Reserve Ranges, Confidence Intervals and Prediction Intervals

Glen Barnett, Insureware David Odell, Insureware Ben Zehnwirth, Insureware

Summary

- · Uncertainty and variability are distinct concepts
- fundamental difference between confidence interval and prediction interval.
- When finding a CI or PI, assumptions should be explicit, interpretable, testable related to volatility in the past.
- Differences between CI & PI explained via simple examples and then
 using loss triangles in the PTF modeling framework
- loss triangle regarded as sample path from fitted probabilistic model
 An identified optimal model in the PTF framework describes the trend
- structure and volatility about it succinctly the "four pictures"
- model predicts lognormal distributions for each cell + their correlations, conditional on explicit, interpretable assumptions related to past volatility
 Immediate benefits include percentile and V@R tables for total reserve
- Immediate benefits include percentile and v@k tables for total reserve and aggregates, by calendar year and accident year.

Variability and Uncertainty

Example: Coin vs Roulette Wheel

- different concepts; not interchangeable

"Variability is a phenomenon in the physical world to be measured, analyzed and where appropriate explained. By contrast uncertainty is an aspect of knowledge."

Sir David Cox

Insureware

Example: Coin vs Roulette Wheel

orocess some nction of	Coin 100 tosses fair coin (#H?) Mean = 50 Std Dev = 5 CI [50,50] In 95% of experiments with the coin the number of heads will be in interval [40,60].	"Roulette Wheel" No. 0, 1,, 100 Mean = 50 Std Dev = 29 CI [50,50] In 95% of experiments with the wheel, observed number will be in interval [2, 97].	Coin100 tossesMean = ?Std Dev = ?CI [?,?]can toss coin 10 times first(5 heads -> est. mean 50)	<pre>"Roulette Wheel" No. 0,1,, 100 Mean = ? Std Dev = ? Cl [?,?] - similar thing with wheel (more complex)</pre>	
	Where do you need more risk capital? Introduce uncertainty into our knowledge - if coin or roulette wheel are mutilated then conclusions could be made only on the basis of observed data.		Parameter uncertainty incre Process variability cannot b	Parameter uncertainty increases width of prediction interval Process variability cannot be controlled but can be measured	
of the	A basic forecasting problem $Y_{n+1} = \mu + \varepsilon_{n+1}$ forecast of th $\hat{Y}_{n+1} = \hat{\mu} + \hat{\varepsilon}_{n+1}$ forecast of th $\mu \text{ known:}$ $\hat{Y}_{n+1} = \hat{\mu} + 0$ Variance of the forecast $Var(\mu) + Var(\varepsilon_{n+1}) = 0$	ne error term is = σ²	A basic forecasting problem Next observation might Similarly for future losse The <i>risk to your busines</i> uncertainty in the mean amount you will <i>pay</i> , no	lie down here, or up here. (you're forecasting a random quantity) es: may be high or low. es is not simply from the - V@R is related to the ot its mean.	

Variability and uncertainty

Process variability is a measure of how much the process varies about its mean – e.g. σ^2 (or σ)

Parameter uncertainty is how much uncertainty in some parameter estimate (e.g. $var(\hat{\mu})$ or $s.e.(\hat{\mu})$) or function o parameter estimates (say for a forecast mean – *"uncertainty in the estimate"*)

Predictive variability is (for most models used) the sum of the process variance and parameter uncertainty

A basic forecasting problem

Consider the following simple example -

n observations $Y_1 \dots Y_n \stackrel{\text{iid}}{\sim} N(\mu, \sigma^2)$

 $Y_i = \mu + \varepsilon_i \quad \varepsilon_i \stackrel{iid}{\sim} N(0, \sigma^2)$

Now want to forecast another observation...

(Actually, don't really need normality for most of the exposition, but it's a handy starting point.)

 A basic forecasting problem Even when mean is <i>known exactly</i>, still underlying process uncertainty (- with 100 tosses of a <i>fair</i> coin, might get 46 heads or 57 heads etc). Except with modeling losses you design a model to describe what's going on with the data. It doesn't really make sense to talk about a mean (or any other aspect of the distribution) in the absence of a probabilistic model. [If you don't have a distribution, what distribution is this "mean" the mean of?] 	 assumptions need to be explicit so you can test distribution is related to what's going on in the data don't want to use <u>coin model</u> if your data is actually coming from a <u>roulette wheel</u>. Image: the state of the state	 Let's make a different assumption to before <u>now we don't know µ</u> we'll have an estimate of the future mean based – through our model – on past values but estimate of the future mean is not exactly the actual mean, even with a great model (<i>random variation</i>) the <i>estimate</i> is uncertain (can estimate the uncertainty - if the model is a good description)
 So we will have an estimate of the mean and we'll also have a <i>confidence interval</i> for the mean. interval designed so that if we were able to rerun history (retoss our coin, respin our roulette wheel), many times, the intervals we generate will include the unknown mean a given fraction of the time But that probability relies on the model if the model doesn't describe the data, confidence interval is useless (won't have close to required probability coverage) 	Confidence Interval for Mean of Coin Model (100 tosses) with a small sample (10) 10 tosses, 5 heads. => $\hat{\rho} = \frac{1}{2}$ $\hat{\mu} = 100p$ Var(μ) = 100 ² Var($\hat{\rho}$) = 100 ² $\frac{1}{2}$ $\frac{1}{2}$ /10= 15.8 ² 95% Cl for μ = 50 ± 1.96x15.8 ~= (19,81)	Let's look at some real long-tail data. Has been inflation-adjusted and then normalized for a measure of exposure.
 No trends in the accident year direction Calendar years are sufficiently stable for our current purpose (one year is a bit low – it could be omitted if preferred, but we will keep it) Note a tendency to "clump" just below the mean more values below mean: skewness 	On the log-scale this disappears, and the variance is pretty stable across years: $\underbrace{\underbrace{var}_{\texttt{p}} \underbrace{var}_{\texttt{p}} \mathsf{v$	Consider a single development - say DY 3: $\begin{array}{r rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

We don't know the true mean.Now we want to look at a prediction.To understand your business you need to understand the actual risk of the process. understand to actual risk of the process. The how the mean prediction mean, prediction of its accuracy, not very helpful:To understand your business you need to understand the actual risk of the process. Understand the actual risk of the process. The how the mean for the row the mean for the process in the row the mean for the process. The next observation here any the prediction. Want to predictive variance income here, but generally detected in the actual risk of the process. The next observation here any the read on (50). • don't pay mean, pay the random outcome • risk posed to the business is NOT just the income terms. • The next observation might lie - • artify a variance in come that the distributions are ormal. • artify a variance in a come of the row in the risk is the rest. • artify a variance is another or term • artify a variance is a come of the process. • artify a variance is a come of the error term • artify a variance is a come of the row of the row in the row in the rest. • artify a variance is a come of the error term • artify a variance is another observation might lie - • artify a variance is a come of the error term • artify a variance is a come of the row of the row in t				
Case with constances in predict mean for next value as 7.180Want to predict a random outcome where we have mean for next transming variance horow have just earlier consting/foulter wheel systames horow have just earlier outcome as 7.180Note with constants of the security outcome as 7.180Note with constants of the security outcome and the systames horow have just systames horow have just earlier outcome as 7.180Note with constants of the security outcome have pay the mean (50). - don't pay mean, pay the random outcome - risk posed to the business is NOT just the uncertainty in the mean.Note with to forecast another observation, so test sevisite the simple model: $V_{m1} = \mu + c_{m1}$ μ UNKNOWN: So $\hat{\gamma}_{m1} = \hat{\mu} + 0$ So again, imagine that the distributions are normal.Predictive variance income have pay the mean (50). - don't pay mean, pay the random outcome - risk posed to the business is NOT just the uncertainty in the mean.Predictive variance $= Var(\hat{\mu} + \hat{c}_{m1})$ $= Var(\hat{\mu} + Var(\hat{c}_{m1}))$ $= \sqrt{m_1} + \frac{\mu}{2} + \hat{c}_{m1}$ Variance of forecast $= \sqrt{m_1} + 0$ The next observation might lie - Mariance of forecast $= \sqrt{m_1} + \sqrt{m_2} + \frac{m_1}{2} + \frac{m_2}{2}$ Predictive variance $= Var(\hat{\mu} + \nabla_{m1})$ $= \sqrt{m_1} + \frac{m_2}{2} + \frac{m_1}{2} + \frac{m_2}{2}$ Returning to example: 95% prediction interval for Y_{m1} is (6.75,7.63):Parameter uncertainty can be reduced $-$ or eventually outli here another uncertainty $more data$ $-$ an aspect of the process, not knowledge• Note that nearby developments are related: \cdot If $V'' = \frac{\mu}{m_1} + \frac{\mu}{m_2} + \frac{\mu}{m_1}$	We don't know the true mean.	Now we want to look at a <i>prediction</i> .	To understand your business you need to understand the actual risk of the process, not just the risk in the estimate of the mean. Want to forecast another observation, so let's revisit the simple model:	
$\frac{1}{10000000000000000000000000000000000$	with constant mean, predict mean for next value as 7,190	Want to predict a random outcome where we don't know the mean		
not very helpful: not very helpful: 95% confidence interval for μ : (7.034, 7.345)Note with coin tossing/roulette wheel experiment, language new pay the mand (50). - don't pay mean, pay the random outcome - risk posed to the business is NOT just the uncertainty in the mean. $V_{m1} = \mu + \varepsilon_{m1}$ μ UNKNOWN: So $S_{m1} = \hat{\mu} + 0$ So again, imagine that the distributions are normal. $predictive variance= Var(\hat{\mu} + \nabla an(\xi_{m1}))= \sigma^2/n + \sigma^2predictive variance= Var(\hat{\mu} + \nabla an(\xi_{m1}))= \sigma^2/n + \sigma^2predictive variance= Var(\hat{\mu} + \nabla an(\xi_{m1}))= \sigma^2/n + \sigma^2predictive variance= Var(\hat{\mu} + \nabla an(\xi_{m1}))= \sigma^2/n + \sigma^2Returning to example:95% prediction interval for Y_{m1} is (6.75.7.63):Parameter uncertainty can be reduced- more data- or eventually you'l have another year) data\cdot Note that nearby developments are related:- Note that nearby developments are related:- or eventually you'l have another year)- or eventually you'l have another year)- or eventually you'l have another year)- or an aspect of the process, not knowledge\cdot Note that nearby developments are related:\cdot Note that nearby developments are related:\cdot DV3 was all missing, you could take a fairguess at the cit was?$	- without some indication of its accuracy	doesn't change prediction intervals a great deal)		
95% confidence interval for μ : (7.034, 7.345)- don't pay mean, pay the random outcome - risk posed to the business is NOT just the uncertainty in the mean. $p_{m1} = \hat{\mu} + \hat{q}_{m1}$ forecast of the error terr μ UNKNOWN: So $\hat{\gamma}_{m1} = \hat{\mu} + 0$ So again, imagine that the distributions are normal.predictive variance = $\sqrt{at(\hat{\mu} + \hat{q}_{m1})}$ = $\sqrt{at(\hat{\mu} + \hat{q}_{m1})}$ (= parameter uncertainty + process var.) (Re variance add if independent, additive errors) Alternative way to look at it: predictive variance = var(p additive errors) (Re variance = var($p^{-1} + \hat{q}_{m1} + \hat{q}_{m2} + q$	not very helpful:	Note with coin tossing/roulette wheel experiment, almost never pay the mean (50).	$\mathbf{Y}_{n+1} = \boldsymbol{\mu} + \boldsymbol{\varepsilon}_{n+1}$	
$\frac{1}{2} \text{UNKNOWN:} = \int_{a}^{b} f_{n,1} = \int_$	95% confidence interval for u: (7.034, 7.345)	- don't pay mean, pay the random outcome		
μ UNKNOWN: So S_0 $\hat{\gamma}_{m1} = \hat{\mu} + 0$ So again, imagine that the distributions are normal.predictive variance $= Var(\hat{\mu} + \hat{a}_{m1})$ $= o^2(n + \sigma^2)$ (in practice you replace σ^2 by its estimate)The next observation might lie - $\int_{0}^{0} bit bit and the large for mathematication for index transmitter index to the transmitter index transmitter index$		 risk posed to the business is NOT just the uncertainty in the mean. 	$\hat{Y}_{n+1} = \hat{\mu} + \hat{\varepsilon}_{n+1}$ forecast of the error term	
μ UNKNOWN:So again, imagine that the distributions are normal. $predictive varianceSo\hat{\gamma}_{rn+1} = \hat{\mu} + 0The next observation might lie -Utainace of forecast= \sqrt{ar(\hat{\mu})} + \sqrt{ar(e_{n+1})}= \sigma^2/n + \sigma^2The next observation might lie -Utainace of forecast= \sqrt{ar(\hat{\mu})} + \sqrt{ar(e_{n+1})}= \sigma^2/n + \sigma^2(NB variances ad if independent, additive errors)Alternative way to look at it:predictive variance = var(prediction error = Y_{n+1} - \hat{\gamma}_{n+1} - Prediction error = Y_{n+1} - \hat{\gamma}_{n+1} - Predictive variance = var(prediction error) =\sqrt{ar(r+\sigma^2_n)}= \sigma^2/n + \sigma^2(NB variances ad if independent, additive errors)Alternative way to look at it:prediction error = Y_{n+1} - \hat{\gamma}_{n+1} - Predictive variance = var(prediction error) =\sqrt{ar(r+\sigma^2_n)} = \sigma^2 + var(\hat{\mu})Returning to example:95% prediction interval for Y_{n+1} is (6.75,7.63):• Parameter uncertainty can be reduced- or eventually you'll have another year of data- an aspect of the process, not knowledge• Note that nearby developments are related:+ if \frac{1}{2}$				
So $\hat{Y}_{n+1} = \hat{\mu} + 0$ Variance of forecast $= \sqrt{ar}(\hat{\mu}) + \sqrt{ar}(\hat{h}_{n+1})$ $= \sqrt{ar}(\hat{\mu}) + \sqrt{ar}(\hat{h})$ $= \sqrt{ar}(\hat{h}) + \sqrt{ar}(\hat{h})$ $= \sqrt{ar}($	μ UNKNOWN:	So again, imagine that the distributions are	predictive variance	
$\hat{Y}_{n+1} = \hat{\mu} + 0$ Variance of forecast $= Var_{(\hat{\mu})} + Var(s_{n+1})$ $= \sqrt{\alpha}r_{(\hat{\mu})} + Var(s_{n+1})$ $= \sigma^2/n + \sigma^2$ (in practice you replace σ^2 by its estimate) The next observation might lie - $\int_{\text{The f}} \frac{Distriction of \hat{\mu} undite (1 - indust to trange for mean related to purpose of by its estimate) Prediction interval for Y_{n+1} is (6.75,7.63): \hat{V}_{n+1} = \hat{\mu} + 0 \hat{V}_{n+1} = \sigma^2 + Var(\hat{\mu}) The next observation might lie - \hat{V}_{n+1} = \sigma^2 + Var(\hat{\mu}) (n practice you replace \sigma^2 by its estimate) \hat{V}_{n+1} = \sigma^2 + Var(\hat{\mu}) (n practice you replace \sigma^2 by its estimate) \hat{V}_{n+1} = \sigma^2 + Var(\hat{\mu}) \hat{V}_{n+1} = \sigma^2 + Var(\hat{\mu})$	So	normal.	$= \operatorname{var}(\mu + \varepsilon_{n+1})$ $= \operatorname{var}(\Lambda) + \operatorname{var}(\varepsilon_{n-1})$	
Variance of forecast = Var $(\mu) + Var(\varepsilon_{n+1})$ = $\sigma^2(n + \sigma^2)$ (in practice you replace σ^2 by its estimate)The next observation might lie - μ default or f^{μ} used to $(1 - redues to trange for meanPredefault here of to puttroom - redues to trange for meanMare downer(NB variances add if independent, additive errors)Alternative way to look at it:prediction error = Y_{n+1} - \hat{Y}_{n+1}.Predictive variance = var(prediction error)= var(Y_{n+1}, \hat{Y}_{n+1}) = \sigma^2 + var(\hat{\mu})Returning to example:95% prediction interval for Y_{n+1} is (6.75,7.63):• Parameter uncertainty can be reduced- more data reduces parameter uncertainty(more than 10 tosses of the coin in pre-trial).In some cases you can go back and get moretoss data (e.g. dig up an older year)- or eventually you'll have another year of data• But process variability doesn't reduce withmore data- an aspect of the process, not knowledge• Note that nearby developments are related:• If DV 3 was all missing, you could take a fairguess at where it was!$	$\hat{Y}_{n+1} = \hat{\mu} + 0$		(= parameter uncertainty + process var.)	
Variance of forecast = $\sqrt{ar} \begin{pmatrix} n \\ \mu \end{pmatrix} + \sqrt{ar} \begin{pmatrix} n \\ e_{n+1} \end{pmatrix}$ = $\sigma^2 \ln + \sigma^2$ Distribution of μ under the 'and buttom Predidion interval for μ under other of the control that the the the the the the the the the th		The next observation might lie –	(NB variances add if independent, additive errors)	
$= \sqrt{a} r \left(\hat{\mu} + \sqrt{ar} (\hat{e}_{n+1}) = \sigma^2 / n + \sigma^2 \right)$ (in practice you replace σ^2 by its estimate) $= \sqrt{ar} r \left(\hat{\mu} + \sqrt{ar} (\hat{e}_{n+1}) = \sigma^2 + \sqrt{ar} (\hat{\mu} + \sigma^2) + \sigma^2 \right)$ (in practice you replace σ^2 by its estimate) $= \sqrt{ar} r \left(\hat{\mu} + \sqrt{ar} (\hat{e}_{n+1}) + \sigma^2 + \sqrt{ar} (\hat{\mu} + \sigma^2) + \sqrt$	Variance of forecast	Distribution of pusced for C1 - relates to 'range' for mean	Alternative way to look at it:	
$\frac{1}{1} = \frac{\sigma^2 / n + \sigma^2}{(\text{in practice you replace } \sigma^2 \text{ by its estimate})}$ $\frac{1}{1} = \frac{\sigma^2 / n + \sigma^2}{(\text{in practice you replace } \sigma^2 \text{ by its estimate})}$ $\frac{1}{1} = \frac{\sigma^2 / n + \sigma^2}{(\text{in practice you replace } \sigma^2 \text{ by its estimate})}$ $\frac{1}{1} = \frac{\sigma^2 / n + \sigma^2}{(\text{in practice you replace } \sigma^2 \text{ by its estimate})}$ $\frac{1}{1} = \frac{\sigma^2 / n + \sigma^2}{(\text{in practice you replace } \sigma^2 \text{ by its estimate})}$ $\frac{1}{1} = \frac{\sigma^2 / n + \sigma^2}{(\text{in practice you replace } \sigma^2 \text{ by its estimate})}$ $\frac{1}{1} = \frac{1}{1} = $	= Var (μ) + Var(ε_{n+1})	Fitted distribution Prediction interval for µ unknown – relates to "range" for future observed	prediction error = $Y_{n+1} - Y_{n+1}$.	
Returning to example: 95% prediction interval for Y_{n+1} is (6.75,7.63):• Parameter uncertainty can be reduced - more data reduces parameter uncertainty (more than 10 tosses of the coin in pre-trial).• Note that nearby developments are related: • If DY 3 was all missing, you could take a fair guess at where it was! $vertice y homaized vs Dev Yearvertice y = 1vertice y = 1$	$= \sigma^2/n + \sigma^2$		Predictive variance = var(prediction error) = var($Y_{1}, -\hat{Y}_{1}$) = σ^{2} + var($\hat{\mu}$)	
Returning to example: • Parameter uncertainty can be reduced • Note that nearby developments are related: 95% prediction interval for Y _{n+1} is (6.75,7.63): • Parameter uncertainty can be reduced • Note that nearby developments are related: Image: state of the process of the coin in pre-trial). In some cases you can go back and get more loss data (e.g. dig up an older year) • or eventually you'll have another year of data • But process variability doesn't reduce with more data • But process, not knowledge • an aspect of the process, not knowledge	(in practice you replace σ^2 by its estimate)	down here, or up here. (implications for risk capital)	$= \operatorname{var}(r_{n+1}, r_{n+1}) = 0$	
Returning to example: 95% prediction interval for Y _{n+1} is (6.75,7.63):• Parameter uncertainty can be reduced - more data reduces parameter uncertainty (more than 10 tosses of the coin in pre-trial).• Note that nearby developments are related:Image: Solution interval for Y _{n+1} is (6.75,7.63):Image: Solution in pre-trial).Image: Solution in pre-trial).• Note that nearby developments are related:Image: Solution interval for Y _{n+1} is (6.75,7.63):Image: Solution in pre-trial).Image: Solution in pre-trial).• Note that nearby developments are related:Image: Solution interval for Y _{n+1} is (6.75,7.63):Image: Solution in pre-trial).Image: Solution in pre-trial).• Solution in pre-trial).Image: Solution interval for Y _{n+1} is (6.75,7.63):Image: Solution in pre-trial).Image: Solution in pre-trial).• Solution in pre-trial).Image: Solution interval for Y _{n+1} is (6.75,7.63):Image: Solution in pre-trial).Image: Solution in pre-trial).• Solution in pre-trial).Image: Solution interval for Y _{n+1} is (6.75,7.63):Image: Solution in pre-trial).Image: Solution in pre-trial).• Solution in pre-trial).Image: Solution interval for Y _{n+1} is (6.75,7.63):Image: Solution in pre-trial).Image: Solution in pre-trial).• Solution in pre-trial).Image: Solution interval for Y _{n+1} is (6.75,7.63):Image: Solution in pre-trial).Image: Solution in pre-trial).• Solution in pre-trial).Image: Solution interval for Y _{n+1} is (6.75,7.63):Image: Solution in pre-trial).Image: Solution in pre-trial).• Solution in pre-trial).Image: Solution interval for Y _{n+1} is (6.75,7.63):Image: Solu				
 95% prediction interval for Y_{n+1} is (6.75,7.63): - more data reduces parameter uncertainty (more than 10 tosses of the coin in pre-trial). In some cases you can go back and get more loss data (e.g. dig up an older year) - or eventually you'll have another year of data But process variability doesn't reduce with more data - an aspect of the process, not knowledge 	Returning to example:	Parameter uncertainty can be reduced	Note that nearby developments are related:	
Log-Normalized vs Dev Year	95% prediction interval for Y_{n+1} is (6.75,7.63):	 more data reduces parameter uncertainty (more than 10 tosses of the coin in pre-trial). 	 If DY 3 was all missing, you could take a fair guess at where it was! 	
- or eventually you'll have another year of data - or eventually you'll have another year of data - But process variability doesn't reduce with more data - an aspect of the process, not knowledge	Log-Normalized vs Dev Year	In some cases you can go back and get more loss data (e.g. dig up an older year) – or eventually you'll have another year of data	Log-Normalised vs Dev. Year	
 But process variability doesn't reduce with more data an aspect of the process, not knowledge 				
- an aspect of the process, not knowledge		 But process variability doesn't reduce with more data 		
		- an aspect of the process, not knowledge	.	

 Need a model to take full advantage of this.
 Even just fitting line through DY2-4 has a big effect on the width of the *confidence interval*:

• Only changes the *prediction interval* by ~2%. So calculated V@R hardly changes

But that prediction interval is on log scale.

- To take a prediction interval back to the normalized-\$ scale, just back-transform the endpoints of the PI
- To produce a confidence interval for the mean on the normalized-\$ scale is harder (can't just backtransform limits on CI – that's an interval for the median)
- not a particularly enlightening bit of algebra, so we're leaving the derivation out here

There are some companies around for whom (for some lines of business) the process variance is *very large*.

some have a coefficient of variation near 0.6.
 [so standard deviation is > 60% of the mean]

That's just a feature of the data.

- May not be able to control it, but you sure need to *know* it.

Why take logs?

- tends to stabilize variance
- multiplicative effects (including economic effects, such as inflation) become additive (percentage increases or decreases are multiplicative)
- exponential growth or decay \rightarrow linear
- skewness often eliminated

distributions tend to look near normal

- Using logs a familiar way of dealing with many of these issues (standard in finance)
- NB for these to work have to take logs of *incremental* paid, *not* cumulative paid.

(Data = Trends + Random Fluctuations)

- Simulate "new" observations based in the trends and standard errors
- Simulated data should be indistinguishable from the real data

Variance =

y's look like x's: — Model has probabilistic mechanisms that can reproduce the data

