 

an aggregate loss distribution consisting of a Poisson frequency and a con-

stant severity – that is all claims or payments in all cells are of the same size, 

call it b. This of course is rarely the case, but the model has some advantages. 

First of all, aggregate claims distributions often have gamma-like tails, which 

this does as well. However its main historical appeal is that it gives the same 

reserve estimate as the chain ladder, and through the same calculation steps. 

 

For MLE in the pure Poisson case, the agreement of methods was shown by 

Hachemeister and Stanard (1975) although that finding was not published 

formally until Kremer (1985) in German and Mack (1991) in English. Renshaw 

and Verrall (1998) extended this to the model that agrees with a Poisson ag-

gregate with constant severity . A good presentation is Clark (2003), who as-

sumes a parameterized distribution for the payout pattern. He also discusses 

the Cape Cod version, for which all years are at the same level. None of the 

cited papers compare the resulting variance to that from Mack, however. 
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MODELING APPROACH 
Giving the same answer as the chain ladder is not a particularly useful crite-

rion for evaluating models, but it starts from a familiar base. Thus PCS will be 

our starting point here. We will keep to the MLE approach, even though this 

abandons the non-parametric and regression frameworks. This is not losing 

much, however, as adopting least-squares estimation is equivalent to MLE 

with a normal distribution assumption, and so is regression. 

 

There are some disadvantages to the PCS model. First of all, it assumes all ob-

servations are independent, which could easily fail. Second, it is not possible 

to estimate the severity parameter b by MLE, as the likelihood function is in-

creasing in b, so does not converge. Thus b has to be assumed to be known in 

advance and in fact estimated separately later. Also the PCS variance is pro-

portional to its mean. Often having the variance proportional to the square of 

the mean is thought to be more reasonable for loss models. The lognormal 

distribution has this property and also is a limiting case for products of ran-

dom effects, via a multiplicative version of the central limit theorem, and so is 

a more logical distributional assumption. But start where you are, they say, so 

we will start with the PCS. 

 

COMPARING MODELS 
Our stated goal is reducing the variance of reserve estimates, and so increas-

ing their accuracy. The methods we will explore for doing this are finding bet-

ter fitting models, reducing the number of parameters, and using exposure 

information where available. Having a lower predictive variance is useful but 

not absolutely definitive as being the best model. Calculating variances can 
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also be tedious. Thus when searching for models, comparison of fits will be 

based on information-theoretic criteria, and variances only calculated for a 

few models. The original information criterion, by Akaike, called the AIC, pe-

nalizes the loglikelihood by 1 for each parameter in the model. This is proba-

bly not enough of a penalty, however. The Hannan-Quinn information crite-

rion (HQIC) has a per-parameter penalty of the log of the log of the number of 

observations N. For instance for a 10x10 triangle with 55 observations, this 

gives a penalty of 1.388 for each parameter.  

 

Even more popular with the information guys is the small sample AIC, de-

noted by AICc. Its per-parameter penalty with p parameters is N/[N – p – 1], 

which increases with the number of parameters. The penalty is a bit less than 

that of the HQIC when there are not too many parameters, but is higher with 

over-parameterized models. A standard for what is a small sample might be 

less than 40 times the number of parameters, so would include virtually all 

loss-development triangles. 

 

We will favor the AICc but also check the HQIC. However since the PCS log-

likelihood increases with b, as does the variance, worse fitting models with a 

higher variance can have a higher loglikelihood. Thus comparing likelihoods 

across PCS models requires fixing a value of b and using it for different mod-

els. The choice of b affects the scale of the loglikelihood and so the meaning of 

the parameter penalties, so these can only be regarded as general guidelines 

and not strict cutoffs for this model. 
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MODELING DETAILS 
The n+1 columns of a triangle will be numbered 0, 1, … n and denoted by the 

subscript d, for delay. The rows are also numbered from 0 and denoted by w, 

for when. The last observation in each row of a typical full triangle will then 

have w+d=n. The cumulative losses in cell w,d are denoted cw,d and the in-

crementals by qw,d. 

 

For the PCS model, a cell with frequency λ has mean bλ and variance b2λ. Ini-

tially we will assume there is a separate parameter for each row and each col-

umn, so bλw,d = Uwgd. The capitalization is rather arbitrary for historical rea-

sons. Note that increasing each g by the same factor and dividing each U by 

that factor does not change the mean for any cell. To have specificity, we often 

adopt the convention that the g’s sum to 1. Then Uw can be interpreted as the 

ultimate loss for year w and gd the fraction that appears at lag d.  

 

We apply this model to incremental losses, so that the observation qw,d/b is 

Poisson with mean Uwgd/b. The loglikelihood function3 can be shown to be a 

constant plus a weighted sum of these observed values minus the fitted 

means. The weight applied to each observed value is the log of its fitted mean, 

and the additive constant is C  =– Σ ln Γ(1 + qw,d/b). Thus: 

∑ ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+=

b
gU

b
gU

b
q

Cl dwdwdw ln,  

Taking derivatives, the MLE estimates can be expressed as: 

                                              
3 Note that we are not fitting just one Poisson distribution but (n/2 +1)(n+1) of them, defined by 2n+1  

row-column parameters plus b. But MLE applies to fitting multiple distributions with the same pa-

rameters. This is noted in the Loss Models textbook, for instance. 
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These can be put into a fixed-point iteration, starting with some values then 

solving alternatively for the g’s and U’s until the results converge. If the re-

sulting g’s do not sum to 1, just divide each by the sum and multiply each U 

by the same sum. However with all the rows and columns getting their own 

parameters, starting at the upper right and working back can show that these 

estimates come from the chain-ladder calculation. Essentially the U’s are the 

last diagonal grossed up to ultimate by the development factors and the g’s 

are the factors converted to a distribution of ultimate. The fitted incrementals 

are then the g’s applied to the U’s, and can be calculated by using the devel-

opment factors to back cumulatives down from the last diagonal and then dif-

ferencing to get the incrementals. 

 

From the chain-ladder viewpoint the fits so calculated use future information 

to predict the past, but this is essentially a different model. Sometimes incre-

mental losses are better fit as a fraction of ultimate than as a factor times pre-

vious cumulative. The drawback is that there are more parameters needed. 

The chain-ladder estimates each subsequent column conditionally on the cur-

rent column and does not estimate the first column of the triangle. It requires 

the calculation of n+1 parameters to do this. The PCS model does estimate the 

first column but uses 2n+1 parameters. Comparing the fits of the two models 

is thus a bit awkward. Perhaps comparing the estimated variances is the best 

way to do this. The process variances can be thought of as measuring the ac-

curacy of the models, and the parameter variance is the parameter penalty. 
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Clarke (2003) discusses calculating the PCS variance. First an estimate of b is 

needed. Since the variance of each cell is b times its mean, he suggests estimat-

ing b by the sum over the cells of the ratios of cell squared residual to cell fit-

ted mean, all divided by (observations – parameters). That is, with N observa-

tions and p parameters, the estimate of b is: 

                                                
( )

∑
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Then the estimated variance of each projected incremental cell is the cell’s 

mean times this b. For the reserve estimate the variance is thus the reserve 

times b. But this assumes all the parameters are known. Since in fact they are 

estimated, there is another element of reserve variance usually called parame-

ter variance. Clarke suggests estimating the parameter variance by the delta 

method. The delta method (see Loss Models) starts with the usual covariance 

matrix of the parameters, calculated as the inverse of the MLE information 

matrix (matrix of 2nd derivatives of the negative loglikelihood wrt the parame-

ters). The delta method calculation of the parameter variance of a function of 

the parameters is the covariance matrix left and right multiplied by the vector 

of the derivatives of the function wrt the parameters. In this case the function 

of the parameters is the reserve.  For the PCS model, the 2nd derivatives of the 

loglikelihood function wrt the parameters are: 
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The derivative of the reserve wrt gd is Σw>n-dUw and wrt Uw is Σd>n-wgd. 
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However with gn set to 1–Σd<ngd, these have to be adjusted. First 0
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EXAMPLE 1 
This is a development triangle from Taylor and Ashe (1983) which has been 

used by Mack, Clarke, and many other authors. 

357,848     766,940      610,542     482,940  527,326  574,398 146,342  139,950  227,229  67,948 

352,118     884,021     933,894  1,183,289  445,745  320,996  527,804  266,172  425,046   

290,507  1,001,799     926,219  1,016,654   750,816  146,923  495,992  280,405   

310,608  1,108,250     776,189  1,562,400  272,482  352,053  206,286   

443,160     693,190     991,983     769,488   504,851  470,639   

396,132     937,085     847,498     805,037   705,960   

440,832     847,631  1,131,398  1,063,269   

359,480  1,061,648  1,443,370   

376,686     986,608   

344,014   

 

Mack’s methods lead to a reserve estimate of 18,681,000 to the end of the tri-

angle and a prediction standard error of 2,447,000. The PCS model gives the 

same reserve estimate but a prediction standard error of 2,827,000. The differ-

ence is due to the combination of a much better fit from the PCS model, indi-

cated by an almost 50% reduction in process standard deviation, and a pa-

rameter standard deviation greater by almost 70%.  
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To illustrate the difference in fits, Figures 1 and 2 graph the delay 1 incre-

mental losses as a function of the delay 0 losses and as a function of the esti-

mated ultimate losses. A factor times ultimate losses looks like a much better 

explanation of the incremental losses than does a factor times losses at 0. 

Delay 1 Incremental Losses
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Figure 1 
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Figure 2 
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There are of course assumptions that would need to be verified for either 

model. For PCS all of the observations are assumed to be independent, while 

for Mack’s model the rows should be independent. Both of these assumptions 

are violated when there are strong calendar year (diagonal) effects, which 

there are in this triangle.  

 

Diagonal effects can be a result of accelerated or stalled claim department ac-

tivity in a calendar year. Such a departure would often be made up for in a 

later year or years, so more than one diagonal can be affected. A similar pat-

tern can arise from inflation operating on calendar years. Inflation operating 

on year of origin is built into the factor approach, as each year gets its own 

level. But there can appear to be inflation by year of origin that is actually 

generated by calendar year inflation. If the latter varies by year, a pattern of 

high and low residuals can show up by diagonal. A large variation in residu-

als among diagonals would suggest that either calendar year inflation or 

claim department variation is operating. 

 

Table 1 shows the residuals by diagonal for the PCS model. Diagonals 2, 3, 4, 

6, and 7 are all suspicious, with 7 being the most problematic. 

 

 

 

 

 

Table 1 

Diagonal   Average Residual  Fraction Positive 
0                      87,787  1 of 1  
1                      35,158  1 of 2  
2                     (76,176)  0 of 3  
3                     (74,853)  1 of 4  
4                    100,127  4 of 5  
5                     (26,379)  2 of 6  
6                    103,695  5 of 7  
7                   (115,163)  1 of 8  
8                     (17,945)  3 of 9  
9                      38,442  6 of 10  
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A related issues is correlation of residuals between columns. This can be a re-

sult of diagonal effects that have not been modeled. Table 2 shows the correla-

tion of the PCS residuals from one column to the next for the first four col-

umns. All the correlations are negative and two are quite significant. 

 

 

Table 2 

 

INCORPORATING DIAGONAL EFFECTS 
Factors can be put into the model for diagonal effects. Denoting the factor for 

the jth diagonal as hj, then instead of the cell expected loss being given by bλw,d 

= Uwgd it  becomes bλw,d = Uwgdhw+d. Still assuming that the λ’s are Poisson 

means, the likelihood function becomes: 
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The unconstrained parameter estimates still have an iterative formulation: 
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These converge a bit slowly, but 50 or so iterations often suffices. This can be 

done in a spreadsheet without programming any functions. Again the g’s can 

be made to sum to 1, and so represent a payout pattern, but with the calendar-

year factors the U’s are then no longer the ultimate losses. 

 

Two models with calendar year effects were fit to the Taylor-Ashe data, add-

ing diagonal parameters for the 7th diagonal, and for the 6th and 7th. To com-

pare the loglikelihoods, b was set at 37,183.5. This is the estimated value for 

Columns 0-1 1-2 2-3 3-4 

Correlation -21.5% -89.5% -48.9% -85.4% 

Significance 0.289 0.001 0.133 0.015 
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another PCS model, discussed below. With this value, the maximum loglike-

lihood values for zero, one, and two diagonal factors are: 

 -149.11, -145.92, -145.03. 

With 55 observations, the HQIC penalty for an additional parameter is 1.388. 

According to this, the model with both diagonals is better than the one with 

no diagonal parameters, but not as good as the one with only the 7th diagonal. 

The AICc is rather freaked out by having so many parameters (up to 21) with 

only 55 observations, and penalizes the first diagonal parameter by 2.5 and 

the second by 2.65. This says that the 2nd parameter is clearly not worth it, but 

the first one still is. The factors for the 6th and (in both models) 7th diagonal are 

1.136 and 0.809. 

 

Having the diagonal parameters corrects for random errors in the row and 

column parameter estimates. Recall that the chain ladder and original PCS re-

serves were 18,681,000. Adding one diagonal parameter increases this to 

19,468,000 and having them both increases it further to 19,754,000. Thus it ap-

pears that the original reserve estimates were too low. 

 

REDUCING THE NUMBER OF PARAMETERS 
The number of parameters in the PCS model is uncomfortably high. There are 

a few methods available for reducing the number of parameters without hurt-

ing the goodness of fit too greatly. First, parameters that are fairly close to 

each other can be set equal. Also, when things are changing systematically, a 

parameter for one year or delay could be set to the average of the parameters 

before and after it. More generally, several parameters in a row could be ex-

pressed as a trend, which could reduce the number of parameters further. 
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Reducing the parameters in these ways can eliminate distinctions that are not 

supported by the data. Every year gets its own level if the model allows it, but 

the differences between some years could be small compared to the variability 

in the possible parameters for each year. The same holds for the distribution 

by lag and the diagonal effects. 

 

After reviewing some of these possibilities, we settled on the following model. 

Accident year 0 is low and gets its own parameter U0. Accident year 7 gets its 

own parameter U7 as it is high. All the other years get the same parameter Ua, 

except year 6 which is a transition and gets the average of Ua and U7. Thus 

there are three accident year parameters. This is between the original PCS and 

Cape Cod models, which get 10 and 1 accident year parameters, respectively.  

 

The fraction paid can be divided into high and low payment years with pa-

rameters ga and gb. Delay 0 is a low year as things are just getting warmed up. 

Delays 1, 2, and 3 are where most of the action is and all get gb. Delays 5, 6, 7, 

and 8 are again low years getting ga, but delay 4 is a transition and gets the 

average of ga and gb. Finally delay 9 gets the left-overs, i.e., 1 – 5.5ga – 3.5gb. 

Thus there are only two delay parameters. Clarke suggested using parameter-

ized distributions to describe the payout pattern. We tried Weibull and loglo-

gistic distributions conditional on being less than or equal to 9. The loglogistic 

was better than the Weibull but not as good as the high-low model (all with 

two parameters) in terms of loglikelihood. 

 

It was efficient enough to identify three of the diagonals as high or low di-
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agonals, getting factors 1 + c or 1 – c. The 7th diagonal was low and the 4th and 

6th were high. Thus only one diagonal parameter was used.  

 

The loglikelihood for this six-parameter model is -146.66. This is not as good 

as the twenty-parameter model above, with a loglikelihood of -145.92, but it 

gets an HQIC penalty that is less by 19.4 and an AICc penalty that is lower by 

25.5. These clearly overwhelm the difference in loglikelihood of 0.74. 

 

The parameters and their standard errors are: 

Parameter  U0 U7 Ua ga gb c 

Estimate  
  

3,810,000  
 

7,113,775 
 

5,151,180 
 

0.0678751 
  

0.1739580 
 

0.1985333 

Std Error 
  

372,849  
 

698,091 
 

220,508 
 

0.0034311 
  

0.0056414 
 

0.0568957 
Table 3 

The parameter variances came from the information matrix. The 2nd deriva-

tives of the unconstrained loglikelihood wrt Uw and gd do not change with the 

inclusion of diagonal parameters. The other 2nd partials are: 

∑
=+

−=
∂
∂

jdw j

dw

j bh
q

h
l

2
,

2

2

,     
b

h
gU

l dw

dw

+−=
∂∂

∂2

,   
b

g
hU

l wj

jw

−−=
∂∂

∂2

,   
b

U
hg

l dj

jd

−−=
∂∂

∂2

. 

To get the derivatives of the loglikelihood wrt Ua, ga, gb, and c, just use the 

chain rule on the sum of the derivatives of the loglikelihood wrt the parame-

ters above. However Ua and U7 are now not independent, as they go into es-

timation of some of the same cells, and similarly for ga and gb. Appendix 1 

summarizes the 2nd partials of the loglikelihood for the six-parameter model. 

 

The correlations of adjacent residuals improve a great deal with the diagonal 

parameters, as shown in Table 4. This is still somewhat problematic, however, 
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as the correlations are all negative and some are weakly significant. These cor-

relations are still there after accounting for diagonal effects, so might indicate 

some degree of actual serial correlation in accident year payments. Perhaps 

ARIMA models could have a role in this modeling. 

 

Columns 0-1 1-2 2-3 3-4 

Correlation -0.9% -58.1% -50.7% -74.1% 

Significance 0.491 0.066 0.123 0.046 

Table 4 

 

The reserve estimate from this model is 19,334,000, which is quite close to that 

of the twenty-parameter model. The prediction standard error (with b = 

37,183.5) is down to 1,350,000, compared to 2,827,000 for the full PCS and 

2,447,000 for the chain ladder. The better fit from including calendar-year ef-

fects and the reduced number of parameters has decreased the standard error 

appreciably. The breakdown of the variance into parameter and process is: 

 

Model Original 19 Parameter 6 Parameter 

Parameter Variance 7,009,527,908,811  1,103,569,529,544  

Process Variance  982,638,439,386  718,924,545,072  

Total Variance 7,992,166,348,198  1,822,494,074,616  

Parameter Std Dev 2,647,551  1,050,509  

Process Std Dev 991,281  847,894  

Standard Deviation 2,827,042  1,349,998 

Table 5 
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There is a decrease in the process standard deviation of 15%, probably coming 

from recognizing the diagonal effects, and a 60% reduction in the parameter 

standard deviation in going from 19 to 6 parameters, for a total decrease in 

the prediction standard error of over 50% 

 

TESTING THE VARIANCE ASSUMPTION 
In the PCS model the variance of each cell is b times its mean. For many loss 

processes though the variance is proportional to the square of the mean. If 

that holds for a particular loss triangle, then the PCS standardized residuals 

(residuals divided by modeled standard deviation) would probably tend to be 

larger in absolute value for the cells with the larger means. A plot of standard-

ized residuals vs. fitted values would be a way to show this up. These are 

graphed in Figure 3 for the six-parameter model. This effect does not appear. 

However the positive residuals have more extreme values than do the nega-

tive residuals, which could be indicative of a more highly skewed model. 

Standardized Residuals vs. Fitted
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Figure 3 
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There is a possible analogue to the PP-plot as well. A PP-plot for a probability 

distribution fitted to data compares the empirical cumulative probability to 

the fitted cumulative probability at each sample point. Here we are fitting 55 

Poisson distributions, each of which has a sample of 1, namely qw,d/b. The 

typical empirical probability for the pth observation out of a sample of N is 

p/(N+1), so this would be ½ for each of our 55 observations. But you could 

start with the fitted probability at each observation, and rank these 55 fitted 

values from 1 to N and then assign the empirical probability of rank/(N+1) to 

each. This gives something like a PP-plot, and is shown in Figure 4 for the six-

parameter model. 

Six-Parameter PCS Fit to Taylor-Ashe Data: PP-like Plot
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Figure 4 
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The fit is not too bad, but is better below the median than above. There, there 

are more observations below most of the probability levels than the Poissons 

would predict, as shown by the empirical probabilities being higher than the 

Poisson probabilities. That is a bit surprising, in that usually you would ex-

pect observed data to have more large observations than the Poisson. Proba-

bly overall this graph would be supportive of the distributional assumption. 

 

CONCLUSIONS 
The PCS model when given one parameter for each row and column matches 

the chain-ladder reserve calculation but can have very different fitted values 

for the history in the triangle. It seems to have more parameters so a better fit 

would be expected, but the variance calculation reflects the parameter uncer-

tainty, so the chain ladder can easily give a lower variance. The fit and as-

sumptions of both models can be strained by calendar-year effects, but these 

can be modeled with their own parameters in either model.  It should be pos-

sible in most cases to reduce the number of parameters in the models through 

the use of trends, combination of similar parameters, etc. Although not dis-

cussed here, both calendar year and delay parameters can be reduced in the 

chain-ladder paradigm. The PCS model also allows for eliminating some ac-

cident year parameters, which can be reduced even to a single parameter as in 

the Cape Cod case. In the example here, three levels sufficed for 10 years. 

Many other possible models have not been considered here and may give bet-

ter fits to this data. In summary, getting a better fit by recognizing calendar-

year effects and then reducing the number of parameters in the model can de-

crease the both the process and parameter variances of the reserve estimate. 
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Appendix 1 – 2nd Partials for Six Parameter Model of 

Taylor-Ashe Data 
 

These can be written in terms of the following unconstrained second partials: 
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For this model, U1 = … = U5 = U8 = U9 = Ua and U6 = ½ [Ua + U7]. Also g0 = g5 

= g6 = g7 = g8 = ga; g1 = g2 = g3 = gb, g4 = ½ [ga + gb]; and g9 = 1 – 5.5ga – 3.5gb. 

Finally h7 = 1 – c and h6 = h4 = 1 + c, o.w. hj = 1. For notation sake here, let Wa 

= {1,2,3,4,5,8,9}, Ga = {0,5,6,7,8}, Gb = {1,2,3}, C = {4,6,7}, hj = 0 for j>9 and Uw = 

gd = 0 for w or d < 0. 
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The diagonals are 1 in the projection period, so the unconstrained derivative 

of the reserve wrt gd is still Σw>n-dUw and wrt Uw is Σd>n-wgd. Thus 
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