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Summary
• Uncertainty and variability are distinct concepts
• fundamental difference between confidence interval and prediction 

interval. 
• When finding a CI or PI, assumptions should be explicit, interpretable, 

testable - related to volatility in the past. 
• Differences between CI & PI explained via simple examples and then 

using loss triangles in the PTF modeling framework 
• loss triangle regarded as sample path from fitted probabilistic model 
• An identified optimal model in the PTF framework describes the trend 

structure and volatility about it succinctly – the "four pictures"
• model predicts lognormal distributions for each cell + their correlations, 

conditional on explicit, interpretable assumptions related to past volatility
• Immediate benefits include percentile and V@R tables for total reserve 

and aggregates, by calendar year and accident year.

Variability and Uncertainty

- different concepts; not interchangeable

"Variability is a phenomenon in the physical
world to be measured, analyzed and where
appropriate explained. By contrast 
uncertainty is an aspect of knowledge."

Sir David Cox

Variability and uncertainty

Process variability is a measure of how much the process 
varies about its mean – e.g. σ2  (or σ)

Parameter uncertainty is how much uncertainty in some 
parameter estimate (e.g. var(µ) or s.e.(µ) ) or function of 
parameter estimates (say for a forecast mean –
“uncertainty in the estimate”)

Predictive variability is (for most models used) the sum of the 
process variance and parameter uncertainty

^ ^

Example: Coin vs Roulette WheelExample: Coin Example: Coin vsvs Roulette WheelRoulette Wheel

Coin
100 tosses fair coin    (#H?)
Mean = 50
Std Dev = 5
CI [50,50]

"Roulette Wheel"
No. 0,1, …, 100
Mean = 50
Std Dev = 29
CI [50,50]

In 95% of experiments with 
the coin the number of heads 
will be in interval [40,60]. 

In 95% of experiments with 
the wheel, observed number 
will be in interval [2, 97]. 

…10100

Where do you need more risk capital?

Introduce uncertainty into our knowledge - if coin or 
roulette wheel are mutilated then conclusions could be 
made only on the basis of observed data.

- similar thing with wheel 
(more complex)

Parameter uncertainty increases width of prediction interval

Example: Coin vs Roulette WheelExample: Coin Example: Coin vsvs Roulette WheelRoulette Wheel

Coin
100 tosses   
Mean = ?
Std Dev = ?
CI [?,?]

can toss coin 10 times first
(5 heads –> est. mean 50)

"Roulette Wheel"
No. 0,1, …, 100
Mean = ?
Std Dev = ?
CI [?,?]

Process variability cannot be controlled but can be measured

A basic forecasting problem

Consider the following simple example –

n observations Y1... Yn ~ N(µ,σ2)

Yi = µ + εi εi ~ N(0, σ2)

Now want to forecast another observation...

(Actually, don’t really need normality for most of the 
exposition, but it’s a handy starting point.)

iid

iid

A basic forecasting problem

Yn+1 = µ + εn+1

Yn+1 = µ + εn+1

µ known:
known                

Yn+1 = µ + 0

Variance of the forecast is 
Var(µ) + Var(εn+1) = σ2

0

forecast of the error term
^^^

^

A basic forecasting problem

Next observation might lie down here, or up here.

Similarly for future losses: may be high or low.

The risk to your business is not simply from the 
uncertainty in the mean – V@R is related to the 
amount you will pay, not its mean. 

(you're forecasting 
a random quantity)



A basic forecasting problem

- Even when mean is known exactly, still 
underlying process uncertainty (- with 100 tosses 
of a fair coin, might get 46 heads or 57 heads etc).

-Except with modeling losses you design a model 
to describe what's going on with the data. 

-It doesn't really  make sense to talk about a mean 
(or any other aspect of the distribution) in the 
absence of a probabilistic model. 

[If you don't have a distribution, what distribution is this 
"mean" the mean of?]

- assumptions need to be explicit so you can test
distribution is related to what's going on in the data 

- don’t want to use coin model if your data is 
actually coming from a  roulette wheel!
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even worse 
if you don't 
get the 
mean right

Of course, in practice we don't know the mean 
– we only have a sample to tell us about it.

Let's make a different assumption to before 
– now we don't know µ

- we’ll have an estimate of the future mean 
based – through our model – on past values 

- but estimate of the future mean is not exactly 
the actual mean, even with a great model   
(random variation)

- the estimate is uncertain (can estimate the 
uncertainty - if the model is a good description)

- So we will have an estimate of the mean and 
we'll also have a confidence interval for the mean.

- interval designed so that if we were able to rerun 
history (retoss our coin, respin our roulette wheel), 
many times, the intervals we generate will include 
the unknown mean a given fraction of the time

But that probability relies on the model... 

if the model doesn't describe the data, confidence 
interval is useless 
(won't have close to required probability coverage)

Confidence Interval for Mean of Coin Model 
(100 tosses) with a small sample (10)

10 tosses, 5 heads. => p = ½ µ = 100p

Var(µ) = 1002 Var(p) = 1002 ½ ½ /10= 15.82

95% CI for µ = 50 ± 1.96x15.8
~= (19,81)   

^

^

^

Adjusted vs Dev. Year
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Let’s look at some real long-tail data. Has been 
inflation-adjusted and then normalized for a 
measure of exposure

Normalised vs Dev. Year
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(exposures are fairly 
stable, so looks 
similar)

- No trends in the accident year direction

- Calendar years are sufficiently stable for our 
current purpose (one year is a bit low – it could 
be omitted if preferred, but we will keep it)

Note a tendency to “clump” just below the 
mean

– more values 
below mean: 
skewness

Normalised vs Dev. Year
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On the log-scale this disappears, and the 
variance is pretty stable across years:

(many other reasons to take logs)

Log-Normalised vs Dev. Year

0 1 2 3 4 5 6 7 8

4
4.5

5
5.5

6

6.5
7

7.5

8

Skewness is 
removed 
– values much 
more symmetric 
about center

Consider a single development - say DY 3:

ML estimates of µ, σ: 7.190 and 0.210

(note that the MLE of σ is sn, with the n denominator, 
not the more common sn-1).

6.879972
7.4741,761
7.0191,118
7.0721,178
7.3951,628
6.9911,087
7.3811,606
7.3061,489

LogsNormalized



We don’t know the true mean. 

Assuming random sample from process 
with constant mean, predict mean for next 
value as 7.190

- without some indication of its accuracy, 
not very helpful:

95% confidence interval for µ: (7.034, 7.345)

Now we want to look at a prediction. 

Want to predict a random outcome where we 
don't know the mean   
(assuming variance known here, but generally 
doesn’t change prediction intervals a great deal)

Note with coin tossing/roulette wheel 
experiment, almost never pay the mean (50). 

- don't pay mean, pay the random outcome

- risk posed to the business is NOT just the 
uncertainty in the mean.

To understand your business you need to 
understand the actual risk of the process, 
not just the risk in the estimate of the mean.

Want to forecast another observation, so 
let’s revisit the simple model:

Yn+1 = µ + εn+1

Yn+1 = µ + εn+1
^         ^    ^

forecast of the error term

µ UNKNOWN:

So

Yn+1 = µ + 0

Variance of forecast 

= Var (µ) + Var(εn+1) 
=  σ2/n    +     σ2

(in practice you replace σ2 by its estimate)

^  

^         ^    

So again, imagine that the distributions are 
normal. 

The next observation might lie –

down here, or up here.        (implications for risk capital)

Distribution of µ used for CI  - relates to “range” for mean
Fitted distribution  
Prediction interval for µ unknown – relates to “range” for  

future observed

^

predictive variance 

= Var(µ + εn+1)
= Var(µ) + Var(εn+1)  

(   = parameter uncertainty + process var.) 

(NB variances add if independent, additive errors)
––

Alternative way to look at it:
prediction error = Yn+1 – Yn+1 . 

Predictive variance = var(prediction error) 
= var(Yn+1-Yn+1) = σ2 + var(µ)

^

^

^^

Returning to example:

95% prediction interval for Yn+1 is (6.75,7.63):

Log-Normalized vs Dev Year
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• Parameter uncertainty can be reduced 
- more data reduces parameter uncertainty 
(more than 10 tosses of the coin in pre-trial). 

In some cases you can go back and get more 
loss data (e.g. dig up an older year) 
– or eventually you'll have another year of data 

• But process variability doesn't reduce with 
more data 
- an aspect of the process, not knowledge 

• Note that nearby developments are related:
• If DY 3 was all missing, you could take a fair 

guess at where it was!

• So in this case we do have much more data! 

Log-Normalised vs Dev. Year
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• Need a model to take full advantage of this. 
Even just fitting line through DY2-4 has a big 
effect on the width of the confidence interval:

• Only changes the prediction interval by ~2%. 
So calculated V@R hardly changes

Log-Normalized vs Dev Year
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But that prediction interval is on log scale. 
• To take a prediction interval back to the 

normalized-$ scale, just back-transform the 
endpoints of the PI

• To produce a confidence interval for the 
mean on the normalized-$ scale is harder 
(can’t just backtransform limits on CI 
– that’s an interval for the median)

• not a particularly enlightening bit of algebra, 
so we’re leaving the derivation out here

There are some companies around for whom 
(for some lines of business) the process 
variance is very large. 

- some have a coefficient of variation near 0.6. 
[so standard deviation is > 60% of the mean] 

That's just a feature of the data. 
- May not be able to control it, but you sure 

need to know it. 

Why take logs?
- tends to stabilize variance
- multiplicative effects (including economic 

effects, such as inflation) become additive
(percentage increases or decreases are multiplicative)

- exponential growth or decay → linear
- skewness often eliminated
distributions tend to look near normal

- Using logs a familiar way of dealing with many 
of these issues (standard in finance)

NB for these to work have to take logs of 
incremental paid, not cumulative paid.
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If we graph the data 
for an accident year 
against development 
year, we can see two 
trends.

e.g. trends in the development year direction
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ProbabilisticProbabilistic Modelling of trendsModelling of trends
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Could put a line 
through the points, 
using a ruler. 

Or could do 
something formally, 
using regression.
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Probabilistic ModellingProbabilistic Modelling
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The model is not just the trends in the mean, 
but the distribution about the mean
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(Data = Trends + Random Fluctuations)

Models Include More Than The Trends
Introduction to Probabilistic ModellingIntroduction to Probabilistic Modelling
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Simulate “new” observations based in the 
trends and standard errors
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Simulating the Same “Features” in the Data
Introduction to Probabilistic ModellingIntroduction to Probabilistic Modelling

Simulated data should be indistinguishable 
from the real data

- Real Sample: x1,…,xn

- Fitted Distribution fitted lognormal 

- Random Sample from fitted 
distribution: y1,…,yn

What does it mean to say a model gives a good fit?
e.g. lognormal fit to claim size distribution

Model has probabilistic mechanisms 
that can reproduce the data

Does not mean we think the model generated the data

y’s look like x’s:  —



PROBABILISTIC MODEL

Real
Data S1 S2

Simulated triangles cannot be distinguished from real data – similar 
trends, trend changes in same periods, same amount of random 
variation about trends

S3

Based on Ratios

Models project past volatility into the future

Trends+ 
variation

about
trends
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Trends in three directions, plus volatility

“picture” of the model

Testing a ratio model

• Since the correctness of an interval (“range”) 
depends on the model, it’s necessary to test a 
model’s appropriateness

• Simple diagnostic model checks exist

• Ratio models can be embedded in regression 
models, and so we can do more rigorous 
testing – extend this to a diagnostic model

•

•
• •

•
•

•
•

•
•

•

•

•
•

• •

}y{x
X = Cum. @ j-1
Y = Cum. @ j

Link Ratios are a 
comparison of columns

j-1 j

y

x

We can graph the ratios 
of Y:X   - line through O?

y/x y

x

y

x

y/x

ELRFELRF
(Extended Link Ratio Family)(Extended Link Ratio Family)

x is cumu. at dev. jx is cumu. at dev. j--1 and y is cum. at dev. j1 and y is cum. at dev. j

Using ratios => E(Y|x) = βx

Mack (1993)Mack (1993)

Chain Ladder Ratio ( Volume Weighted Average )
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Arithmetic Average

Intercept   (Murphy (1994))Intercept   (Murphy (1994))

Since y already includes x:  y = x + p

Incremental Cumulative
at j at j -1

Is  b -1 significant ? Venter (1996)
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Use link-ratios for projection
Case (ii)    b a= ≠1 0

( ) ( ) δσεε xVxbap 2   :   1 =+−+=
Case (i)     b a> =1 0

( )$a = Ave Incrementals
Abandon Ratios - No predictive power
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} p
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pCumulative Incremental
Is assumption E(p |x) = a + (b-1) x tenable?

Note: If corr(x, p) = 0,  then corr((b-1)x, p) = 0 

If x, p uncorrelated, no ratio has predictive power

Ratio selection by actuarial judgement
can’t overcome zero correlation.

p

x

Corr. often close to 0

-Sometimes not. 
Does this imply ratios   
are a good model?

- ranges?

• With two associated variables, tempting to 
think X causes changes in Y.

• However, may have another variable 
impacting both X and Y in a similar way, 
causing them move together:

Here X is a noisy proxy for N; 
N is a better predictor of Y     (sup. inflation, exposures)

X Y

X Y

N
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Condition 2:
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Now Introduce Trend Parameter Now Introduce Trend Parameter 
For IncrementalsFor Incrementals
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p vs acci. yr, 
not previous 
cumulative

NB: diagnostic model, not predictive model

Condition 3:
Incremental

Review 3 conditions:

Condition 1:  Zero trend

Condition 2:  Constant trend, positive or negative

Condition 3:  Non-constant trend

100
d

t = w+d

Development year

Calendar year

Accident year
w

Trends occur in three directions:

19861986

19871987

19981998

Future

Pas
t

Probabilistic ModellingProbabilistic Modelling
M3IR5 DataM3IR5 Data
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PAID LOSS   =  EXP(alpha - 0.2d)

-0.2
alpha = 11.513

Axiomatic Properties of TrendsAxiomatic Properties of Trends
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Discussion of some interactive analysis 
examples (ELRF vs PTF)  

Summary of highlights:

Two triangles

- ABC   

- LRHigh

ABC: summary

– chain ladder PIs for next year 
seem far too low 

– doesn’t even predict last diagonal:
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ABC: one-step-ahead prediction of last diagonal
(DYs 1-9)

All values 
well above 
mean pred.

- most above 
97½%ile

Why is this?

At high end of “range”

ABC

Chain ladder fit –
residuals vs.
calendar year 

change in cal. trends!
(missing feature)

Can we use 
ratios from
last few years?  

No good – recent ratios still include old incrementals

Wtd Std Res vs Cal. Yr
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PTF fit:
Model calendar
year trends

Can we predict
last year?
(not fitted)

Little high but most points well inside P.I.

Cal. Yr Trends
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(what inflation 
next year?)

further example (ELRF vs PTF)  

- LR High
(chain ladder PIs much too high )


