
Mack made easy  by Thomas Mack 

c(w,d) = cumulative losses already known,  1 ≤ w+d ≤ N+1, 

Fd = c(≤, d+1) / c(<, d)  ,  1 ≤ d ≤ N-1,           ATA factors, 
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 ,               Variance parameters. 

Recursive formula for prediction:   (w+d ≥ N+1) 

dF)d,w(ĉ)1d,w(ĉ ⋅=+    starting with  ĉ(w, N+1-w) = c(w, N+1-w) . 



Recursion for the prediction variance pv of accident year w: 
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Recursion for the prediction variance of the total o/s losses: 
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How to use parameter variance and prediction variance? 

Prediction variance: 

• To fit a distribution for the reserve or the ultimate losses, 

• To be used for calculation of the premium loading, 

• To be used for risk modeling. 

Parameter variance (omitting the first term in the large bracket): 

• To construct a confidence interval for the best estimate, 

• To assess the significance of the difference to other estimates. 

 



Th. Mack’s comments on the bootstrap approach shown before 

The basis of the bootstrap procedure is the following 

Theorem: In case of 

• a full data triangle ( i.e. no missing values, no trapezoid) 

• with positive and independent increments (i.e. no incurreds) 

• which follow a Poisson distribution, 

the maximum likelihood estimate of the ultimate loss amount  

turns out to be equal to the chain ladder estimate. 

But this is not a chain ladder model (not even for full triangle) because: 

• For incomplete triangles, the estimated ultimates are different. 

• The same holds if the weights in F(d) are changed. 

• Chain ladder works for negative increments, too. 



• At chain ladder, the increments are not independent. 

• The residuals are different: CL calculates fitted values from previous 

amounts, i.e. ĉ(w,d) = c(w,d-1)·F(d), and not backwards. 

==> 

As a consequence, the prediction variances are always different, i.e. the 

bootstrap procedure shown does never yield the prediction variance of 

chain ladder (but of a different method with same estimated ultimates in 

some cases). They may or may not be close together. 

Generally, a bootstrap approach to loss reserving contains at least as 

many assumptions than just to fit a lognormal distribution using the Mack 

chain ladder variance. 

 


