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Why analyze the variability of claim liabilities?

NAIC Actuarial opinions are produced on a “reasonableness” standard
Variation from the “best estimate” is the issue

Actuarial Opinion Summary (AOS) includes focus on ranges

SEC Require public companies to discuss reserve uncertainty in 10-K 
filings

Increasing pressure…hand-waving rationale will soon be inadequate

Rating 
Agencies

Capital adequacy analyses usually assume reserve shortfalls

Management is expected to consider more than just the best estimate

Actuarial 
Profession

CAS Task Force recommends greater focus on advanced techniques 
for measuring variability of reserves

UK group reaches similar findings

Fiduciary 
Duty

It is prudent business practice to recognize your business risks to the 
best of your ability

Stochastic analysis can provide strategic operational and financial 
insights
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What is an estimate of claim liabilities?

A point estimate of the ultimate value of outstanding claim liabilities is a 
prediction of the mean value of that random variable

Range of Reasonably 
Likely Outcomes

Range of 
Point Estimates

Our estimate of the mean may not coincide with the true mean
Ultimate liabilities will ultimately deviate from their true mean

We do not attempt to predict the amount 
by which ultimate liabilities will deviate 
from the “true mean”

Where can our estimate of the ultimate 
value of outstanding claim liabilities go 
wrong relative to the eventual value of 
outstanding claims?
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A “real life” analogy

Rather than estimating the value of future payments going out of the 
claims department, suppose we want to estimate the IQ of the next person 
to walk in the back door

If we knew the average IQ of all CLRS registrants, that would be our guess

Alternatively, our method is to measure the average IQ of everyone in 
Room ___X___

… everyone take out a piece of paper …

When Joe walks in, by what amount could our guess be wrong?
The average IQ in the room could be different from true CLRS mean IQ
Joe’s IQ could be different from the true mean
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Several distinct types of risks are 
inherent in the estimation of claim liabilities

Eventual 
Outcome

Estimate of 
Expected 
Outcome

True Mean 
Outcome

Process Risk
Difference between 

actual costs and true 
mean

Parameter Risk
Variability due to fact 

that our model’s 
parameters are 

estimates

Model Risk
Variability due to fact 

that our model 
imperfectly represents 

reality

Total Risk

Our room’s average IQ today 
could be different from the 

average of all such samples 
from Room __X__

Increase or 
decrease with 

volume?

Room X’s population may 
not be representative of the 

entire CLRS population: 
IQ biased on the high side?

Increase or decrease with volume?

The IQ of the Joe walking 
through the door will differ 
from the true CLRS mean

Estimation error
Difference between estimated mean and true mean
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Total Risk, aka Mean Square Error, is the
statistical equivalent of the Pythagorean Theorem

Accident Year i’s
Eventual 
Outstanding 
Liability

Method’s Estimate of 
Accident Year i’s

Outstanding Liability

Mean of Potential 
Deterministic 
Estimates = 
Liability’s True Mean 
(if unbiased) Parameter Risk

“Explained Deviation”

Process Risk

“Unexplained Deviation”
Total Risk

aka, Mean Square Error

bias excluding
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iĈ

)()ˆ( ii CECE =
(if unbiased)

bias



© 2007 Towers Perrin 7

One last page of definitions

Sometimes the term “risk” refers to variance and sometimes to standard deviation, 
depending on the context
Most of the time “mean square error” and “total variance” are used interchangeably

When the estimate is unbiased, mse and total variance are identical
What is bias?
— Bias occurs when the mean value of your estimate/estimation procedure of 

ultimate loss does not coincide with the true mean value of ultimate loss 
for some “systematic” reason not captured by your procedure

Estimation error = parameter risk + bias2

Coefficient of Variation, or CV
Coefficient of Variation (X)  =  Standard Deviation (X)  ÷ Mean (X)
Note: Standard Deviation (Ultimate Loss) = 

Standard Deviation (Outstanding Loss) = 
Standard Deviation (IBNR)

because the only difference between the various quantities is a known dollar 
amount
Stochastic methods generally estimate the standard deviation by analyzing 
estimates of ultimate loss
The CVs of ultimate loss, unpaid loss, and IBNR will differ because, although 
their numerators are the same, their denominators are different
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Relevant sources of variability 
depend on the question at hand

When is it important to analyze total risk?
Financial solvency/economic capital context
When solvency is the issue       all sources of risk are relevant

When is it important to analyze only parameter risk?
“Reasonable range of estimates”
When the reasonability of the estimate is the issue 
only estimation error (= parameter risk in the absence of bias) is 
relevant

Ability to estimate those separate sources of risk varies by stochastic 
method

Mack both parameter and process risk estimation are built-in
Bootstrap       measures parameter risk; process risk measurement 
can be an “overlay”
Monte Carlo methods        e.g., the “process” of loss development 
factors is simulated around a selected factor; the variability of the 
factor – the parameter – must be handled separately
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Mack Method

Bootstrapping

Practical Method
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Mack Method: Overview

Mack Method derives formulas for the standard error of the reserves 
projected by the chain ladder method

Tillinghast recommends using the recursive formulas from Murphy’s 1994 
paper “Unbiased Loss Development Factors”

The formulas provide for process and parameter risk, separately and in 
total

The method can be extended to incorporate age-to-age factors other 
than the volume weighted average

A normal or lognormal distribution is fit to the mean and variance of the 
reserve to yield a distribution of reserves

The variability of the tail beyond the triangle can be incorporated in 
various ways
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Mack: Summary

Advantages Disadvantages

Widely regarded in the 
industry

Founded in statistical theory

Works with chain-ladder 
eligible triangles

Can reflect tail variability

Data outliers can have a 
leveraged effect on the 
results

May over-parameterize the 
risk

n(n+1)/2 data points

2(n-1) parameters: link 
ratios and the 
development periods’
variances
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Mack Method

Bootstrapping

Practical Method
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Bootstrap Method: Overview

Bootstrapping is a simulation technique that generates empirical probability 
distributions of complex functions

A triangle of cumulative fitted values for the past triangle is obtained by backwards 
recursion on the most recent diagonal using standard chain ladder link ratios

A set of Pearson residuals is calculated from the fitted and actual data

Bootstrapping utilizes the sampling-with-replacement technique on the residuals of 
the historical data

Each simulated sampling scenario produces a new “realization” of triangular data 
that has the same statistical characteristics as the actual data

Our model calculates both parameter and total risk

Our bootstrapping implementation can calculate tail volatility by employing curve 
fitting to each realization of average loss development factors

Our Bootstrapping implementation includes a B-F option for the new data 
“realization”

Outlier observations can be restricted

The sampling of residuals can be restricted for the first development period
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Bootstrapping: Summary

Advantages Disadvantages

Easy to understand and 
explain

Commonly used in industry

Accommodates BF method

Facilitates the calculation of 
tail volatility

Data outliers can have a 
leveraged effect on the 
results

Method does not work well 
with negative loss 
development (due to 
underlying theoretical 
model)
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Mack Method

Bootstrapping

Practical Method
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Practical Method: Basic Theory and assumptions

The Practical Method uses Monte Carlo simulation to estimate 
reserve distributions based on the three most popular deterministic 
methods – Chain Ladder, Loss Ratio, and Bornhuetter-Ferguson

Practical simulates age-to-age (ATA) factors as normal or lognormal 
r.v.’s and loss ratios as normal r.v.’s. 

Means and variances of those distributions are selected inputs
For BF method, LDFs can be “fixed” based on the ATA means, or 
“variable” based on the ATA simulations
The variability of the tail factor is a manual entry or, if left blank, 
can be modelled by assuming that the standard error of the last 
age-to-age factor is repeated for as many years as the user 
selects

Explicitly reflects process risk only, but parameter can be 
incorporated judgmentally
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Practical: Summary

Advantages Disadvantages

Easy to understand and 
explain

Accommodates the three 
most popular actuarial 
deterministic methods

Can incorporate tail 
variability

Not as well known in the 
actuarial community

Does not explicitly measure 
parameter risk

Flexibility allows user to obtain wide range of results.
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Tail variability

Many of the popular stochastic methods only measure risk to the edge of 
the triangle

Variability for development beyond the triangle – so called “tail 
variability” – must be measured and incorporated separately

Mack suggested a heuristic approach to tail variability in his 1999 paper

Bootstrap (per England and Verrall, 1998) also only measures risk to the 
edge of the triangle

Monte carlo simulation can simulate a tail assuming you have an idea of 
the variability of your tail factor

Imputed Variability is an alternative tail variability approach that could be 
used to supplement any stochastic method whose variability estimate is 
to the edge of the triangle
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Method I: Tail variability can be reflected with the 
Mack Method using the heuristic in his 1999 paper …

Mack Method Taylor-Ashe Data
Taylor, G., and F. Ashe, “Second Moments of Estimates of Outstanding Claims,” Journal of Econometrics , 1983, 23, pp. 37-61.

AY/DY 1 2 3 4 5 6 7 8 9 10 Ultimate
i/k k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=∞
i=1 357,848 1,124,788 1,735,330 2,218,270 2,745,596 3,319,994 3,466,336 3,606,286 3,833,515 3,901,463 4,291,609
i=2 352,118 1,236,139 2,170,033 3,353,322 3,799,067 4,120,063 4,647,867 4,914,039 5,339,085 5,433,719 5,977,091

i=3 290,507 1,292,306 2,218,525 3,235,179 3,985,995 4,132,918 4,628,910 4,909,315 5,285,148 5,378,826 5,916,709

i=4 310,608 1,418,858 2,195,047 3,757,447 4,029,929 4,381,982 4,588,268 4,835,458 5,205,637 5,297,906 5,827,696
i=5 443,160 1,136,350 2,128,333 2,897,821 3,402,672 3,873,311 4,207,459 4,434,133 4,773,589 4,858,200 5,344,020
i=6 396,132 1,333,217 2,180,715 2,985,752 3,691,712 4,074,999 4,426,546 4,665,023 5,022,155 5,111,171 5,622,289
i=7 440,832 1,288,463 2,419,861 3,483,130 4,088,678 4,513,179 4,902,528 5,166,649 5,562,182 5,660,771 6,226,848
i=8 359,480 1,421,128 2,864,498 4,174,756 4,900,545 5,409,337 5,875,997 6,192,562 6,666,635 6,784,799 7,463,279
i=9 376,686 1,363,294 2,382,128 3,471,744 4,075,313 4,498,426 4,886,502 5,149,760 5,544,000 5,642,266 6,206,493
i=10 344,014 1,200,818 2,098,228 3,057,984 3,589,620 3,962,307 4,304,132 4,536,015 4,883,270 4,969,825 5,466,807

sum below
diagonal 0 1,200,818 4,480,356 10,704,484 16,654,155 22,458,247 28,603,165 34,979,600 42,942,618 49,137,483 58,342,840

selected
f i  = ATAs 3.491 1.747 1.457 1.174 1.104 1.086 1.054 1.077 1.018 1.100

CDFs 15.891 4.553 2.605 1.788 1.523 1.380 1.270 1.205 1.119 1.100
heuristic

σi
2 160,280 37,737 41,965 15,183 13,731 8,186 447 1,147 447 13,731

σf
2 0.04817 0.00368 0.00279 0.00082 0.00076 0.00051 0.00004 0.00013 0.00012 0.00076
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… Variance estimates are completed for future 
development periods using the Murphy formulas …

Mack Method Taylor-Ashe Data

Total Variance of Chain Ladder Projection

i/k k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10 k=∞
Standard 

Error
i=1 6.52E+10 255,358
i=2 5.71E+09 1.04E+11 322,627
i=3 8.88E+09 1.48E+10 1.14E+11 337,491
i=4 2.79E+09 1.19E+10 1.78E+10 1.16E+11 340,279
i=5 3.94E+10 4.63E+10 6.14E+10 6.83E+10 1.67E+11 409,208
i=6 6.11E+10 1.14E+11 1.29E+11 1.58E+11 1.69E+11 2.95E+11 542,772
i=7 6.29E+10 1.46E+11 2.19E+11 2.46E+11 2.95E+11 3.12E+11 4.80E+11 692,462
i=8 1.43E+11 2.75E+11 4.21E+11 5.56E+11 6.21E+11 7.32E+11 7.66E+11 1.06E+12 1,027,513
i=9 5.83E+10 2.40E+11 3.93E+11 5.47E+11 6.93E+11 7.73E+11 9.05E+11 9.44E+11 1.24E+12 1,115,196
i=10 6.08E+10 2.36E+11 6.03E+11 8.84E+11 1.14E+12 1.38E+12 1.54E+12 1.79E+12 1.86E+12 2.34E+12 1,528,545
Sum 6.08E+10 3.07E+11 1.11E+12 1.91E+12 2.92E+12 4.02E+12 4.52E+12 5.50E+12 5.99E+12 1.03E+13 3,202,424

Standard Error 246,656 553,840 1,053,717 1,382,465 1,710,220 2,005,746 2,126,418 2,345,361 2,447,618 3,202,424
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… The 10% tail increases total CV 
of the reserve by 20 only basis points

Mack Method Taylor-Ashe Data

AY
Est'd 

Ultimate Liability Process risk
Parameter 

risk Total risk Process risk
Parameter 

risk Total risk

1 4,291,609 390,146 231,457       107,868       255,358       59.3% 27.6% 65.5%
2 5,977,091 638,006 278,384       163,066       322,627       43.6% 25.6% 50.6%
3 5,916,709 1,007,394 289,437       173,570       337,491       28.7% 17.2% 33.5%
4 5,827,696 1,239,428 292,387       174,067       340,279       23.6% 14.0% 27.5%
5 5,344,020 1,470,709 359,922       194,697       409,208       24.5% 13.2% 27.8%
6 5,622,289 1,930,577 482,479       248,627       542,772       25.0% 12.9% 28.1%
7 6,226,848 2,743,718 616,826       314,688       692,462       22.5% 11.5% 25.2%
8 7,463,279 4,598,781 916,626       464,305       1,027,513    19.9% 10.1% 22.3%
9 6,206,493 4,843,199 1,023,695    442,392       1,115,196    21.1% 9.1% 23.0%
10 5,466,807 5,122,793 1,437,309    520,187       1,528,545    28.1% 10.2% 29.8%

Total: 58,342,840 23,594,604 2,235,431    2,293,113    3,202,424    9.5% 9.7% 13.6%

With no tail

Total: 53,038,946 18,290,709 1,878,292    1,569,349    2,447,618    10.3% 8.6% 13.4%

Diff.: 5,303,895 5,303,895 357,139       723,764       754,806       -0.8% 1.1% 0.2%

Standard Errors w/ Murphy 
Recursive Formulas CV
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Other stochastic methods can be expanded
to incorporate tail variability: two examples

Bootstrap
For each simulated “false history” triangle, fit a power curve to the link 
ratios that result
The ultimates in each simulation will reflect different tails

Practical (Tillinghast’s version of monte carlo stochastic reserving)
Assume you have a tail from another source whose distribution you 
want to simulate in a monte carlo fashion
Your tail is the mean of the distribution
For the distribution’s variance, you can try
— the Mack heuristic or 
— the Imputed Tail Variability technique below
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Imputed Tail Variability: Using selected ultimates by 
accident year, calculate the implied tail factor variability

Each accident year gives rise to 
a different estimated 120-ult tail 
factor = f10

The formula for the parameter 
variance is the well-known 
formula for the variance of a 
population mean

Weighted averages were used 
here; if the simple average is 
selected, use Excel’s ‘var’
function

Use formulas for the variance of 
the product of independent 
random variables (next page)

XYZ Insurance: Workers Compensation

Selected Reported Implied
Accident Ultimate Loss Dev to Rptd Tail
Period Loss & ALAE 120 Mos. Factors

1997 254,354,038 251,134,948 1.01282
1998 242,595,872 239,481,279 1.01301
1999 247,896,393 244,969,955 1.01195
2000 261,515,841 258,477,171 1.01176
2001 293,849,905 290,199,024 1.01258
2002 288,083,714 283,993,986 1.01440
2003 325,907,056 321,275,467 1.01442
2004 382,581,046 375,166,184 1.01976
2005 431,081,736 409,163,650 1.05357
2006 450,124,774 400,874,277 1.12286

Tot/Wtd Avg 3,177,990,375 3,074,735,942 1.03358

Process Variance ≈ var(AY link ratios) 0.001282
Parameter Variance (Process variance / n-1 ) 0.000142
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XYZ Insurance: Workers Compensation
Parameter Process Total

Estimated loss developed to 120 mos (prior slide) 3,074,735,942 3,074,735,942 3,074,735,942
Variance of total loss developed to 120 mos 2.4219E+14 1.0672E+15 1.3094E+15
   (Mack calculation not shown)

CV of developed loss to 120 mos 0.5% 1.1% 1.2%

Mean Tail Factor (prior slide) 1.034 1.034 1.034
Variance of tail factor (prior slide) 0.0001424 0.0012818

Var(developed loss to 120 mos x tail) (formulas above) 1.6052E+15 1.3259E+16 1.4864E+16
Standard error 40,064,600 115,148,335 121,919,282

Estimated IBNR (not shown) 380,749,837 380,749,837 380,749,837
CV  of estimated IBNR 10.5% 30.2% 32.0%

Estimated Ultimate Loss (prior slide) 3,177,990,375 3,177,990,375 3,177,990,375
CV of Estimated Ultimate Loss 1.3% 3.6% 3.8%

Risk

The imputed variance of the 1.034 tail
adds 260 basis points to the CV of estimated loss

)()()()()()()( 101010
2

1010
2

101010 fVarCVarCEfVarfECVarfCVar ++=⋅

)ˆ()ˆ()ˆ()ˆ()ˆ()ˆ()ˆˆ( 101010
2

1010
2

101010 fVarCVarCEfVarfECVarfCVar ++=⋅Parameter risk:

Process risk:
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Aggregation techniques: across lines
Means aggregate without much fuss:

E(X+Y) = E(X) + E(Y)

i.e., having the marginal moment gives you the aggregate moment

Variances aggregate without much fuss when the lines are independent –
er, too strong – uncorrelated 

Var(X+Y) = Var(X) + Var(Y) 

i.e., having the marginal variance gives you the aggregate variance 
iff X and Y are not correlated

If you suspect that your lines’ are skewed, and the first two moments 
won’t suffice to capture the full shape, you will have to resort to “other 
means”

The solution du-jour utilizes “Copulas”
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Refresher points on covariance and correlation
Covariance is to the formula for the variance of the sum of two random 
variables as the cross product term is to the square of a binomial

Correlation scales the two lines by dividing by their standard deviations

Correlation is “standardized” covariance

The concepts are expanded to a vector of distributions X for N lines of 
business via the covariance matrix and the correlation matrix

These matrices are positive-semidefinite (i.e., you can “square root”
them, analogous to a standard deviation and a variance)
Can be inverted only if positive-definite (cannot be “zero”)
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Correlation between lines measures 
the degree to which deviations from the mean 
move – or don’t move – in conjunction with each other

Correlation is a linear concept

Given pairwise samples of ultimates from two lines for I accident 
years, the strength to which the lines “co-vary” is estimated by the 
statistic
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Correlation measures the average 
strength of association between two lines

Correlation can help you find another moment of the aggregate 
distribution of two or more lines if you intend to model aggregate 
losses with a two parameter probability distribution (e.g., lognormal)

But a two parameter probability distribution is insufficient to model a 
joint distribution whose strength of association increases in the tail

Example: for property losses, the correlation is higher in the tail of 
the distribution

Ideally one would like to specify the complete joint distribution of N
lines of business

It turns out that every joint distribution of N lines of business can be 
decomposed into its N marginal distributions by virtue of a 
amalgamating function called a “copula”

Vice versa, given the marginal distributions of N lines of business, the 
joint distribution can be calculated with the appropriate copula
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Copulas provide a convenient way to
express the aggregate distribution of several lines

Three popular copulas in actuarial use today are 
The Normal copula
The Student-t copula
The Gumbel copula

Copula required components (with the exception of Gumbel):
The marginal distributions of the individual lines
Correlations among these lines

The Gumbel copula is different from the Normal and Student-t
It does not need a complete correlation matrix
Association is expressed by a single parameter applying to all lines
Upper tail dependence is strong while lower tail dependence 
always equals 0
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The choice of the appropriate
copula is a matter of judgment 

The portfolio of liabilities can be stress-tested under 
varying copula assumptions
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With independent variables results are not correlated

Normal Copula -- 0% Correlation

Variable 1
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ria

bl
e 
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75% correlation: bad results in one line make it 
more likely to have bad results in the second line

Normal Copula -- 75% Correlation
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The relationship is even more 
pronounced with 95% correlation

Normal Copula -- 95% Correlation

Variable 1
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Questions?
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