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The Prediction Error of  Bornhuetter-Ferguson 

Thomas Mack 
________________________________________________________________________ 

Abstract: Together with the Chain Ladder (CL) method, the Bornhuetter-Ferguson (BF) method is one 
of the most popular claims reserving methods. Whereas a formula for the prediction error of the CL 
method has been published already in 1993, there is still nothing equivalent available for the BF 
method. On the basis of the BF reserve formula, this paper develops a stochastic model for the BF 
method. From this model, a formula for the prediction error of the BF reserve estimate is derived.  

Moreover, the model gives important advice on how to estimate the parameters for the BF reserve 
formula. For example, it turns out that the appropriate BF development pattern is different from the 
CL pattern. This is a nice add-on as it makes BF a standalone reserving method that is fully independent 
from CL. The other parameter required for the BF reserve is the well-known initial estimate for the 
ultimate claims amount. Here the stochastic model clearly shows what has to be meant with “initial.” 

In order to apply the formula for the prediction error, the actuary must assess his uncertainty about 
both sets of parameters, about the development pattern and about the initial ultimate claims estimates. 
But for both, much guidance can be drawn from the estimates themselves and from the run-off data 
given. Finally, a numerical example shows how the resulting prediction error compares to the one of the 
CL method. 

Keywords: Loss reserving, Bornhuetter-Ferguson, Stochastic model, Prediction error. 
________________________________________________________________________ 

1. INTRODUCTION 

For most insurance companies and their auditors, the use of the Chain Ladder method (CL) and 
of the Bornhuetter-Ferguson method (BF) has become a certain standard or benchmark in claims 
reserving. This means that these methods are applied in almost every case, and only if they seem to 
fail, one looks for other methods. Originally, these methods gave only a point estimate for the claims 
reserve. But this was not satisfactory because then one could not decide whether the estimates differ 
significantly or not. Moreover, for the calculation of risk-based capital and of premium loadings one 
needs to assess the prediction error of the estimate (i.e., the standard deviation of the true claims 
reserve from the point estimate). 

In 1993, a formula for the prediction error of the CL reserve estimate was published (Mack 
(1993) or the more comprehensive version Mack (1994)), which in the mean time is widely used. 
This formula gives an answer to the question of significant differences to other methods and 
measures the variability of the true reserves for business segments where CL is acceptable. But for 
BF, such a formula is still missing. This may seem strange because BF is even simpler than CL. But 
this simplicity is just the problem. The prediction error consists of two components, the process 
error and the estimation (or parameter) error. Whereas the estimation error basically always can be 
calculated via the laws of error propagation, for the process error a stochastic model of the claims 
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process is required. The latter was feasible in the CL case because the way in which the CL age-to-
age factors are estimated contains implicit information on the underlying stochastics. In the BF case, 
no clear procedure on how to estimate the parameters has been established. In such a situation, 
many models may seem admissible. 

The stochastic model for BF introduced in this paper is very similar in its structure to the CL 
model of Mack (1993) but adequately reflects the two fundamental differences between CL and BF. 
The first difference is the fact that the CL reserve is directly proportional to the claims amount 
known so far whereas the BF reserve does not depend at all on the known claims amount. This is 
reflected in an additional independence assumption of the BF model. The second difference is the 
fact that the BF reserve estimate includes the full tail of the claims development whereas the 
standard CL reserve (i.e., without additional tail factor) only considers the development until a given 
last development year. The latter fact implies that the parameter estimation for the BF model has 
also to consider the tail of the development where there is no data and some judgment is required. 
Therefore, we do not give a unique estimation formula for the tail parameters but discuss two 
alternative ways to cope with this problem. In any case, the development pattern suggested by the 
BF model turns out to be different from the well-known CL pattern. This makes BF to a really 
standalone reserving method. But still, the actuary may make his own selections regarding the 
development pattern, especially for the tail. 

In addition to the development pattern, the BF reserve formula requires another element, an 
initial estimate for the ultimate claims amount. Of course, the uncertainty of this estimate must have 
a high impact on the prediction error. As this estimate usually comes from outside (e.g., from 
pricing) or is simply set by the actuary on the basis of his knowledge of the business, its uncertainty 
must be assessed from outside of the run-off triangle, too. And an actuary who is able to set (or 
accept) a point estimate should also be able to quantify (or ask for quantification of) the uncertainty 
of this estimate. Moreover, from the stochastic model important advice can be derived for the 
assessment of these estimates and their uncertainty. Altogether, this means that the prediction error 
of the BF reserve estimate depends largely on the (more or less subjective) assessment of the actuary 
as it is already the case with the BF reserve estimate itself.  

Section 2 gives a short review of the BF method and of its connections and differences to the CL 
method. Section 3 describes the appropriate stochastic BF model. Section 4 shows two ways to 
estimate or select the model parameters. The estimation of the standard error of the parameters is 
discussed in Section 5 where also the formula for the prediction error and its components is derived. 
Section 6 gives a numerical example and Section 7 concludes. 
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2. THE BF METHOD 

Let Ci,k denote the cumulative claims amount (either paid or incurred) of accident year i after k 
years of development, 1 ≤ i, k ≤ n, and vi be the premium volume of accident year i where n denotes 
the most recent accident year. Then Ci,n+1-i denotes the currently known claims amount of accident 
year i. Let further Si,k = Ci,k – Ci,k-1 denote the incremental claims amount (with Ci,0 = 0) and Ui the 
(unknown) ultimate claims amount of accident year i. Then Ri = Ui – Ci,n+1-i is the (unknown true) 
claims reserve for accident year i. Let finally Si,n+1 = Ui – Ci,n be the incremental claims amount after 
development year n (tail development). 

Bornhuetter-Ferguson (1972) introduced their method to estimate Ri  in order to cope with a 
major weakness of the CL method. Therefore we first consider this weakness. CL uses link ratios 
(age-to-age factors) kf̂  and a tail factor ∞f̂  in order to project the current claims amount Ci,n+1-i to 
ultimate, i.e., it estimates ∞−+−+ ⋅⋅⋅⋅= f̂f̂...f̂CÛ ninin,i

CL
i 21 , and therefore the CL reserve is  

( )1211 −⋅⋅=−= ∞−+−+−+ f̂...f̂CCÛR̂ inin,iin,i
CL
i

CL
i . 

This means that the reserve strongly depends on the current amount Ci,n+1-i, which can, for example, 
lead to a nonsense reserve CL

iR̂  = 0 for accident years where currently no claims are paid or 
reported, which is not unusual in excess-of-loss reinsurance for the most recent accident year(s).  

The BF reserve estimate avoids this dependency from the current claims amount Ci,n+1-i. It is 

( )ini
BF
i ẑÛR̂ −+−= 11  

where 
Ûi = i iˆv q  with a prior estimate iq̂  for the ultimate claims ratio qi = Ui/vi of accident year i, 

kẑ ∈ [0, 1] is the estimated percentage of the ultimate claims amount that is expected to be known 
after development year k. 

The term iq̂  is called ‘prior” (or “initial”) as opposed to the posterior estimate (Ci,n+1-i +
BF
iR̂ )/vi  

for the ultimate claims ratio, which is based on the prior iq̂  and is different iff Ci,n+1-i ≠ iiin q̂vẑ −+1 , 
i.e., if the current claims amount deviates from its estimated expectation. The percentages z1, z2, ... 
constitute the expected cumulative development pattern and 1– inẑ −+1

  is therefore an estimate for 
the percentage of the expected outstanding claims of accident year i. 

Having already an estimate Ûi, the question may arise why BF does not simply use 

in,iii CÛR̂ −+−= 1  as reserve estimate. In that case, the reserve estimate would become the higher, the 
smaller the current amount Ci,n+1-i is and would again strongly depend on Ci,n+1-i.  With CL, the 
reserve estimate behaves just in the opposite way, i.e., is the smaller, the smaller Ci,n+1-i is. Here BF 
takes a neutral position: It does not care about the size of Ci,n+1-i at all, i.e., it considers the deviation 

Formatted: Space After:  0 pt

Formatted: Indent: First line:  0"

Formatted: Space After:  0 pt

Formatted: Indent: First line:  0"



The Prediction Error of Bornhuetter-Ferguson 

Casualty Actuarial Society E-Forum, Fall 2008 4 4

between the observed amount Ci,n+1-i and the expected amount iin Ûẑ −+1  as purely random and by no 
means indicative for the future development. Altogether, the essential feature of the BF method is to 
avoid any dependency between Ci,n+1-i and BF

iR̂ . 

In order to apply the BF method, the actuary has to estimate the parameters qi and zk for all i and 
k. In practice, the ultimate claims ratios qi are estimated in various ways, mainly based on additional 
pricing and market information in such a way that any expected differences between the accident 
years are reasonably reflected. The zk are usually derived from the (selected) CL link ratios nf̂,...,f̂2  
together with a selected tail factor ∞f̂  in the following way: 

( ) ( ) 1

21

1

1
1 −

∞

−

∞−
−
∞ ⋅⋅⋅=⋅== f̂f̂...f̂ẑ...,,f̂f̂ẑ,f̂ẑ nnnn . 

The systematic use of the CL link ratios assumes that the outstanding claims part is a direct 
multiple of the already known part at each point of the development. This contradicts the basic BF 
idea of the independence between Ci,n+1-i and BF

iR̂ , i.e., between past and future claims, which was 
fundamental for the origin of the BF method. At least, with the use of the CL pattern, the BF 
method cannot really claim to be a standalone reserving method. Moreover, in the following we will 
see that the stochastic BF model suggests a different way to estimate the BF development pattern. 

3. A STOCHASTIC MODEL UNDERLYING THE BF METHOD 

From the BF reserve formula it is clear that the appropriate model for BF has to be cross-
classified of the type 

E(Ci,k) = xizk or equivalently E(Si,k) = xiyk for 1 ≤ i ≤ n and 1 ≤ k ≤ n+1. 

Because of xiyk = (xia)(yk/a) for any a > 0, xi and yk are only unique up to a constant factor. Thus 
we can—without loss of generality—impose the restriction y1+…+yn+yn+1 = 1. This yields E(Ui) = 
E(Si,1 + … + Si,n+1) = xi and shows that xi can be considered to be a measure of volume for accident 
year i. We therefore will assume in addition that Var(Ui) is proportional to xi or Var(Ui/xi) 
proportional to 1/xi. This is the usual assumption for the influence of the volume on the variance. 
Furthermore, the fundamental BF property of independence between past and future claims 
suggests to assume that all increments Si,k of the same accident year are independent – the 
independence of the accident years themselves being a standard assumption anyway. Note that the 
independence within the accident years does not hold in the CL model of Mack (1993). 

Thus we work with the following model for the increments Si,k, 1 ≤ i ≤ n, 1 ≤ k ≤ n+1: 

(BF1) All increments Si,k are independent. 

(BF2) There are unknown parameters xi, yk with E(Si,k) = xiyk and y1+…+yn+1 = 1. 
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(BF3) There are unknown proportionality constants 2
ks  with Var(Si,k) =

2
kisx . 

From these assumptions, we deduce 

E(Ri) = xi(yn+2-i + … + yn+1) = xi(1 – zn+1-i)   with  zk:= y1 + … + yk, 

which shows that the expected claims reserve has the same form as the BF reserve estimate. 
Furthermore, we have  

Var(Ui) = Var(Si1 + … + Si,n+1) = ( )2
1

2
1 +++ ni s...sx , 

which shows that Var(Ui) is proportional to xi as intended. 

This model is thought to be the most general model fitting to the philosophy of the BF method. 
Like with the CL model and as suggested by having an own parameter yk for the expectation in each 
column, it here, too, makes sense to assume that the variability constant 2

ks  is the same for all Si,k 
within each column k but differs from column to column. The simpler assumption Var(Si,k) =  cxiyk 
for all i, k seems to contradict to reality as has already been mentioned by Taylor (2002) because 
then “the coefficient of variation of the claim size is inversely related to the mean claim size,” which 
is “opposite of what one observes.” Moreover, this last variance assumption is just a special case of 
(BF3) and thus less general. Finally, this variance assumption would imply that all yk be > 0, which is 
not the case with (BF3), and which would prevent using the model for incurred claims amounts 
where negative incremental claims are not uncommon. 

Like with the CL model of Mack (1993), this model is heavily parametrized, especially for the late 
development years. But, of course, the actuary may—depending on the data—apply additional 
regression assumptions in order to reduce the number of parameters and to stabilize the estimates. 
This is shown in the numerical example below. 

From the above model, we deduce further 

Var(Ri) = ( )2
1

2
2 +−+ ++ nini s...sx . 

As background for the next section, we note that with x1, …, xn known,  

∑∑ −+

=

−+

=
=

kn

i i
kn

i k,ik xSŷ 1

1

1

1
,     (1) 

is a linear minimum variance unbiased estimate of yk , 1 ≤ k ≤ n, and 

( )∑
−+

=

−
−

=
kn

i
ikik,ik xŷxS

kn
ŝ

1

1

22 1     (2) 

is an unbiased estimate of 2
ks , 1 ≤ k ≤ n-1. 
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4. PARAMETER ESTIMATION FOR THE BF MODEL 

From the model above we clearly see what is meant with calling Ûi a “prior” or “initial” estimate: 
It has to be an estimate ix̂  for the unconditional (= prior, initial) expectation xi = E(Ui) and not for 
the “posterior” expectation E(Ui | Ci,n+1-i), given Ci,n+1-i. This shows that the claims amount Ci,n+1-i = 
Si,1 + …+ Si,n+1-i known so far should not be the main basis for the estimate ix̂ . For example, it 
would be wrong to use for ix̂  the posterior estimate )1(

,
ˆ −

− + nBF
iini RC  of last year’s reserving because 

this is an estimate for E(Ui | Ci,n-i) and not for E(Ui). Even a very large random claim that happened 
in accident year i and is already known must not change the estimate ix̂  as long as it fits the 
randomness assumed in the pricing model. As an extreme example, we might have an accident year 
where ix̂  < Ci,n+1-i. Thus, the estimate Ûi should be prior to making the known claims experience Ci,k 
of accident year i a decisive basis of the estimate. But this does not mean that the prior estimate ix̂  
cannot change during the claims development.  

To fix ideas, let us assume that ix̂  originally stems from pricing (which has taken place before the 
end of development year 1). Usually, the pricing is based on the (trended) claims experience of the 
preceding accident years (i.e., on the years i-1, i-2, …) and on assumptions on the future claims cost 
inflation. This basic information develops from year to year because the claims experience of the 
preceding years develops as well as the relevant inflation index. Thus, we can reprice the business of 
accident year i every later year and thus arrive at updated estimates for xi = E(Ui). We may even 
include the claims experience of the accident years i, i+1, … into this repricing of accident year i as 
long as it can be translated to the portfolio of accident year i. In any case, the own claims experience 
Ci,n+1-i  should only have a marginal influence on ix̂  otherwise we would estimate E(Ui | Ci,n+1−i). 
Thus, the estimate ix̂  may change over the years but normally not to a large extent, at least if the 
first estimate for xi came from a sound pricing. 

When the actuary does not have the result of a complete repricing available, he has at least the 
data {vi, Cik} of the run-off triangle. On basis of this data and some rather general information on 
rate level changes, he may follow the procedure outlined in Mack (2006) which is not a full repricing 
but brings all accident years on about the same claims ratio level as basis for the calculation of the 
initial ultimate claims ratio iq̂ . 

After these clarifying remarks, we assume that the initial estimate Ûi of Section 2 fulfills the 
requirements for being an estimate of xi = E(Ui). Thus we write Ûi instead of ix̂  in the following. 
Having now an estimate iÛ  for E(Ui), we are only left with the task to estimate yk and 2

ks . The main 
problem here is the fact that we have only very few observations for the late development years. As 
we do not have any observations beyond development year n, we cannot estimate the tail ratio yn+1 
without further assumptions. An outside estimate may be gained from similar portfolios with more 
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accident years where the claims experience of later development years than year n is available. 
Without such information, the actuary may arrive at an estimate 1+nŷ  by extrapolation from 

nŷ,...,ŷ1  (which are not available yet). Similarly, an estimate for 2
ns  cannot be obtained from the 

only available observation of column n alone but may be obtained by extrapolation, too. Therefore, 
in order to fix ideas for an iterative procedure, we first consider the situation where we have already 
reasonable estimates 1+nŷ , 22

1 nŝ,...,ŝ . Then we can get a weighted least squares estimate (i.e., with the 
weights inversely proportional to the variances) for y1, …, yn by minimizing 

( )∑ ∑
=

−+

=

−
=

n

i

in

k ki

kik,i

ŝÛ
ŷÛS

Q
1

1

1
2

2

 

under the constraint 11 1 +−=++ nn ŷŷ...ŷ . As starting values for the minimization we can use 

∑∑ −+

=

−+

=
=

kn

i i
kn

i k,ik ÛSŷ~ 1

1

1

1
,     (3) 

(see (1)) but these will usually not fulfill the constraint. 

In most cases the data will not be so stable that the resulting least squares estimates nŷ,...,ŷ1  
seem reliable enough to leave them as they are (especially for k large). Therefore, the actuary will 
apply a smoothing procedure to select his own final *

n
*
n

* ŷ,ŷ,...,ŷ 11 +  (i.e., including a possible revision 
of the tail ratio in view of the other *

kŷ ) with 111 =+++ +
*
n

*
n

* ŷŷ...ŷ . 

On the basis of the fact that the actuary will in any case make some own selections due to the few 
data, he can dispense with the above exact minimization and just proceed as follows: He starts with 
the raw estimates ,nk,ŷ~k ≤≤1  as given in (3) and applies some manual smoothing and 
extrapolating in order to arrive at his final selection for *

n
*
n

* ŷ,ŷ,...,ŷ 11 +  fulfilling 
111 =+++ +

*
n

*
n

* ŷŷ...ŷ . In view of (2), he then estimates 2
ks  by 

( )∑
−+

=

−
−

=
kn

i
i

*
kik,ik ÛŷÛS

kn
ŝ~

1

1

22 1 ,   1 ≤ k ≤ n-1,   (4) 

and again applies some smoothing in order to select his final *
n

* ŝ,...,ŝ 2
1

2
1 −  and an extrapolation to 

obtain *
nŝ
2 . Note that *

nŝ2
1+  cannot be obtained in this way because it usually has to cover several 

development years as is the case for 1+nŷ , too. Therefore, *
nŝ2

1+  may be arrived at by interpolating a 
regression of  *

kŝ
2  against *

kŷ  at the point *
nŷ 1+ . (Note that some kŷ  may be negative.) The whole 

estimation procedure is shown in the numerical example. 

A more formal way to estimate the parameters 2
kk s,y  (in case of rather stable data) would be as 

follows: On the basis of ,nk,ŷ~k ≤≤1  according to (3), we decide on the formula for a smoothing 
regression, e.g., ( ) kŷln k ⋅−= βα  for k above some k1 < n (assuming yk > 0 there), which then is 
extrapolated until some final development year k2 > n. Then we calculate 2

kŝ~  (according to (4) but 
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using the smoothened kŷ  for k > k1). The resulting values 2
1

2
1 −nŝ~,...,ŝ~  are now kept fixed and used in 

the above constrained minimization of Q to obtain better values for βα ,,ŷ,...,ŷ k11  under the 
constraint 

( ) ( ) 1)1( 211 1
=−+++−+++ kexp...kexpŷ...ŷ k βαβα . 

Note that in Q we have to leave out the term for (i, k) = (1, n) because now we do not yet have a 
value for nŝ . This minimization yields our selections for all *

kŷ : The values for k = 1, …, k1 are 
obtained directly, those for k = k1+1, …, n  are taken from the smoothing regression and *

nŷ 1+  is 
obtained by adding up the extrapolated values of the regression up to development year  k2. Using 
these *

kŷ , we calculate new values 2
kŝ~  according to (4) and plot ( )2

kŝ~ln  for k > k1 against *
kŷ  or 

( )*
kŷln  in order to select appropriate values for *

kŝ2 , especially for k = n (over *
nŷ ) and k = n+1 

(over *
nŷ 1+ ). Of course, we could now apply another constraint minimization with these new values 

of *
kŝ
2 , but usually this will not change much. Note that the values of *

kŝ2  for k > k1 will be 
overestimated a little as we did not change the degrees of freedom in formula (4) for 2

kŝ~  which 
would have been possible as the regression employs fewer parameters. 

As the result of each of these two estimation procedures we have selected *
n

*
n

* ŷ,ŷ,...,ŷ 11 +  and 
*

n
*

n
* ŝ,ŝ,...,ŝ 2

1
22

1 +  from which we estimate the BF claims reserve by 

( ) ( )*
ini

*
n

*
ini

BF
i ẑÛŷ...ŷÛR̂ −++−+ −=++= 112 1   with  *

k
**

k ŷ...ŷẑ ++= 1 . 

*
n

*
n

* ŝ,ŝ,...,ŝ 2
1

22
1 +  will be needed for the prediction error. 

The properties of the above estimators can be sketched as follows: 

(a) *
n

*
n

* ŷ,ŷ,...,ŷ 11 +  are pairwise (slightly) negatively correlated as they have to add up to unity. 

(b) *
n

*
n

* ŷ,ŷ,...,ŷ 11 +  and therefore also *
n

* ẑ,...,ẑ 11 +  are practically independent from nÛ,...,Û1 as the 
latter do not really influence the size of any *ˆky  because these have to add up to unity in any case and 
because of selections and regressions used. 

(c) i
BF
i RR̂ and  are independent (due to BF1). 

(d) ( ) ( ) .ni,xUEÛE iii ≤≤== 1  

(e) ( ) 11 +≤≤= nk,yŷE k
*
k , and therefore ( ) .nk,zẑE k

*
k 11 +≤≤=  

(f) ( ) .nk,sŝE k
*

k 1122 +≤≤=  
In (d) – (f) we have simply assumed that the actuary’s selections are unbiased. 

The unbiasedness of the reserve estimate BF
iR̂  follows directly from these properties: 

( ) ( ) ( ) ( ) ( )iini
*

ini
BF
i REzxẑEÛER̂E =−=−= −+−+ 11 11 . 
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Note that the raw estimates kŷ~  according to (3) are identical to the estimates kβ̂  in Mack (2006) 
which were shown there as being suggested directly by the BF reserve formula itself. In any case and 
even without any smoothing of kŷ~ , the resulting development pattern will turn out to be different 
from the CL pattern (see also the numerical example below). 

Now we are prepared to derive the formula for the prediction error.  

5. THE PREDICTION ERROR OF THE BF METHOD 

As one is interested in the future variability only, given the data observed so far, the mean 
squared error of prediction of any reserve estimate iR̂  is defined to be 

( ) ( ) ⎟
⎠
⎞⎜

⎝
⎛ −= −+ in,i,iiii S,...,SRR̂ER̂msep 11

2
. 

According to (BF1), Ri = Si,n+2-i+…+Si,n+1 is independent from Si,1, …, Si,n+1-i. Also, the BF reserve 
estimate BF

iR̂  can be taken as being independent from Si,1, …, Si,n+1-i (as these play at most a marginal 
role when selecting Ûi  and *

n
*

in ŷ,...,ŷ 12 +−+ ), more precisely, Ri and BF
iR̂  are taken to be commonly 

independent from Si,1, …, Si,n+1-i. Thus we have 

( ) ( )( )2
i

BF
i

BF
i RR̂ER̂msep −=  

      ( ) ( ) ( )( )2i
BF
ii

BF
i RER̂ERR̂Var −+−=  

      ( ) ( )iBF
i RVarR̂Var += , 

i.e., the mean squared error of prediction is the sum of the (squared) estimation error ( )BF
iR̂Var  and 

of the (squared) process error ( )iRVar .  

For the process error we simply have 

( ) ( ) ( ) ( )2
1

2
212 +−++−+ ++=++= ninin,iin,ii s...sxSVar...SVarRVar , 

which will be estimated by 

( ) ( )*
n

*
inii ŝ...ŝÛRarV̂ 2

1
2

2 +−+ ++= . 

For the estimation error of ( )*
ini

BF
i ẑÛR̂ −+−= 11 , we use the general formula  

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )22 YEXVarYVarXVarYVarXEXYVar ++=  

for independent random variables X and Y and obtain 

( ) ( )( ) ( ) ( ) ( ) ( ) ( )( )2*
1

*
1

*
1

2
ˆ1ˆˆˆˆˆˆ

iniiniini
BF
i zEUVarzVarUVarzVarUERVar −+−+−+ −++=  
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        ( )( ) ( ) ( )( )211
2 1 ini

*
inii zÛVarẑVarÛVarx −+−+ −++= . 

Whereas we have already estimators iÛ  for xi and *
inẑ −+1  for zn+1-i, we still need estimates for 

( )iÛVar  and Var( *
inẑ −+1 ), i.e., we have to quantify the precision of Ûi and *

inẑ −+1 .  

The standard error ( )iÛ.e.s , i.e., an estimate for ( )iÛVar , cannot be obtained from the 
estimation error ( ))1( −nBF

iR̂.e.s  of last year’s reserving because this would ignore the variability of  
Ci,n-i, which has to be included into ( )iÛ.e.s . Like Ûi itself, ( )iÛ.e.s  is best be obtained from a 
repricing of the business. But one has to be cautious there. For example, the variability of the 
posterior claims ratio estimates n

post
n

post vÛ...,,vÛ 11  would underestimate ( )ii vÛ.e.s  because 
these estimates are positively correlated via the common estimates *

kẑ . Similarly, also the initial 
estimates Û1, …, Ûn will usually be positively correlated. Thus the formula  

    ( )( ) ∑
=

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−

−
=

n

j j

j
j

i
i q̂

v
Û

v
n
vÛ.e.s

1

2
2

1
  with  ∑∑

==

=
n

j
j

n

j
j vÛq̂

11

                 (5) 

(which is analogous to (1), (2) for BF3) is applicable only if the initial estimates Ûj can be assumed to 
be uncorrelated. But even then, using the real premiums vj would include the market cycle of 
premium adequacy into ( )iÛ.e.s , which would overestimate ( )iÛ.e.s  in those situations where we can 
predict the market cycle rather well. Thus, we should remove the influence of the market cycle from 
(5) by using on-level premiums jv~ . In addition, we should correct for any positive correlation 
between the Ûis by replacing the term n − 1 of (5) with for example, n − n  for a constant 
correlation coefficient nˆ U

ij 1=ρ  between Ûi and Ûj or with (approximately) n − n2  for a 
decreasing correlation coefficient ( )jiˆ U

ij −+=ρ 11 ; the precise formula being ∑
++

ρ−
j,i

jiU
ij v

v
v
vn  

with ∑
=

+ =
n

i
ivv

1

. 

Usually, these standard errors s.e.( iÛ ) will not change much over the years. Of course, we will 
have slight changes as long as the Ûi change. But even at the end of the development, we will not 
know E(Ui) much more precisely than at the beginning. The actuary should examine the plausibility 
of the resulting values of s.e.( iÛ ), for instance in the following way: If we assume a normal 
distribution, then the interval ( ))(2)(2 iiii Û.e.sÛ,Û.e.sÛ ⋅+⋅−  will contain the true E(Ui) with 95% 
probability. Thus, if the size of the interval is plausible, then s.e.( iÛ ) is plausible, too. 

Next, we have to decide on how to estimate 

( )*
inẑVar −+− 11  = ( ) ( ) ( )*

n
*

in
*

in
**

in ŷ...ŷVarŷ...ŷVarẑVar 12111 +−+−+−+ ++=++= . 

From property (a) we see that we will be on the safe side when we replace ( )*
in

* ŷ...ŷVar −+++ 11  with 
( ) ( )*

in
* ŷVar...ŷVar −+++ 11 . But whereas the latter sum increases with each additional term, this is not 

the case with ( )*
in

* ŷ...ŷVar −+++ 11  as finally ( )*
n

* ŷ...ŷVar 11 +++  = Var(1) = 0. Therefore we replace 
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( )*
kẑVar  = ( )*

kẑVar −1  for small k with ( ) ( )*
k

* ŷVar...ŷVar ++1  and for large k with 
( ) ( )*

n
*
k ŷVar...ŷVar 11 ++ ++ . More precisely, we replace—still being on the safe side—  

( )*
kẑVar  with ( ) ( ) ( ) ( )( )*

n
*
k

*
k

* ŷVar...ŷVar,ŷVar...ŷVarmin 111 ++ ++++ . 

Due to ∑∑
−+

=

−+

=

≈≈
kn

j
j

kn

j
k,jk

*
k xSŷ~ŷ

1

1

1

1
, we can assume that 

( )
∑

∑∑ −+

=

−+

=

−+

=

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
≈ kn

j j

k
kn

j
j

kn

j
k,j

*
k

x
sxSVarŷVar 1

1

21

1

1

1

,     1 ≤ k ≤ n. 

Therefore we estimate ( )*
kŷVar  by 

( )( )
∑ −+

=

= kn

j j

*
k*

k
Û

ŝŷ.e.s 1

1

2
2

,    1 ≤ k ≤ n.    (6) 

But the value of ( )*
nŷ.e.s 1+  must come from outside. Without this, a plausible choice is often 

( ) *
n

*
n ŷ.ŷ.e.s 11 50 ++ = , i.e., a coefficient of variation ( )*

nŷ.v.c 1+  = 50%, assuming a normal distribution 
with 95% probability within the interval (0; 2 *

1ˆ +ny ).  

Altogether, our estimate ( )( )2*
kẑ.e.s  for ( )*

kẑVar  is 

( )( ) ( )( ) ( )( ) ( )( ) ( )( )( )2
1

2
1

22
1

2 *
n

*
k

*
k

**
k ŷ.e.s...ŷ.e.s,ŷ.e.s...ŷ.e.sminẑ.e.s ++ ++++= .  (7) 

In any case, we have ( ) 0)1(1 ==+ .e.sẑ.e.s *
n . Of course, the actuary will check the plausibility of 

( )*
kẑ.e.s  similarly as s.e.( iÛ ) and, if necessary, manually adjust some of the resulting values. 

Thus we finally obtain the following estimator for the mean squared error of prediction: 

( ) ( ) ( )( )( ) ( )( ) ( )( ) ( )21
22

1
222

1
2

2 1 *
ini

*
inii

*
n

*
ini

BF
i ẑÛ.e.sẑ.e.sÛ.e.sÛŝ...ŝÛR̂sepm̂ −+−++−+ −+++++= . 

This is the formula one needs for risk-based capital and premium loading calculations as well as for 
the construction of a confidence interval for Ri. In order to check the significance of differences 
between alternative reserve estimates or to construct a confidence interval for E(Ui) one only needs 
the pure estimation error 

( )( ) ( )( )( ) ( )( ) ( )( ) ( )21
22

1
222

1 *
ini

*
inii

BF
i ẑÛ.e.sẑ.e.sÛ.e.sÛR̂.e.s −+−+ −++= . 

A closer analysis of this formula shows that  

( ) ( )*
ini

BF
i ẑ.e.sÛR̂.e.s −+≈ 1  for *

inẑ −+1  close to 1, 

( ) ( ) iii
BF
i ÛÛ.e.sÛR̂.e.s ≈  for *

inẑ −+1  close to 0, 

i.e., for the very green accident years, the uncertainty of the initial ultimate claims estimate is directly 
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transferred to the reserve estimate. 

For the overall reserve R = R1 + … + Rn, we have the unbiased estimate BF
n

BFBF R̂...R̂R̂ ++= 1 . 
Its mean squared error of prediction is msep( BFR̂ ) = Var( BFR̂ ) + Var(R). For the process error we 
have Var(R) = Var(R1) + … + Var(Rn) due to the independence of the accident years (BF1) and 
thus get the estimate 

( )∑ = +−+ ++=
n

i
*

n
*

ini ŝ...ŝÛRarV̂
1

2
1

2
2)( . 

The estimation error Var( BFR̂ ) is more involved because BF
n

BF R̂,...,R̂1  are positively correlated 
via the common parameter estimates *

kŷ  (and in addition via the Ûis). We have 

( ) ( ) ( )∑ ∑
= <

+=
n

i ji

BF
j

BF
i

BF
i

BF R̂,R̂CovR̂VarR̂Var
1

2 . 

For ( ) ( ))1()1( 11
*

jnj
*

ini
BF
j

BF
i ẑÛ,ẑÛCovR̂,R̂Cov −+−+ −−=  we use the general formula 

Cov(XY, WZ) = Cov(X, W) E(Y) E(Z) + Cov(X, W) Cov(Y, Z) + E(X) E(W) Cov(Y, Z) 

for random variables X, Y, W, Z where the sets {X, W} and {Y, Z} are independent. We omit the 
term in the middle, which is of lower order, and obtain 

( ))1()1( 11
*

jnj
*

ini ẑÛ,ẑÛCov −+−+ −−  = 

= ( ) ( ) )()()()(11)()( 1111 ji
*

jn
*

in
z
ij

*
jn

*
inji

U
ij ÛEÛEẑVarẑVarẑEẑEÛVarÛVar −+−+−+−+ ρ+−−ρ  

with the correlation coefficients 

( ) )()( jiji
U
ij ÛVarÛVarÛ,ÛCov=ρ , 

( ) )()(11 1111
*

jn
*

in
*

jn
*

in
z
ij ẑVarẑVarẑ,ẑCov −+−+−+−+ −−=ρ . 

Thus, we only have to estimate these correlation coefficients as we have estimates for all the 
other terms. If the actuary does not has the possibility to obtain data-based estimates for U

ijρ  (e.g., 
from repricing) and z

ijρ , he may simply use one of the two estimates U
ijρ̂  as given above (after (5)) 

and 

( )
( )*

jn
*

in

*
in

*
jnz

ij ẑẑ
ẑẑ

ˆ
−+−+

−+−+

−

−
=ρ

11

11

1
1

  for i < j and *
n

* ẑ...ẑ 11 +≤≤ . 

The latter estimate stems from assuming a Dirichlet distribution (which is a generalization of the 
Beta distribution) for *

n
* ŷ,...,ŷ1 . Thus we finally get 
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( ) ( ) ( )∑∑
<=

+=
ji

BF
j

BF
i

n

i

BF
i

BF R̂,R̂ovĈR̂.e.sR̂.e.s 2)()(
1

22
 

with  

( ) ( )( ) ji
*

jn
*

in
z
ij

*
jn

*
inji

U
ij

BF
j

BF
i ÛÛẑ.e.sẑ.e.sˆẑẑÛ.e.sÛ.e.sˆR̂,R̂ovĈ )( )(11)()( 1111 −+−+−+−+ ρ+−−ρ= . 

6. NUMERICAL EXAMPLE 

The paid triangle of Exhibit A of Mack (2006), see also Table 0 below, with n = 13 is used as 
example and we keep the initial ultimate claims estimates iÛ  from there (Exhibit C, column (I)), see 
Table 2 below, second column. In a first approach, we also keep the development pattern *

kẑ  (= bk 
of Exhibit C, row (9), of Mack (2006)), see the row “selected z” in the first block of Table 1 below. 
This pattern can also be obtained—except for rounding differences—from the raw estimates kŷ~  
according to (3) by manually smoothing with the selections *ŷ8 = 8%, *ŷ9  = 5%, *ŷ10 =3.7%, 

*ŷ11 =2.1%, *ŷ12 =1.5%, *ŷ13 =1.4% and a tail ratio *ŷ14 =3.5%, see the second and third row of Table 1 
below. In Mack (2006), this tail ratio was based on the calculation for the incurred data. From the 
pattern and the initial iÛ  the reserve estimates ( ) ( )*

ini
*
n

*
ini

BF
i ẑÛŷ...ŷÛR̂ −++−+ −=++= 112

1 1  are 
calculated. These reserves, see the fourth column of Table 2, are thus the same as in Mack (2006) 
except for rounding differences.  

For the prediction error, we first select *
kŝ
2 . For this purpose, we calculate the raw 2

kŝ~  according 
to (4) and plot ( )2

kŝ~ln  against *
kŷ  for the decreasing part k ≥ 4. We see that the plot looks 

reasonably smooth. Crucial cases are always 2
1−nŝ~  and 2

2−nŝ~ , which rely on very few data. Here 
(n=13), according to the plot, 2

2−nŝ~ = 21.8 and 2
1−nŝ~ = 19.5 seem to be rather small. Thus, we adjust 

these to **
n ŝŝ 2

11
2

2 =− = 30, **
n ŝŝ 2

12
2

1 =− = 25, leave 2
kŝ~ , 1 ≤ k ≤ 10, as they are, i.e., 22

k
*

k ŝ~ŝ = ,  and 
manually select from the plot the missing values *ŝ2

13 = 20 (over *ŷ13 =1.4%) and *ŝ2
14 = 35 (over 

*ŷ14 =3.5%). With these selections for *
kŝ2 , we calculate ( )*

kŷ.e.s  for 1 ≤ k ≤ n = 13 according to (6) 
and find the resulting values and their coefficients of variation plausible. Then, we have to quantify 
our uncertainty on *ŷ14 = 3.5% and select it to be ( )*ŷ.e.s 14  = 1.5% assuming a 95%-range from 0.5% 
up to 6.5%. This fits well to the s.e. of *ŷ10 , which is close to *ŷ14 . Now we calculate ( )*

kẑ.e.s   
according to (7). All estimates and selections are shown in the first block of Table 1, where a bold 
number indicates a pure selection or a change from the raw estimate.  

Finally, we have to select s.e.( iÛ ). In this example, we have an extreme premium cycle: The 
ultimate claims ratios Ûi/vi first decrease to 63%, then increase to 277%, then decrease again to 69% 
(see Mack (2006)). Thus, an application of equation (5) does not make sense. In Mack (2006), on-
level premium factors ri

* were estimated which bring all accident years on about the same claims 
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ratio level. Then, the prior Ûi were chosen to be  

( )11 +++= n
**

iii ŷ~...ŷ~m̂rvÛ  

with kŷ~  according to (3) and a certain constant factor *m̂ . We can assume that the variability of 
**

i m̂r  is small compared to the one of  11 +++ nŷ~...ŷ~ . Then we have 

( ) ( ) ( ) ( ) ( ))()( 11
2

11
2

++ ++=++≈ n
**

iin
**

iii ŷ~Var...ŷ~Varm̂rvŷ~...ŷ~Varm̂rvÛVar  

because the kŷ~ s are fully independent due to BF1 as they do not have to add up to unity. As in the 
derivation of (6), we have  

( ) ∑ −+

=
≈

kn

j jkk Ûsŷ~Var 1

1
2 , i.e., we take ( ) ( ) ∑ −+

=
==

kn

j jk
*
kk Ûŝŷ.e.sŷ~.e.s 1

1
222

)()( . 

Finally, in order to get rid of the factor **
ii m̂rv , we consider the coefficient of variation and 

obtain 

( ) ( ) ( ) ( )
%76

)()(

11

2

1

2

1 .
ŷ~...ŷ~

ŷ~.e.s...ŷ~.e.s
Û

Û.e.sÛ.v.c
n

n

i

i
i =

++
++

≈=
+

+ . 

As we have ignored the variability of **
i m̂r  and have eliminated the full premium cycle (which 

probably would not have been achieved a priori), we deliberately increase this c.v. to ( )iÛ.v.c  = 10% 
for all accident years i. This is considered to be a rather high uncertainty for an estimate of E(Ui) for 
classical insurance business because, e.g., for Ûi/vi = 90%, this corresponds to a wide 95% 
confidence range of (72%; 108%)—note that this is the range for E(Ui) and not for Ui! 

Note further that this approach only works for prior estimates Ûi that were obtained in this 
specific way. It cannot be applied to estimates Ûi obtained differently, e.g., via repricing, because 
each approach to Ûi has its own uncertainties. Normally, c.v.(Ûi) will not be the same for all accident 
years but will be lower for years with higher volume. In our example, we leave c.v.(Ûi) = 10% 
constant (see the third column of Table 2) assuming the varying volume has essentially been caused 
by writing varying shares of the same treaties. With these selections, we obtain the error estimates 
shown in the block “Bornh/Ferg 1” of Table 2. 

We also may apply the alternative estimation procedure described in Section 4: Then, we do not 
use the pattern of Mack (2006) but start with the original raw kŷ~  according to (3) (see second row of 
Table 1) and select as last payment year k2 = 20. Looking at the plot of ( )kŷ~ln  against k, we select 
k1 = 3 and take an initial smoothing regression ln( kŷ ) = α–βk with α = −0.03874 and β = 0.3632 
for k > k1. With the resulting initial values for kŷ , initial values for 2

1ŝ~ , …, 2
1−nŝ~  are calculated 

according to (4), which then are kept fixed during the following minimization of Q (without the 
term for i=1 and k=n=13). The minimum 79.98 is obtained at *ŷ1  = 0.65%, *ŷ2 = 4.7%, *ŷ3 =13.0%, 
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α = -0.4003, and β = 0.2920, which leads to *ŷ14 = 3.9% by adding up the extrapolated values for kŷ  
from k=14 to k=20. For the other *

kŷ  (from the new regression) and the resulting *
kẑ  see the block 

“Alternative Estimates” of Table 1. Then the corresponding new 2
kŝ~  are calculated according to (4) 

and the resulting values ( )2
kŝ~ln  are plotted against *

kŷ  for k > k1. In view of this plot, we change 
2

12ŝ~ = 18.7 to *ŝ2
12 = 25 and select *ŝ2

13 = 23 and *ŝ2
14 = 36. Finally, we calculate ( )*

kŷ.e.s  according to (6) 
and select ( )*ŷ.v.c 14  = 50% which gives ( )*ŷ.e.s 14 = 1.93. The resulting reserves 2BF

iR̂ , see Table 2, 
block “Bornh/Ferg 2,” are slightly higher than 1BF

iR̂  for the old years and slightly lower for the new 
ones. The amounts (not the percentages) of the prediction error (using c.v.(Ûi) = 10% as before) are 
all a little bit higher. Using ( )jiˆ U

ij −+=ρ 11 , the overall reserve is 2BFR̂ = 875,497 with a prediction 
error of 72,940 consisting of an estimation error of 62,770 and a process error of 37,152. 

As comparison we apply the Chain Ladder method, too. All parameters used are given in the last 
block of Table 1. We have replaced the last four raw age-to-age factors with 1.04, 1.03, 1.02, 1.015, 
and selected a tail factor of 1.04. The latter is in accordance with the tail ratio of 3.5% - 3.9% used 
above. From the age-to-age factors we can derive the corresponding cumulative  development 
pattern kẑ  as described in Section 2. The resulting values shown in Table 1 are close to the z-
estimates of the two BF approaches but not identical. The implementation of the tail factor into the 
formulae for the prediction error has been done according to Mack (1999). The raw sigma-
parameters (see Mack (1993) or Mack (1999)) have been kept and were supplemented with 2

nσ̂ = 18 
and 2

1+nσ̂ = 40 on basis of a plot of ( )2
kˆln σ  against ( )1−kf̂ln . Finally, for the tail factor, ( )1+nf̂.e.s  = 

0.02 was assumed, i.e., a 95%-range from 1.00 to 1.08. This yields the results shown in the last block 
of Table 2. The CL reserves are close to the ones of BF except for the most recent years 2003 and 
2004: In 2003, the CL reserve is about half of the BF reserve, whereas in 2004 the CL reserve is 
more than twice the BF reserve. This higher volatility is reflected in the markedly higher prediction 
errors for i ≥ 1999, caused by a much higher process error. The CL and BF reserve estimates for 
1992–2002 are not significantly different (i.e., not different by more than ( )iR̂.e.s⋅2 ). But the 
reserves for 2003 are judged as being different by either method; the 2004 reserves are only different 
from the BF viewpoint whereas the CL estimation error is so large that the BF reserve is not judged 
to be different although it is less than 50% of the CL reserve. This is a good example for the fact 
that CL often cannot be reasonably applied in the standard way for new accident years in Excess 
business where almost nothing is paid in the first development year(s). 

CONCLUSION 

On the basis of the BF reserve formula, this paper has developed a stochastic model for the BF 
method that incorporates the fundamental BF property of the independence between past and 
future claims amounts (see model assumption BF1). Model assumption BF2 is a direct consequence 



The Prediction Error of Bornhuetter-Ferguson 

Casualty Actuarial Society E-Forum, Fall 2008 16 16

of the BF reserve formula too. Only assumption BF3 is not forced by the method itself but this 
assumption is rather general and is only needed to derive the formula for the prediction error. 
Already from assumptions BF1 and BF2 important consequences for a sound application of the 
method can be drawn. One is the fact that the appropriate BF development pattern should not be 
derived from the CL age-to-age factors but be calculated independently on basis of formula (3). This 
makes BF a fully standalone reserving method. Moreover, the stochastic model gives important 
advice on how to arrive and how not to arrive at the initial estimate for the ultimate claims amount. 
For example, it shows that a procedure that is often used in automated reserving systems is rather 
questionable: It is the use of last year’s posterior estimate as initial estimate for this year’s reserving. 
On the other hand, the model shows that the initial estimate for an individual accident year may 
change over time as the information that has led to the estimate develops. 

The independence assumption BF1 may seem more restrictive than the corresponding 
assumption of the CL model of Mack (1993). The required independence between the incremental 
amounts within every accident year may be violated, e.g., by changes in the reserving process or in 
the reporting behavior. In the CL model, this independence is not required, but a similar 
requirement can be deduced from the CL model: It is the fact that the individual development 
factors Ci,k+1/Cik must be uncorrelated within every accident year. This needs not be fulfilled in the 
BF model but can be violated by the same changes as mentioned before. As a consequence, we 
obtain a way of how to decide which model better suits the data by checking these 
independence/uncorrelatedness properties. Here we see the main advantage of having a model: It 
gives some guidance on how to estimate the parameters and allows various procedures (e.g., tests, 
plots) to see which model better suits the data. And, last but not least, it gives the possibility to 
quantify the reserve variability. 

Especially for the BF model, the guidance mentioned leaves enough room for the actuary to 
bring in his specific knowledge of the business as it was always the case with the BF method. He has 
to select the parameters (as before) and, in addition, must assess his uncertainty about his selections. 
The guidance given by the model makes this crucial task feasible. And as a reward, the actuary 
usually will obtain less volatile reserve results than with CL, especially for the most recent accident 
years (see the example above). This is a big advantage regarding risk modeling and premium loading 
calculations. Altogether, this paper gives BF a stochastic foundation equivalent to the one already 
available for CL. 
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