Two Approaches to Calculating Correlated Reserve Indications Across Multiple Lines of Business

Gerald Kirschner
Deloitte Consulting

Casualty Loss Reserve Seminar
September 2008

Presentation structure

- Correlation - a general discussion
- Methodologies
- Case study
- Description
- Results using correlation matrix approach
- Results using bootstrap approach
- Conclusion

What this presentation is not

- Presentation is not going to discuss how to simulate ranges of reserves for a single line of business
- The discussion here is of methodologies that might be appropriate for reserve analysis, but are probably not appropriate for Enterprise Risk Management or Capital Adequacy analyses

Correlation

- Correlation vs. causality
- Correlation is a a way of measuring the "strength of relationship" between two sets of numbers.
- Causality is the relation between a cause (something that brings about a result) and its effect.
- Ideally would want to directly model effects of causality, but not always able to do so

Effects of correlation

- Suppose we have two lines, A \& B, whose reserve indications exhibit correlation
- Strength of the correlation is irrelevant if we only care about the mean reserve indication for A + B: mean $(A+B)=$ mean $(A)+$ mean (B)
- Strength of correlation matters when we look towards the ends of the distribution of $(A+B)$.

Effects of correlation: example 1

- 2 lines of business, $N(100,25)$
- $75^{\text {th }}$ percentile of $A+B$ at different levels of correlation between A and B :

Correlation	Values at $75^{\text {th }}$ percentile	Ratio of Values at 75th percentile
0.00	223.8	0.0%
0.25	226.7	1.3%
0.50	229.2	2.4%
0.75	231.5	3.4%
1.00	233.7	4.4%

Effects of correlation: example 2

- Same idea, but increase variability of distributions for lines A and B :

	Standard Deviation Value			
	25	50	100	200
Value for 0.00 correlation at the $75^{\text {th }}$ percentile	223.8	247.7	295.4	390.8
	Ratio of values at $75^{\text {th }}$ percentile			
0.25	1.3%	2.3%	3.8%	5.8%
0.50	2.4%	4.3%	7.3%	11.0%
0.75	3.4%	6.2%	10.4%	15.8%
1.00	4.4%	8.0%	13.4%	20.2%

Correlation methodologies

- Method 1: relies on the user to specify a correlation matrix that describes the relative strength of relationship between the lines of business by analyzed. Will use rank correlation technique to develop a correlated reserve indication.
- Method 2: uses the bootstrap process to maintain any correlations that might be implicit in the historical data. No other information is needed to develop the correlated reserve indication.

Rank correlation example

Method 1 approach

1. Generate N reserve indications for each line of business on a stand-alone basis
2. For each line, sort the N reserve indications from low to high
3. Determine (through other means) the relative relationships between the lines of business being modeled - i.e. the correlations
4. Enter correlation information into a correlation matrix

- Correlation matrix must be symmetric and positive definite

5. Using Cholesky decomposition, create the lower triangular matrix from the original correlation matrix

Method 1 approach continued

6. For each line, generate N random values from a Normal $(0,1)$ distribution, where $\mathrm{N}=$ \# reserve indications produced for each line on a stand-alone basis. Combining the random values across the lines of business produces N vectors of random numbers
7. Multiply the Cholesky decomposed lower triangular matrix with each of the N vectors of random numbers to produce N correlated normal vectors
8. For each line, rank the value of each correlated normal result.
9. Use relative positioning of the correlated Normal draws as the basis for pulling values from the sorted table of uncorrelated reserve indications to create correlated reserve indications across the lines of business

Symmetric and Positive Definite matrix

- Correlation Matrix: Create a square matrix where the $\mathrm{i}, \mathrm{j}^{\text {th }}$ entry is the correlation coefficient between the $\mathrm{i}^{\text {th }}$ and $\mathrm{j}^{\text {th }}$ lines of business. This will be a symmetric matrix, i.e. the Lower Triangle of the Matrix will be the mirror image of the Upper Triangle about its diagonal.
- Positive Definite (PD): The matrix should be positive definite, i.e. loosely speaking - the matrix will have a positive determinant. This will allow the Cholesky decomposition of this matrix.

1.0000	0.9912	0.9000	0.9000
0.9912	1.0000	0.9000	0.9000
0.9000	0.9000	1.0000	0.9000
0.9000	0.9000	0.9000	1.0000

$\square A_{i k}=A_{k i}$ for all i, k
$\square \mathrm{A}_{21}=0.9912=\mathrm{A}_{12}=0.9912$
\square Determinant of the correlation matrix
$=0.000478>0 \rightarrow$ Correlation Matrix is PD
\squareExcel Application function: MDeterm calculates determinant of a matrix

Illustrative Example

Step 1: Generate $\mathrm{N}=6$ loss reserve indications for $\mathrm{k}=3$ lines of business

Reserve Indication				Ranking		
WC	CAL	OL	Aggregate	WC	CAL	OL
200	2,000	60,000	62,200	2	2	6
300	5,000	30,000	35,300	3	5	3
100	6,000	40,000	46,100	1	6	4
400	3,000	20,000	23,400	4	3	2
600	1,000	50,000	51,600	6	1	5
500	4,000	10,000	14,500	5	4	1

Step 2: For each line, sort the $\mathrm{N}=6$ reserve indications from low to high

Ranked Reserve Indication		
WC	CAL	OL
100	1,000	10,000
200	2,000	20,000
300	3,000	30,000
400	4,000	40,000
500	5,000	50,000
600	6,000	60,000

Illustrative Example continued

Step 3: Use extrinsic / intrinsic information to build a correlation matrix that defines the linear relationships among $k=3$ lines. Assumed correlation matrix for this illustrative example is:

$\boldsymbol{R}=\quad$| 1.0000 | 0.9912 | 0.9000 |
| ---: | ---: | ---: |
| 0.9912 | 1.0000 | 0.9000 |
| 0.9000 | 0.9000 | 1.0000 |

Step 4: Symmetric and Positive Definiteness check of the Correlation Matrix (as described in slide 12)

Step 5: Cholesky's Decomposition: Creating a lower triangular matrix L; such that $\mathbf{L} ' \mathbf{L}=\boldsymbol{R}$. We derive:

$$
L=\quad \begin{array}{|l|l|l|}
\hline 1.0000 & 0.0000 & 0.0000 \\
\hline 0.9912 & 0.1324 & 0.0000 \\
\hline 0.9000 & 0.0598 & 0.4318 \\
\hline
\end{array}
$$

Illustrative Example continued

Step 6 : For each line ($k=3$), independently generate $N=6$ random values from a Normal(0,1) distribution. Combine these realizations across the k lines of business to have $N=6$ uncorrelated vectors.

Uncorrelated vector 1	Uncorrelated N(0,1)		
	NORMINV(RAND(),0,1)		
	Line 1	Line 2	Line 3
	-0.7458	0.5288	-0.9943
	-0.3670	-0.0696	-2.0629
	0.2771	-0.9564	-1.7082
	0.4380	-1.1154	0.5344
-	2.8119	0.7469	-0.5076
Uncorrelated vector 6	0.5754	0.4771	0.7955

Illustrative Example continued

Step 7 : Multiply the Cholesky decomposed lower triangular matrix with each of the $N=6$ vectors of random numbers to produce $N=6$ correlated normal vectors

Illustrative Example continued

Step 8. For each line, rank the value of each correlated normal realization.

Correlated Normal		
Line 1	Line 2	Line 3
-0.7458	-0.6693	-1.0689
-0.3670	-0.0696	-2.0629
0.2771	0.1480	-0.5454
0.4380	0.2864	0.5582
2.8119	2.8861	2.3563
0.5754	0.6335	0.8899

\rightarrow| Ranking | | |
| :---: | :---: | :---: |
| Line1 | Line2 | Line3 |
| 1 | 1 | 2 |
| 2 | 2 | 1 |
| 3 | 3 | 3 |
| 4 | 4 | 4 |
| 6 | 6 | 6 |
| 5 | 5 | 5 |

Illustrative Example continued

Step 9: Use relative positioning of the correlated Normal draws as the basis for pulling values from the sorted table of uncorrelated reserve indications to create correlated reserve indications across the lines of business.

Bootstrap Correlation Method

- steps in a single-line Bootstrap process

Actual Cumulative Historical Data

Acc.	Development Age			
Year	$\mathbf{1 2}$	$\mathbf{2 4}$	$\mathbf{3 6}$	$\mathbf{4 8}$
$\mathbf{1}$	1,000	1,500	1,750	2,000
$\mathbf{2}$	1,200	2,000	2,300	
$\mathbf{3}$	1,800	2,500		
$\mathbf{4}$	2,100			
Ave Link Ratio	1.500	1.157	$\mathbf{1 . 1 4 3}$	

Recast Cumulative Historical Data

Acc.	Development Age				Ex: 1,988 =
Year	12	24	36	48	2,300 $\div 1.157$
1	1,008	1,512	1,750	2,000	1
2	1,325	1,988	2,300		
3	1,667	2,500			
4	2,100				

Bootstrap Correlation Method
 - steps in a single-line Bootstrap process

Actual Incremental Historical Data

Acc.	Develqment Age			
Year	$\mathbf{1 2}$	$\mathbf{2 4}$	$\mathbf{3 6}$	$\mathbf{4 8}$
$\mathbf{1}$	1,00	500	250	250
$\mathbf{2}$	1,200	80	300	
$\mathbf{3}$	1,80	700		
$\mathbf{4}$	2,100			

3. Convert both actual and fitted triangles to incrementals
4. Look at difference between fitted and actual payments to develop a set of Residuals (i.e. the variability parameters)

Recast Incremental Hstaical Data

	Aoc				Develoment Age			
Year	$\mathbf{1 2}$	24	36	48				
	1,008	504	238	250				
$\mathbf{1}$	1,325	663	312					
$\mathbf{3}$	1,667	833						
$\mathbf{4}$	2,100							

Residuals
=(Acual Incremental - Reccast Incremental) / sqt(Reccast Incremential)

Acc.	Development Age			
Year	$\mathbf{1 2}$	$\mathbf{2 4}$	$\mathbf{3 6}$	$\mathbf{4 8}$
	(0.259)	(0.183)	0.801	0.000
$\mathbf{1}$	(3.437)	5.340	(0.699)	
$\mathbf{2}$	3.266	(4.619)		
$\mathbf{4}$	0.000			

Bootstrap Correlation Method

- steps in a single-line Bootstrap process

Random Draw from Residuals

Acc.	Development Age			
Year	12	24	36	48
1	1.462	(0.335)	5.963	1.462
2	9.749	(8.433)	(0.473)	
3	(1.275)	(6.275)		
4	9.749			

False History

Acc. Year	$\mathbf{y y y y}$	Development Age			
$\mathbf{1}$	$\mathbf{1 2}$	$\mathbf{2 4}$	$\mathbf{3 6}$	$\mathbf{4 8}$	
	1,055	497	330	273	
$\mathbf{2}$	1,680	445	304		
$\mathbf{3}$	1,615	652			
$\mathbf{4}$	2,547				

5. Create a "false history" by making random draws, with replacement, from the triangle of residuals. Note: this will be the key step in the Correlation process!
6. Combine the random draws with the recast historical data to come up with the "false history".

Bootstrap Correlation Method

- steps in a single-line Bootstrap process

Cumulated False History

Acc. Year	Development Age			
($\mathbf{1 2}$	$\mathbf{2 4}$	$\mathbf{3 6}$	$\mathbf{4 8}$
$\mathbf{1}$	1,055	1,551	1,881	2,154
$\mathbf{2}$	1,680	2,125	2,429	
$\mathbf{3}$	1,615	2,267		
$\mathbf{4}$	2,547			
Ave Link Ratio	1.367	1.172	1.145	

Squaring of the Cumulated False History

| Acc.
 Year | Development Age | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| | $\mathbf{1 2}$ | $\mathbf{2 4}$ | $\mathbf{3 6}$ | $\mathbf{4 8}$ |
| | 1,055 | 1,551 | 1,881 | 2,154 |
| $\mathbf{1}$ | 1,680 | 2,125 | 2,429 | 2,782 |
| $\mathbf{2}$ | 1,615 | 1,615 | 1,893 | $\mathbf{2 , 1 6 8}$ |
| $\mathbf{3}$ | 2,547 | 3,480 | 4,080 | $\mathbf{4 , 6 7 3}$ |

6. Calculate link ratios from the data in the cumulated false history triangle Use the link ratios to square the false history data triangle
7. Note...there are several additional steps to follow, but these can be found in the Appendix to the paper
8. Repeat process N times to get N different reserve indications.

Bootstrap Correlation Method

- variability parameters in each triangle

Variability Parameters Calculated from Original Data

Triangle A

Calculated Variability Parameters

- As part of the bootstrap process, a triangle of residuals (the variability parameters) are created for each line of business being analyzed.
- These residuals are used to create the variations in possible ultimate losses that come out of the bootstrap process.

Bootstrap Correlation Method

- uncorrelated versus correlated Residual value selections

Uncorrelated Bootstrapping - Random reshuffling of variability parameters for
Triangle B is independent of the reshuffling in Triangle A

$3\left(1_{B}, 3_{B}\right)\left(1_{B}, 1_{B}\right) \quad$ difference in the

Randomly Selected Variability Parameters to be used in the creation of one possible pseudo-history

Correlated Bootstrapping - Reshuffling of variability parameters in Triangle B is identical to the reshuffling in Triangle A

Randomly Selected Variability Parameters to be used in the creation of one possible pseudo-history

Pros / Cons of each approach

Correlation Matrix Pros

- More flexible - not limited by observed data
Correlation Matrix Cons
- Requires modeler to do additional work to quantify the correlations between lines

Bootstrap Correlation Pros

- Do not need to make assumptions about underlying correlations

Bootstrap Cons

- Results reflect only those correlations that were in the historical data

Case Study

- Three lines of business
- All produce approximately the same mean reserve indication, but with different levels of volatility around the mean
- Run a 5,000 iteration simulation exercise for each line
- Examine the results for the aggregated reserve indication at different percentiles of the aggregate distribution

Case Study 1: Rank correlation results

Estimated 75thPercentiles		Percent Change from Zero Percentile
0\% corr.	4,640,039	n/a
25\% corr.	4,697,602	1.2\%
50\% corr.	4,739,459	2.1\%
75\% corr.	4,794,767	3.3\%
100\% corr.	4,836,166	4.2\%

Case Study 1: Add bootstrap results

Case Study conclusions

- Mean aggregated reserve $=$ 4.33B
- Reserves at the $75^{\text {th }}$ percentile range from 4.64B to 4.84B
- Bootstrap tells us that there does appear to be correlations in the underlying data

General conclusions

- To calculate an aggregate reserve distribution, must understand and be able to quantify the dependencies between underlying lines of business
- Correlation is probably not an important issue for lines of business with non-volatile reserve ranges, but might be important for ones with volatile reserves, especially as one moves further towards a tail of the aggregate distribution

