

Casualty Loss Reserve Seminar

The Language of Uncertainty:

Terminology Surrounding Loss Reserve Variability/Ranges

Dan Murphy

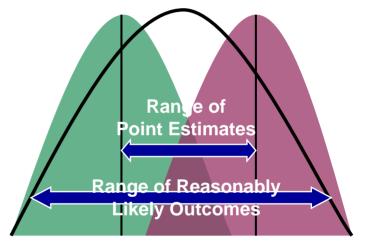
September 2007

Why analyze the variability of claim liabilities?

NAIC	 Actuarial opinions are produced on a "reasonableness" standard Variation from the "best estimate" is the issue
	Actuarial Opinion Summary (AOS) includes focus on ranges
SEC	Require public companies to discuss reserve uncertainty in 10-K filings
	Increasing pressurehand-waving rationale will soon be inadequate
Rating	Capital adequacy analyses usually assume reserve shortfalls
Agencies	Management is expected to consider more than just the best estimate
Actuarial Profession	CAS Task Force recommends greater focus on advanced techniques for measuring variability of reserves
	UK group reaches similar findings
Fiduciary Duty	It is prudent business practice to recognize your business risks to the best of your ability
	Stochastic analysis can provide strategic operational and financial insights

What is an estimate of claim liabilities?

- A point estimate of the ultimate value of outstanding claim liabilities is a prediction of the mean value of that random variable
- We do not attempt to predict the amount by which ultimate liabilities will deviate from the "true mean"
- Where can our estimate of the ultimate value of outstanding claim liabilities go wrong relative to the eventual value of outstanding claims?



- Our estimate of the mean may not coincide with the true mean
- Ultimate liabilities will ultimately deviate from their true mean

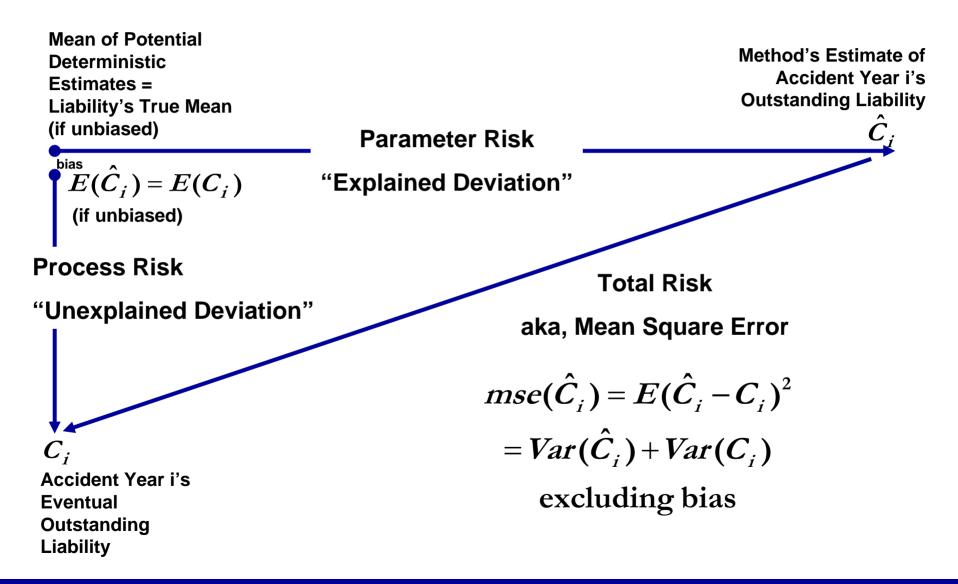
A "real life" analogy

- Rather than estimating the value of future payments going out of the claims department, suppose we want to estimate the IQ of the next person to walk in the back door
- If we knew the average IQ of all CLRS registrants, that would be our guess
- Alternatively, our method is to measure the average IQ of everyone in Room ____X____
 - … everyone take out a piece of paper …
- When Joe walks in, by what amount could our guess be wrong?
 - The average IQ in the room could be different from true CLRS mean IQ
 - Joe's IQ could be different from the true mean

Several distinct types of risks are inherent in the estimation of claim liabilities

:		Total Risk			
	Estimation Difference between estimation			<u>Process Risk</u>	
	<u>Parameter Risk</u> Variability due to fact that our model's	<u>Model Risk</u> Variability due to fact that our model		ifference betwo tual costs and mean	
	parameters are estimates	imperfectly represents reality			
	Our room's average IQ today could be different from the average of all such samples from RoomX	Room X's population may not be representative of the entire CLRS population: IQ biased on the high side?	thr	e IQ of the Joe wa ough the door will m the true CLRS	differ
Exp	imate of Dected Increase or decreated	ease with volume? True I Outc		Increase or decrease with volume?	Eventual Outcome

Total Risk, aka Mean Square Error, is the statistical equivalent of the Pythagorean Theorem



One last page of definitions

- Sometimes the term "risk" refers to variance and sometimes to standard deviation, depending on the context
- Most of the time "mean square error" and "total variance" are used interchangeably
 - When the estimate is unbiased, mse and total variance are identical
 - What is bias?
 - Bias occurs when the mean value of your estimate/estimation procedure of ultimate loss does not coincide with the true mean value of ultimate loss for some "systematic" reason not captured by your procedure
- Estimation error = parameter risk + bias²
- Coefficient of Variation, or CV
 - Coefficient of Variation (X) = Standard Deviation (X) ÷ Mean (X)
 - Note: Standard Deviation (Ultimate Loss) = Standard Deviation (Outstanding Loss) = Standard Deviation (IBNR)

because the only difference between the various quantities is a known dollar amount

- Stochastic methods generally estimate the standard deviation by analyzing estimates of ultimate loss
- The CVs of ultimate loss, unpaid loss, and IBNR will differ because, although their numerators are the same, their denominators are different

Relevant sources of variability depend on the question at hand

- When is it important to analyze total risk?
 - Financial solvency/economic capital context
 - When solvency is the issue all sources of risk are relevant
- When is it important to analyze only parameter risk?
 - "Reasonable range of estimates"
 - When the reasonability of the estimate is the issue only estimation error (= parameter risk in the absence of bias) is relevant
- Ability to estimate those separate sources of risk varies by stochastic method
 - Mack both parameter and process risk estimation are built-in
 - Bootstrap measures parameter risk; process risk measurement can be an "overlay"

Mack Method

Bootstrapping

Practical Method

Mack Method: Overview

- Mack Method derives formulas for the standard error of the reserves projected by the chain ladder method
- Tillinghast recommends using the recursive formulas from Murphy's 1994 paper "Unbiased Loss Development Factors"
- The formulas provide for process and parameter risk, separately and in total
- The method can be extended to incorporate age-to-age factors other than the volume weighted average
- A normal or lognormal distribution is fit to the mean and variance of the reserve to yield a distribution of reserves
- The variability of the tail beyond the triangle can be incorporated in various ways

Mack: Summary

Advantages

- Widely regarded in the industry
- Founded in statistical theory
- Works with chain-ladder eligible triangles
- Can reflect tail variability

Disadvantages

- Data outliers can have a leveraged effect on the results
- May over-parameterize the risk
 - n(n+1)/2 data points
 - 2(n-1) parameters: link ratios and the development periods' variances

Mack Method

Bootstrapping

Practical Method

Bootstrap Method: Overview

- Bootstrapping is a simulation technique that generates empirical probability distributions of complex functions
- A triangle of cumulative fitted values for the past triangle is obtained by backwards recursion on the most recent diagonal using standard chain ladder link ratios
- A set of Pearson residuals is calculated from the fitted and actual data
- Bootstrapping utilizes the sampling-with-replacement technique on the residuals of the historical data
- Each simulated sampling scenario produces a new "realization" of triangular data that has the same statistical characteristics as the actual data
- Our model calculates both parameter and total risk
- Our bootstrapping implementation can calculate tail volatility by employing curve fitting to each realization of average loss development factors
- Our Bootstrapping implementation includes a B-F option for the new data "realization"
- Outlier observations can be restricted
- The sampling of residuals can be restricted for the first development period

Bootstrapping: Summary

Advantages

- Easy to understand and explain
- Commonly used in industry
- Accommodates BF method
- Facilitates the calculation of tail volatility

Disadvantages

- Data outliers can have a leveraged effect on the results
- Method does not work well with negative loss development (due to underlying theoretical model)

Mack Method

Bootstrapping

Practical Method

Practical Method: Basic Theory and assumptions

- The Practical Method uses Monte Carlo simulation to estimate reserve distributions based on the three most popular deterministic methods – Chain Ladder, Loss Ratio, and Bornhuetter-Ferguson
- Practical simulates age-to-age (ATA) factors as normal or lognormal r.v.'s and loss ratios as normal r.v.'s.
 - Means and variances of those distributions are selected inputs
 - For BF method, LDFs can be "fixed" based on the ATA means, or "variable" based on the ATA simulations
 - The variability of the tail factor is a manual entry or, if left blank, can be modelled by assuming that the standard error of the last age-to-age factor is repeated for as many years as the user selects
- Explicitly reflects process risk only, but parameter can be incorporated judgmentally

Practical: Summary

Advantages

- Easy to understand and explain
- Accommodates the three most popular actuarial deterministic methods
- Can incorporate tail variability

Disadvantages

- Not as well known in the actuarial community
- Does not explicitly measure parameter risk

Flexibility allows user to obtain wide range of results.

Tail variability

- Many of the popular stochastic methods only measure risk to the edge of the triangle
 - Variability for development beyond the triangle so called "tail variability" – must be measured and incorporated separately
- Mack suggested a heuristic approach to tail variability in his 1999 paper
- Bootstrap (per England and Verrall, 1998) also only measures risk to the edge of the triangle
- Monte carlo simulation can simulate a tail assuming you have an idea of the variability of your tail factor
- Imputed Variability is an alternative tail variability approach that could be used to supplement any stochastic method whose variability estimate is to the edge of the triangle

Method I: Tail variability can be reflected with the Mack Method using the heuristic in his 1999 paper ...

Mack Met		•	she Data								
Taylor, G., at	nd F. Ashe, "S			timates of O	0	Claims," <i>Journ</i>	ial of Econome	trics, 1983 , 2	3, pp. 37-61.		
AY/DY	1	2	3	4	5	6	7	8	9	10	Ultimate
i/k	k=1	k=2	k=3	k=4	k=5	k=6	k=7	k=8	k=9	k=10	$k = \infty$
i=1	357,848	1,124,788	1,735,330	2,218,270	2,745,596	3,319,994	3,466,336	3,606,286	3,833,515	3,901,463	4,291,609
i=2	352,118	1,236,139	2,170,033	3,353,322	3,799,067	4,120,063	4,647,867	4,914,039	5,339,085	5,433,719	5,977,091
i=3	290,507	1,292,306	2,218,525	3,235,179	3,985,995	4,132,918	4,628,910	4,909,315	5,285,148	5,378,826	5,916,709
i=4	310,608	1,418,858	2,195,047	3,757,447	4,029,929	4,381,982	4,588,268	4,835,458	5,205,637	5,297,906	5,827,696
i=5	443,160	1,136,350	2,128,333	2,897,821	3,402,672	3,873,311	4,207,459	4,434,133	4,773,589	4,858,200	5,344,020
i=6	396,132	1,333,217	2,180,715	2,985,752	3,691,712	4,074,999	4,426,546	4,665,023	5,022,155	5,111,171	5,622,289
i=7	440,832	1,288,463	2,419,861	3,483,130	4,088,678	4,513,179	4,902,528	5,166,649	5,562,182	5,660,771	6,226,848
i=8	359,480	1,421,128	2,864,498	4,174,756	4,900,545	5,409,337	5,875,997	6,192,562	6,666,635	6,784,799	7,463,279
i=9	376,686	1,363,294	2,382,128	3,471,744	4,075,313	4,498,426	4,886,502	5,149,760	5,544,000	5,642,266	6,206,493
i=10	344,014	1,200,818	2,098,228	3,057,984	3,589,620	3,962,307	4,304,132	4,536,015	4,883,270	4,969,825	5,466,807
sum below											
diagonal	0	1,200,818	4,480,356	10,704,484	16,654,155	22,458,247	28,603,165	34,979,600	42,942,618	49,137,483	58,342,840
-										selected	
$f_i = ATAs$	3.491	1.747	1.457	1.174	1.104	1.086	1.054	1.077	1.018	1.100	
CDFs	15.891	4.553	2.605	1.788	1.523	1.380	1.270	1.205	1.119	1.100	
										<u>heuristic</u>	
σ_i^2	160,280	37,737	41,965	15,183	13,731	8,186	447	1,147	447	13,731	
σ_f^2	0.04817	0.00368	0.00279	0.00082	0.00076	0.00051	0.00004	0.00013	0.00012	0.00076	

... Variance estimates are completed for future development periods using the Murphy formulas ...

Mack MethodTaylor-Ashe DataTotal Variance of Chain Ladder Projection

												Standard
i/k	k=1	k=2	k=3	k=4	k=5	k=6	k=7	k=8	k=9	k=10	$k=\infty$	Error
i=1									-		6.52E+10	255,358
i=2								_		5.71E+09	1.04E+11	322,627
i=3							_		8.88E+09	1.48E+10	1.14E+11	337,491
i=4						_		2.79E+09	1.19E+10	1.78E+10	1.16E+11	340,279
i=5					_		3.94E+10	4.63E+10	6.14E+10	6.83E+10	1.67E+11	409,208
i=6						6.11E+10	1.14E+11	1.29E+11	1.58E+11	1.69E+11	2.95E+11	542,772
i=7					6.29E+10	1.46E+11	2.19E+11	2.46E+11	2.95E+11	3.12E+11	4.80E+11	692,462
i=8				1.43E+11	2.75E+11	4.21E+11	5.56E+11	6.21E+11	7.32E+11	7.66E+11	1.06E+12	1,027,513
i=9			5.83E+10	2.40E+11	3.93E+11	5.47E+11	6.93E+11	7.73E+11	9.05E+11	9.44E+11	1.24E+12	1,115,196
i=10		6.08E+10	2.36E+11	6.03E+11	8.84E+11	1.14E+12	1.38E+12	1.54E+12	1.79E+12	1.86E+12	2.34E+12	1,528,545
Sum		6.08E+10	3.07E+11	1.11E+12	1.91E+12	2.92E+12	4.02E+12	4.52E+12	5.50E+12	5.99E+12	1.03E+13	3,202,424
Standard Erro	or	246,656	553,840	1,053,717	1,382,465	1,710,220	2,005,746	2,126,418	2,345,361	2,447,618	3,202,424	

... The 10% tail increases total CV of the reserve by 20 only basis points

				Errors w/ I Irsive Form	1.		CV	
AY	Est'd Ultimate	Liability	Process risk	Parameter risk	Total risk	Process risk	Parameter risk	Total risk
1	4,291,609	390,146	231,457	107,868	255,358	59.3%	27.6%	65.5%
2	5,977,091	638,006	278,384	163,066	322,627	43.6%	25.6%	50.6%
3	5,916,709	1,007,394	289,437	173,570	337,491	28.7%	17.2%	33.5%
4	5,827,696	1,239,428	292,387	174,067	340,279	23.6%	14.0%	27.5%
5	5,344,020	1,470,709	359,922	194,697	409,208	24.5%	13.2%	27.8%
6	5,622,289	1,930,577	482,479	248,627	542,772	25.0%	12.9%	28.1%
7	6,226,848	2,743,718	616,826	314,688	692,462	22.5%	11.5%	25.2%
8	7,463,279	4,598,781	916,626	464,305	1,027,513	19.9%	10.1%	22.3%
9	6,206,493	4,843,199	1,023,695	442,392	1,115,196	21.1%	9.1%	23.0%
10	5,466,807	5,122,793	1,437,309	520,187	1,528,545	28.1%	10.2%	29.8%
Total:	58 , 342,840	23,594,604	2,235,431	2,293,113	3,202,424	9.5%	9.7%	13.6%

Taylor-Ashe Data

With no tail

Mack Method

Total:	53,038,946	18,290,709	1,878,292	1,569,349	2,447,618	10.3%	8.6%	13.4%
Diff.:	5,303,895	5,303,895	357,139	723,764	754,806	-0.8%	1.1%	0.2%

Other stochastic methods can be expanded to incorporate tail variability: two examples

- Bootstrap
 - For each simulated "false history" triangle, fit a power curve to the link ratios that result
 - The ultimates in each simulation will reflect different tails
- Practical (Tillinghast's version of monte carlo stochastic reserving)
 - Assume you have a tail from another source whose distribution you want to simulate in a monte carlo fashion
 - Your tail is the mean of the distribution
 - For the distribution's variance, you can try
 - the Mack heuristic or
 - the Imputed Tail Variability technique below

Imputed Tail Variability: Using selected ultimates by accident year, calculate the implied tail factor variability

XYZI	nsurance: Worke	ers Compensatio	on								
	Selected Reported										
Accident	Ultimate	Loss Dev to	Rptd Tail								
Period	Loss & ALAE	120 Mos.	Factors								
1997	254,354,038	251,134,948	1.01282								
1998	242,595,872	239,481,279	1.01301								
1999	247,896,393	244,969,955	1.01195								
2000	261,515,841	258,477,171	1.01176								
2001	293,849,905	290,199,024	1.01258								
2002	288,083,714	283,993,986	1.01440								
2003	325,907,056	321,275,467	1.01442								
2004	382,581,046	375,166,184	1.01976								
2005	431,081,736	409,163,650	1.05357								
2006	450,124,774	400,874,277	1.12286								
Tot/Wtd Avg	3,177,990,375	3,074,735,942	1.03358								
Process Variar	nce ≈ var(AY link ra	atios)	0.001282								
Parameter Vari	ance (Process va	riance / n-1)	0.000142								

- Each accident year gives rise to a different estimated 120-ult tail factor = f_{10}
- The formula for the parameter variance is the well-known formula for the variance of a population mean
- Weighted averages were used here; if the simple average is selected, use Excel's 'var' function
- Use formulas for the variance of the product of independent random variables (next page)

The imputed variance of the 1.034 tail adds 260 basis points to the CV of estimated loss

Process risk:
$$Var(C_{10} \cdot f_{10}) = Var(C_{10})E^2(f_{10}) + Var(f_{10})E^2(C_{10}) + Var(C_{10})Var(f_{10})$$

Parameter risk: $Var(\hat{C}_{10} \cdot \hat{f}_{10}) = Var(\hat{C}_{10})E^2(\hat{f}_{10}) + Var(\hat{f}_{10})E^2(\hat{C}_{10}) + Var(\hat{C}_{10})Var(\hat{f}_{10})$

XYZ Insurance: Workers Compensation	Risk					
	Parameter	Process	Total			
Estimated loss developed to 120 mos (prior slide) Variance of total loss developed to 120 mos (Mack calculation not shown)	3,074,735,942 2.4219E+14	3,074,735,942 1.0672E+15	3,074,735,942 1.3094E+15			
CV of developed loss to 120 mos	0.5%	1.1%	1.2%			
Mean Tail Factor (prior slide)	1.034	1.034	1.034			
Variance of tail factor (prior slide)	0.0001424	0.0012818				
Var(developed loss to 120 mos x tail) (formulas above)	1.6052E+15	1.3259E+16	1.4864E+16			
Standard error	40,064,600	115,148,335	121,919,282			
Estimated IBNR (not shown)	380,749,837	380,749,837	380,749,837			
CV of estimated IBNR	10.5%	30.2%	32.0%			
Estimated Ultimate Loss (prior slide)	3,177,990,375	3,177,990,375	3,177,990,375			
CV of Estimated Ultimate Loss	1.3%	3.6%	<u>3.8%</u>			

Aggregation techniques: across lines

Means aggregate without much fuss:

• E(X+Y) = E(X) + E(Y)

i.e., having the marginal moment gives you the aggregate moment

 Variances aggregate without much fuss when the lines are independent – er, too strong – uncorrelated

Var(X+Y) = Var(X) + Var(Y)

i.e., having the marginal variance gives you the aggregate variance iff X and Y are not correlated

- If you suspect that your lines' are skewed, and the first two moments won't suffice to capture the full shape, you will have to resort to "other means"
 - The solution du-jour utilizes "Copulas"

Refresher points on covariance and correlation

Covariance is to the formula for the variance of the sum of two random variables as the cross product term is to the square of a binomial

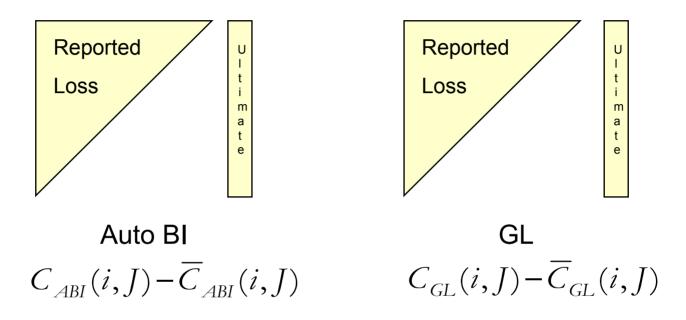
 $Var(X \pm Y) = Var(X) \pm 2Cov(X, Y) + Var(Y)$

- Correlation scales the two lines by dividing by their standard deviations Correlation Coefficient: $\rho_{XY} = \frac{Cov(X,Y)}{\sigma_X \sigma_Y}$
 - Correlation is "standardized" covariance
- The concepts are expanded to a vector of distributions X for N lines of business via the covariance matrix and the correlation matrix

 $\Sigma = \begin{bmatrix} Var(X_{1}) & Cov(X_{1}, X_{2}) & \cdots & Cov(X_{1}, X_{N}) \\ Cov(X_{2}, X_{1}) & Var(X_{2}) & \cdots & Cov(X_{2}, X_{N}) \\ \vdots & \vdots & \ddots & \vdots \\ Cov(X_{N}, X_{1}) & Cov(X_{N}, X_{2}) & \cdots & Var(X_{N}) \end{bmatrix} \quad Corr = \begin{bmatrix} 1 & corr(X_{1}, X_{2}) & \cdots & corr(X_{1}, X_{N}) \\ corr(X_{2}, X_{1}) & 1 & \cdots & corr(X_{2}, X_{N}) \\ \vdots & \vdots & \ddots & \vdots \\ corr(X_{N}, X_{1}) & corr(X_{N}, X_{2}) & \cdots & 1 \end{bmatrix}$

- These matrices are positive-semidefinite (i.e., you can "square root" them, analogous to a standard deviation and a variance)
- Can be inverted only if positive-definite (cannot be "zero")

Correlation between lines measures the degree to which deviations from the mean move – or don't move – in conjunction with each other



- Correlation is a linear concept
- Given pairwise samples of ultimates from two lines for *I* accident years, the strength to which the lines "co-vary" is estimated by the statistic

$$\frac{1}{I-1}\sum_{i=1}^{I} \left(C_{ABI}(i,J) - \overline{C}_{ABI}(i,J) \right) \left(C_{GL}(i,J) - \overline{C}_{GL}(i,J) \right)$$

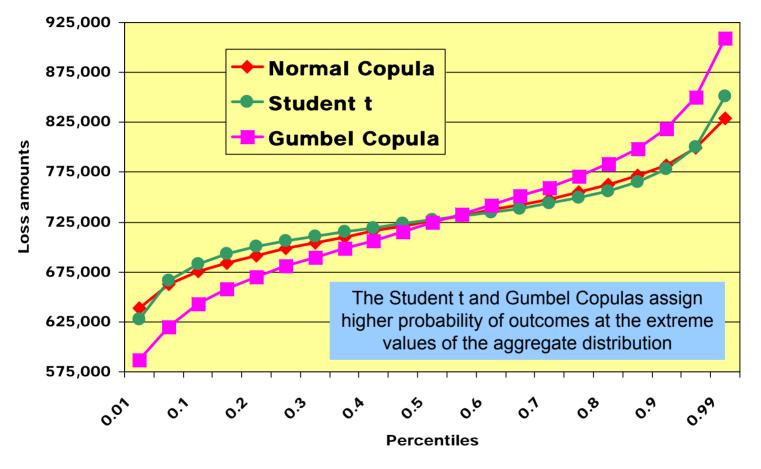
Correlation measures the <u>average</u> strength of association between two lines

- Correlation can help you find another moment of the aggregate distribution of two or more lines if you intend to model aggregate losses with a two parameter probability distribution (e.g., lognormal)
- But a two parameter probability distribution is insufficient to model a joint distribution whose strength of association increases in the tail
 - Example: for property losses, the correlation is higher in the tail of the distribution
- Ideally one would like to specify the complete joint distribution of N lines of business
- It turns out that every joint distribution of N lines of business can be decomposed into its N marginal distributions by virtue of a amalgamating function called a "copula"
- Vice versa, given the marginal distributions of N lines of business, the joint distribution can be calculated with the appropriate copula

Copulas provide a convenient way to express the aggregate distribution of several lines

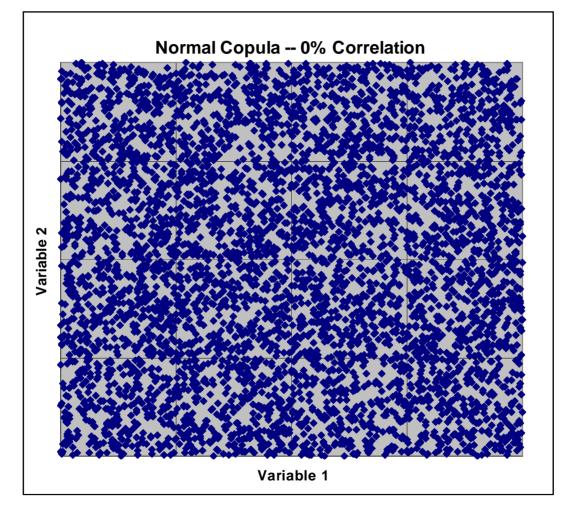
- Three popular copulas in actuarial use today are
 - The Normal copula
 - The Student-t copula
 - The Gumbel copula
- Copula required components (with the exception of Gumbel):
 - The marginal distributions of the individual lines
 - Correlations among these lines
- The Gumbel copula is different from the Normal and Student-t
 - It does not need a complete correlation matrix
 - Association is expressed by a single parameter applying to all lines
 - Upper tail dependence is strong while lower tail dependence always equals 0

The choice of the appropriate copula is a matter of judgment

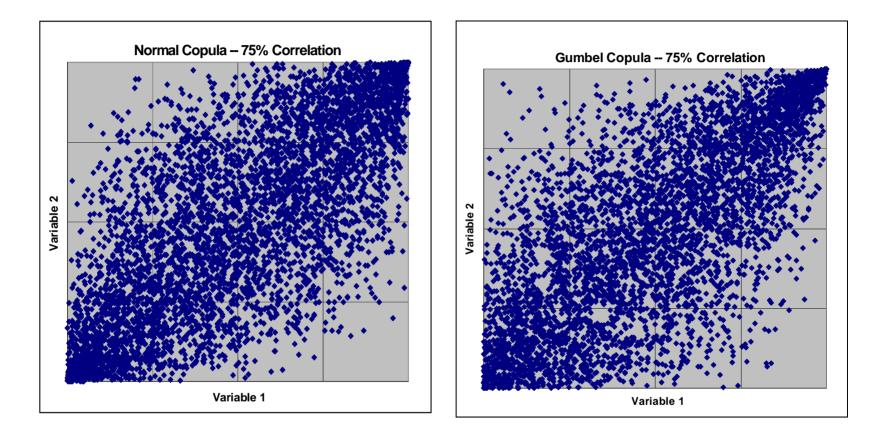


The portfolio of liabilities can be stress-tested under varying copula assumptions

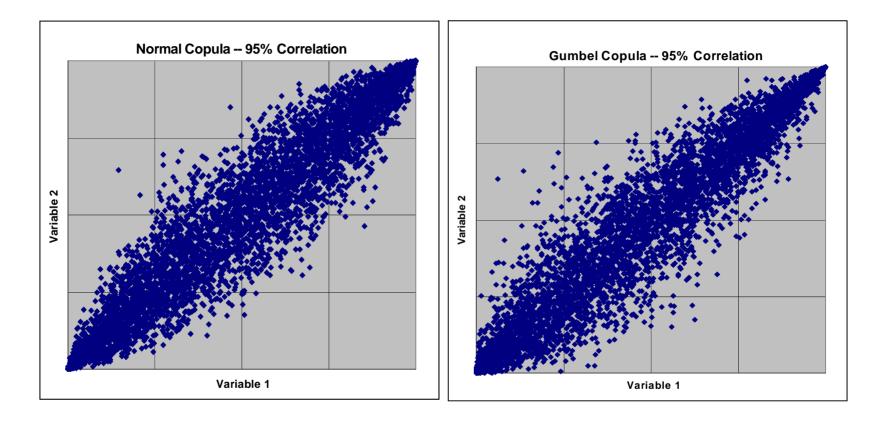
With independent variables results are not correlated



75% correlation: bad results in one line make it more likely to have bad results in the second line



The relationship is even more pronounced with 95% correlation



Questions?