# The Closure-Based Regression Method

by Peter Anhalt and Stephen Marsden, FCAS, MAAA

#### ABSTRACT

This paper outlines a powerful simple regression methodology using closure ratio as the independent variable and the cumulative net paid loss & ALAE development factor as the dependent variable.

The method is similar to the Berquist-Sherman Adjusted Paid Loss Development Method (Adjusted Paid Loss Method) in that closure replaces age in the development of losses. However, the Closure-Based Regression Method (Closure Method) directly analyzes the relationship between claim closure level and paid LDF with a stochastic rather than a deterministic approach.

The method, in addition to its simplicity, has three favorable characteristics. First, from a practical review, historical evidence demonstrates that it has proven to be very accurate when accident year exposures are fully earned, especially for the Bodily Injury coverage. Secondly, the method eliminates error introduced by chain-ladder approaches and interpolations required in an adjusted paid loss methodology. Finally, the method is visually compelling. The actuary often can see as well as statistically measure a dramatically improved fit as the independent variable is changed from age to closure level. The improved fit results from the belief that a closure-based triangle is inherently superior to an age-based triangle for paid loss development methods. Age is only a weak surrogate for closure.

#### **KEYWORDS**

Simple regression; closure ratio

## 1. Introduction

The traditional paid loss triangle tracks accident year losses by age of development. However, the development of paid losses is more closely related to the rate at which the claims department settles claims in that accident year than it is to the age of the accident year. Age is only a weak surrogate for settlement rate. If there is a change in settlement rate from one accident year to the next a paid loss development method which adjusts for closure rate is in order.

To verify that settlement rate should be used for paid loss development a comparison of simple regressions was made. A simple regression of closure ratio to LDF was compared to a simple regression of age to LDF for a non-standard personal automobile business.

Closure ratio is defined as CWA / (CWA + Open) where CWA is closed claims with amount (payment). The LDF is defined as the cumulative net paid loss & ALAE development from the closure ratio (or age) of the given data point to a 99% closure ratio (or age of 51 months). Closure ratio (or age) is the independent variable while LDF is the dependent variable.

The graphs below represent Bodily Injury data for a non-standard personal automobile insurer for a large book of business. The graphs visually illustrate the greatly improved predictability that a closure-based analysis offers over a traditional age-based analysis for this business. The net paid loss & ALAE development factor (LDF) is on the y-axis. The accident year age is on the x-axis for the upper graph (closure ratio is on the x-axis for the lower graph). The LDF is the dependent variable on both graphs.

The age-based graph fits the <u>age</u> of all data points to their associated LDF. The LDF represents the development from the amount of cumulative net paid loss & ALAE at the age of the data point for that accident year to the amount of cumulative net paid loss & ALAE at age 51 for that accident year.

The closure-based graph fits the <u>closure ratio</u> of all data points to their associated LDF. This LDF represents the development from the amount of cumulative net paid loss & ALAE at the closure ratio of the data point for that accident year to the amount of cumulative net paid loss & ALAE at a 99% closure ratio for that accident year. Development to 99% was selected to maximize the amount of data to retrospectively evaluate while leaving as little tail development as possible. The comparison of the regressions begins at a closure ratio of 35% or at an age of 15. Likewise, the comparison of regressions ends at a closure ratio of 99% or at an age of 51. The range of age 15 to age 51 best represents the ages where the closure ratio range is 35% closed to 99% closed.





At first glance the upper graph would suggest extreme randomness in LDF's at low ages of development. The second graph illustrates that, in fact, there is not much randomness exhibited. Rather, a proper predictive variable, closure ratio, explains nearly all of the difference we see in the various levels of LDF. In other words, age appears to be a poor surrogate for closure. The r^2 of .9929 in the lower regression illustrates the tremendous predictive power of the closure ratio if it is not already obvious from a visual inspection. While a power curve is not a good curve selection for the age-based triangle and may not be the optimal fit for the closurebased triangle, the visual evidence of the superior fit of the closure ratio regression is clear. This visual is truly amazing. The first time the regressions were performed we were quite surprised to see such an improvement in fit. In particular, there is nearly a perfect fit for Bodily Injury which is the most difficult coverage to accurately predict for personal lines non-standard automobile.

After an analysis of the visual evidence above it is apparent that an adjustment to the agebased triangle is in order. The visual and statistical evidence gives the actuary confidence to place weight on an adjusted method over a traditional age-based development method.

The next focus is on minimizing the error introduced when applying an adjusted paid loss methodology. In the traditional Adjusted Paid Loss Method error occurs in converting an agedbased triangle into a closure-based triangle. Transforming an age-based triangle into a closurebased triangle requires interpolation at many data points along the triangle which introduces error. Additional compounding error is introduced in selecting age-to-age factors during the chain ladder process.

The Closure Method by contrast directly evaluates the relationship between closure ratio and paid loss development. The compounding error introduced in a chain ladder approach is eliminated. The Closure Method still introduces some error in the selection of the regression equation (equations if two or more fitted curves are used). There also is a slight amount of error in interpolating to get the ending closure point cumulative net paid loss & ALAE. This should be very slight, however at high closure ratios. The error in the tail assumption is the same whether the Closure Method or a chain ladder approach is used.

It should be noted that the Adjusted Paid Loss Method still has some advantages despite the errors introduced in the mechanical operation of the method. These will be reviewed later in the paper.

## 2. Closure-Based Regression Methodology Overview

Appendix A, Exhibit 2 graphs the regressions by coverage from the most recent actuarial evaluation for closure ratios of 35% and greater. The tight fit appears to be unique to Bodily Injury. However, the reason the Bodily Injury fit is tight is the fact that at 35% all exposures are fully earned for Bodily Injury. <u>Using accident year data prior to age 12</u>, when exposures are fully <u>earned</u>, distorts the correct projection of LDF. Appendix A, Exhibit 3 graphs the regressions by coverage from the most recent actuarial evaluation for closure ratios with age 12 months and higher. (The Physical Damage coverages were not illustrated because they are nearly 100% closed at age 12.) This not only is a fairer comparison, but it is the only way to effectively employ the method. In other words, although the fit becomes tighter as the closure ratio advances, a rather tight fit is evidenced for all coverages once the accident period exposures are fully earned. The significance of the Appendix A, Exhibit 3 graphs is that if an accident period exposures are fully earned, a very accurate ultimate net loss & ALAE estimate can be made at relatively low closure ratios (35% for this non-standard personal automobile Bodily Injury business).

There were three pleasant surprises at the conclusion of our initial single curve analysis. The first surprise was that Bodily Injury was found to be the coverage where the relationship was strongest at a low level of closure. This was exciting because Bodily Injury is a difficult coverage to accurately predict ultimate loss due to the long tail of this coverage.

The second surprise was that a remarkably good fit was determined by using only one independent variable. It certainly is possible that an even closer fit may result when one introduces other explanatory variables. However, the improvement in fit (if found) would need to be weighed against the principle of parsimony.

Finally, we discovered that the method is very accurate when the accident period exposures are fully earned. As stated above, this means that the Bodily Injury coverage ultimate net paid loss & ALAE estimate is fairly certain around an age of 12 months or so if there is a closure ratio of 35% or higher.

Note that with accident quarter triangles exposures are fully developed at age 3. In addition, the regression becomes stronger through an increase in the amount of data points regressed. An accident quarter approach can be particularly helpful in getting an accurate accident quarter projection on quick-settling lines such as Collision much sooner than with a traditional approach. One needs to review the regression fits to determine when a closure ratio is high enough to begin applying the method on an accident quarter basis.

## 3. The Closure-Based Regression Method

Before the method is begun a review of the overall fit of closure ratio to LDF is compared to the overall fit of accident year age to LDF. Graphs similar to the graphs on page 2 should be produced. The closure graph on page 2 illustrates that a single fitted curve for the Bodily Injury business produces an r<sup>2</sup> of .9957. This is exciting from an explanatory level, especially as it relates to an aged based r<sup>2</sup> of .7856 (using simple power curve fits). A single curve fit such as this will provide the actuary with a starting point of reference in regard to the expected improvement and resulting confidence to place in an adjusted paid method.

A single curve fit is not necessarily the best solution available, however. Fitting splines across sections of the scattered data points, particularly around areas of inflection on the original fitted curve may produce more accurate LDF's even though the r^2's of the individual splines may not be as high. Too many splines, however, may cause one to lose information about the shape of the curve and may lead to over-fitting. Currently, the data is fit with two curves (splines). The first power curve fits data from % closed to 80% closed. The second power curve fits data from 80% closed to 99% closed. A tail factor is used to project from 99% closed to ultimate.

While actuarial triangles are used to organize data for the regression analysis there is nothing that requires that the data be organized in triangular format for the purpose of reviewing statistics to select age to age LDF's. In other words, this is not a typical triangle-based development method. Cumulative net paid loss & ALAE by accident year and cumulative closure ratios by accident year are required, however. Note that for regression analysis the more data points the better, even if collected on a monthly or shorter time span. In addition, the benefits of an accident quarter approach have been outlined earlier.

The method begins by constructing triangles of cumulative closure ratio and cumulative net paid loss & ALAE to organize data for the regression analysis. Exhibit 1 is a simple calculation of the closure ratio using the traditional age-based triangles of cumulative closed claims with amount (closed claims with payment) and open claims. Exhibit 2 is the traditional age-based cumulative net paid loss & ALAE triangle.

Exhibit 3 uses the net paid loss & ALAE and closure ratio information in Exhibit 1 and Exhibit 2 to perform linear interpolation to calculate the expected cumulative net paid loss & ALAE at an 80% closure ratio. To illustrate, the 2003 accident year expected cumulative net paid loss & ALAE at an 80% closure ratio of \$23,354,111 is found in Exhibit 3. \$23,335,756 cumulative net paid loss & ALAE aligns with the data point where there is 79.95% closure. Likewise, \$25,477,508 cumulative net paid loss & ALAE aligns with the data point where there is 85.24% closure. Simple linear interpolation yields expected cumulative net paid loss & ALAE of \$23,354,111 at a closure ratio of 80%. Exponential interpolation would improve the interpolated estimate somewhat. In fact, an iterative process using a fitted curve from the method to perform the interpolation would be the most exact way to interpolate to the 80% closure ratio expected net paid loss & ALAE.

Exhibit 4 calculates the expected cumulative net paid loss & ALAE at a 99% closure ratio along with the tail estimate for a 99% closure ratio. The 99% tail factor in Exhibit 4 is based on an incurred loss development approach for accident years where the ultimate loss is not much in doubt. In Exhibit 4 a tail factor of 1.016 is eventually selected.

Exhibit 5 is the net paid loss & ALAE LDF from % closed to 80% closed. To illustrate, the first LDF listed for the 2003 accident year in Exhibit 5 is 277.754. This represents net paid loss & ALAE development from a 7.84% closure ratio to an 80.00% closure ratio. From Exhibit 1 for accident year 2003 at age 3 we see that the closure ratio is 7.84%. At this age and associated closure ratio for this accident year the cumulative net paid loss & ALAE is \$84,082 from Exhibit 2. The expected cumulative net paid loss & ALAE for accident year 2003 at 80% closed is \$23,354,111. Therefore, the associated LDF for a closure ratio of 7.84% is 23,354,111 / 84,082 = 277.754. Likewise, Exhibit 6 is the net paid loss & ALAE LDF from % closed to 99% closed.

Exhibit 7 organizes each data point's closure ratio and associated LDF. The first regression utilizes closure ratios starting at the % closed for that data point and truncating at an 80% closure ratio. Here we are regressing <u>% closed</u> to <u>the % closed to 80% closed LDF</u>. The second regression utilizes closure ratios starting at 80% closed and ending at 99% closed. Here we are regressing <u>% closed</u> to <u>the % closed to 99% closed LDF</u>. Note that in both lists of data points in Exhibit 7 the earlier data set calculated (7.84%; 277.754) has been discarded because it is less than age 12 when exposures were fully earned. All data points less than age 12 are discarded. We chose a 99% closure as a balance between maximizing data and reducing the amount of the tail.

Exhibit 8 shows the simple regression curve fits using a power curve in Excel. Exploration in regard to the number of splines to use as well as to different types of curve fits will again lead to incremental improvements in the fit. Certainly using special statistical software outside of Excel would lead to a more sophisticated analysis.

Exhibit 9 is the resulting Closure-Based Regression Method exhibit. This represents the

actuarial analysis as of 6/30/05 for the Bodily Injury coverage.

Column (1) is the cumulative closure ratio for the accident year. These are taken directly from Exhibit 1.

Column (2) is the LDF from the cumulative closure ratio for the accident year to a closure ratio of 80%. For accident years 2003 and prior the LDF defaults to 1.000 since these years are greater than 80% closed. Accident year 2005 is not calculated because the exposures are not yet fully earned. Accident year 2004 has an LDF of 1.609. This is calculated as .7271x (.5669)^(-1.3997)=1.609 by inserting the closure ratio of 56.69% into the regression equation from Exhibit 8.

Column (3) is the LDF from the "advanced" closure ratio for the accident year to a closure ratio of 99%. For accident years 2003 and prior the "advanced" closure ratio is the original closure ratio from column (1). To illustrate, accident year 2003 has a closure ratio of 89.45%. The LDF from 89.45% to 99.00% is 1.165. This is calculated as  $.9825x(.8945)^{(-1.5244)}=1.165$  by inserting the closure ratio of 89.45% into the regression equation from Exhibit 8. For accident year 2004 the "advanced" closure ratio is 80.00% since we have already "advanced" the 56.69% closure ratio to 80.00% closed when we apply the 1.609 LDF. To illustrate, accident year 2004 now has a closure ratio of 80.00%. The LDF from 80.00% to 99.00% is 1.381. This is calculated as  $.9825x(.8000)^{(-1.5244)}=1.381$  by inserting the closure ratio of 80.00% into the regression equation from Exhibit 8. Accident years 2001 and prior have an LDF that defaults to 1.000 since the closure ratio is already greater than 99%.

Column (4) is the tail LDF that depends on how far "advanced" the closure ratio is. For accident years 2001 and prior the "advanced" closure ratio is the original closure ratio from column (1) since these years are greater than 99% closed. For accident years 2001 and prior the tail LDF is taken from the tail LDF used in the Adjusted Paid Loss Development Method since there has been nothing learned from regression analysis for these closure ratios greater than 99%. Accident years 2002 through 2004 have an "advanced" closure ratio of 99%. The tail LDF from 99% closed to ultimate is 1.016. This factor was iteratively derived. The final iteration is shown in Exhibit 4 with final ultimate net paid loss & ALAE figures. The ultimate net paid loss & ALAE divided by the expected cumulative net paid loss & ALAE at 99% closed provides each of the seven estimates for the 99% closure to 100% closure tails. A separate regression of the 99% closure to 100% closure to 100% closure tail estimate.

Column (5) is the cumulative LDF [column (2) x column (3) x column (4)]. The cumulative LDF represents the net paid loss & ALAE development from the closure ratio shown

in column (1) to 100% closed.

Column (6) is the cumulative net paid loss & ALAE for the accident year taken directly from Exhibit 2.

Column (7) is the resulting ultimate net paid loss & ALAE for the accident year. [column (6) x column (5)].

Exhibit 10 is included to illustrate a projection on current year at age 12.

## 4. Results and Discussion

Analyzing the relationship of closure ratio and LDF as well as the relationship of age and LDF will provide visual evidence for the expected improvement offered by a closure-based analysis. We have experienced tremendous improvement in fits when we replace age with closure. The improved fit has been experienced across many companies and includes non-standard personal automobile, standard personal automobile and commercial automobile lines. The visual and statistical evidence produced by these regressions will give the actuary confidence when pursuing an adjusted paid loss approach.

Both the Closure-Based Regression Method and the Adjusted Paid Loss Development Method show significant improvement over the traditional age-based Paid Loss Development Method when claim settlement rates are changing. As expected, the Closure-Based Regression Method and the Adjusted Paid Loss Development Method generally move in the same direction with each new evaluation.

When closure ratios are fairly consistent in time a traditional paid loss development method that relies on statistics from this relatively consistent period in its age to age LDF analysis may produce reasonable results. Even in this case, however, a consistent closure ratio may only occur for a few years. Reliance on such thin data will certainly cause the actuary to be very reactive and lose the credibility provided in larger sets of data. We have, however, experienced large shifts in closure ratio over time with a resulting large inconsistency exhibited by the traditional Paid Loss Development Method.

The Adjusted Paid Loss Method transforms an age-based triangle into a closure-based triangle by use of interpolation across closure ratios. It is also a chain ladder approach. Both of these mechanics add error to projections. However, the Adjusted Paid Loss Method has advantages over the Closure-Based Regression Method. An analysis of historical triangle data can reveal information regarding the impact of various internal and external factors along with

points in time where their influence was heavier or lighter. The actuary can then judgmentally select LDF's that reflect this knowledge. In addition, the Closure-Based Regression Method does not use current accident years in fitting the regressions while the Adjusted Paid Loss Method works from the closure ratios exhibited in the last diagonal of the triangle. It is recommended that both methods be utilized and information from both be used in the selection of ultimates.

## 5. Conclusions

The Closure-Based Regression Method is a simple but powerful and visually compelling method. Retrospectively, it has proven to be very accurate for accident periods where exposures are fully earned. The fit of the development curves makes it clear as to why the method has proven to be so accurate in retrospective tests. The pure analysis of the relationship between claim closure level and LDF produces a very accurate paid loss development curve.

It is important to understand that while the Closure Method fit may be strong this does not preclude the curve from shifting in time. A traditional Berquist-Sherman approach should be used in conjunction with this method. Continual regression updates should be made with new data as well. Analysis of shifts in the curve by accident year should be undertaken. This being said, we believe that the Closure Method provides a powerful tool for the actuary to more confidently select ultimates as well as explain the effects of changing settlement rates to management.

There is little that can be done to leverage paid loss further given the high  $r^2$  and the principle of parsimony. Although the closure fit is nearly perfect in some cases at an  $r^2$  of .99+ it still is a method that leverages paid losses. LDF's, therefore, are still high in the early closure periods and small errors leverage to larger changes in ultimate loss. Regression methods that incorporate case reserves are an obvious consideration. Regressions involving incurred losses and closure ratios have shown a deterioration in  $r^2$ , however. It is believed that incurred losses represent a mixed-bag of information. The paid loss portion is obviously highly correlated with settlement rates but the case reserve portion will have a relationship to the age of the accident period.

No attempt has been made to date to test the method more universally beyond the personal automobile and commercial automobile lines. It can be stated that homogeneous, high frequency, low severity and low limits lines will perform best. The resulting closure ratio to LDF fits will be stronger. These lines will also have less dependence on case reserves and less case reserve level volatility.

## 6. References

Berquist, James R., and Sherman, Richard E., "Loss Reserve Adequacy Testing: A Comprehensive Systematic Approach," Proceedings of the Casualty Actuarial Society Casualty Actuarial Society - Arlington, Virginia 1977: LXVII 123-184

| Closure<br>CWA / ( | Ratio<br>CWA + Open | n )        |            |            |            |            |            |            |            |            |            |            | Exhibit 1  |
|--------------------|---------------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
|                    | <u>3</u>            | <u>6</u>   | <u>9</u>   | <u>12</u>  | <u>15</u>  | <u>18</u>  | <u>21</u>  | <u>24</u>  | <u>27</u>  | <u>30</u>  | <u>33</u>  | <u>36</u>  | <u>39</u>  |
| 1993               | 4.01%               | 12.87%     | 21.80%     | 34.78%     | 54.43%     | 71.19%     | 82.61%     | 88.70%     | 92.80%     | 94.74%     | 96.35%     | 97.09%     | 97.76%     |
| 1994               | 9.25%               | 19.78%     | 29.38%     | 39.54%     | 53.67%     | 68.76%     | 81.04%     | 87.26%     | 89.96%     | 92.38%     | 94.69%     | 96.25%     | 97.02%     |
| 1995               | 7.45%               | 16.27%     | 26.07%     | 30.13%     | 41.74%     | 50.24%     | 60.50%     | 73.06%     | 81.30%     | 86.09%     | 90.49%     | 93.32%     | 95.82%     |
| 1996               | 3.47%               | 7.30%      | 13.13%     | 21.88%     | 35.33%     | 51.63%     | 66.61%     | 78.45%     | 86.11%     | 90.10%     | 92.85%     | 95.29%     | 96.41%     |
| 1997               | 5.99%               | 9.87%      | 17.96%     | 27.70%     | 41.43%     | 56.38%     | 67.95%     | 77.10%     | 82.63%     | 87.11%     | 91.31%     | 93.88%     | 95.88%     |
| 1998               | 6.74%               | 13.53%     | 17.86%     | 24.50%     | 35.65%     | 48.91%     | 61.68%     | 72.63%     | 79.11%     | 85.29%     | 89.01%     | 92.48%     | 95.11%     |
| 1999               | 4.47%               | 7.56%      | 14.45%     | 21.95%     | 32.50%     | 44.99%     | 56.79%     | 67.07%     | 74.56%     | 81.91%     | 88.25%     | 93.25%     | 96.58%     |
| 2000               | 5.91%               | 9.70%      | 14.88%     | 21.14%     | 32.33%     | 46.15%     | 61.84%     | 77.22%     | 86.10%     | 91.31%     | 94.51%     | 96.51%     | 97.84%     |
| 2001               | 5.17%               | 9.98%      | 16.92%     | 27.77%     | 40.94%     | 56.01%     | 69.56%     | 80.55%     | 87.07%     | 91.86%     | 94.45%     | 96.30%     | 97.48%     |
| 2002               | 5.64%               | 12.07%     | 18.41%     | 26.46%     | 39.10%     | 53.16%     | 65.78%     | 74.93%     | 82.28%     | 87.45%     | 91.37%     | 94.07%     | 95.71%     |
| 2003               | 7.84%               | 14.01%     | 21.53%     | 30.79%     | 45.57%     | 60.12%     | 71.03%     | 79.95%     | 85.24%     | 89.45%     |            |            |            |
| 2004               | 6.68%               | 13.01%     | 21.34%     | 31.33%     | 43.26%     | 56.69%     |            |            |            |            |            |            |            |
| 2005               | 6.41%               | 14.80%     |            |            |            |            |            |            |            |            |            |            |            |
| Closure<br>CWA / ( | Ratio<br>CWA + Open | ı)         |            |            |            |            |            |            |            |            |            |            |            |
|                    | <u>42</u>           | <u>45</u>  | <u>48</u>  | <u>51</u>  | <u>54</u>  | <u>57</u>  | <u>60</u>  | <u>63</u>  | <u>66</u>  | <u>69</u>  | <u>72</u>  | <u>75</u>  | <u>78</u>  |
| 1993               | 98.15%              | 98.50%     | 99.15%     | 99.44%     | 99.51%     | 99.64%     | 99.77%     | 99.84%     | 99.84%     | 99.87%     | 99.90%     | 99.93%     | 99.93%     |
| 1994               | 97.85%              | 98.12%     | 98.75%     | 99.16%     | 99.53%     | 99.59%     | 99.69%     | 99.76%     | 99.83%     | 99.86%     | 99.97%     | 99.93%     | 99.97%     |
| 1995               | 97.59%              | 97.86%     | 98.16%     | 99.02%     | 99.28%     | 99.58%     | 99.66%     | 99.81%     | 99.81%     | 99.81%     | 99.81%     | 99.81%     | 99.85%     |
| 1996               | 97.31%              | 98.16%     | 98.62%     | 99.17%     | 99.20%     | 99.35%     | 99.45%     | 99.57%     | 99.66%     | 99.85%     | 99.97%     | 99.97%     | 99.97%     |
| 1997               | 97.33%              | 98.10%     | 98.33%     | 98.62%     | 99.15%     | 99.31%     | 99.57%     | 100.00%    | 100.00%    | 100.00%    | 100.00%    | 100.00%    | 100.00%    |
| 1998               | 96.67%              | 97.98%     | 98.83%     | 99.37%     | 99.62%     | 99.64%     | 99.70%     | 99.72%     | 99.76%     | 99.94%     | 99.91%     | 99.97%     | 99.97%     |
| 1999               | 98.16%              | 99.03%     | 99.33%     | 99.59%     | 99.66%     | 99.70%     | 99.76%     | 99.80%     | 99.81%     | 99.86%     | 99.91%     | 99.93%     | 99.95%     |
| 2000               | 98.55%              | 99.06%     | 99.16%     | 99.51%     | 99.58%     | 99.65%     | 99.82%     | 99.83%     | 99.86%     |            |            |            |            |
| 2001               | 98.27%              | 98.76%     | 99.25%     | 99.33%     | 99.56%     |            |            |            |            |            |            |            |            |
| 2002               | 96.75%              |            |            |            |            |            |            |            |            |            |            |            |            |
| Closure            | Ratio               |            |            |            |            |            |            |            |            |            |            |            |            |
| CWA / (            | CWA + Open          | n )        |            |            |            |            |            |            |            |            |            |            |            |
|                    | <u>81</u>           | <u>84</u>  | <u>87</u>  | <u>90</u>  | <u>93</u>  | <u>96</u>  | <u>99</u>  | <u>102</u> | <u>105</u> | <u>108</u> | <u>111</u> | <u>114</u> | <u>117</u> |
| 1993               | 99.97%              | 99.97%     | 99.97%     | 99.97%     | 100.00%    | 100.00%    | 100.00%    | 100.00%    | 100.00%    | 100.00%    | 100.00%    | 100.00%    | 100.00%    |
| 1994               | 99.97%              | 99.97%     | 99.97%     | 99.97%     | 99.97%     | 99.97%     | 99.97%     | 100.00%    | 100.00%    | 100.00%    | 100.00%    | 100.00%    | 100.00%    |
| 1995               | 99.92%              | 99.92%     | 100.00%    | 100.00%    | 100.00%    | 100.00%    | 100.00%    | 100.00%    | 100.00%    | 100.00%    | 100.00%    | 100.00%    | 100.00%    |
| 1996               | 99.97%              | 99.97%     | 99.94%     | 99.97%     | 99.97%     | 100.00%    | 100.00%    | 100.00%    | 100.00%    | 100.00%    | 100.00%    | 100.00%    |            |
| 1997               | 100.00%             | 99.98%     | 99.98%     | 100.00%    | 100.00%    | 100.00%    | 100.00%    | 100.00%    |            |            |            |            |            |
| 1998               | 99.98%              | 99.98%     | 99.98%     | 99.98%     |            |            |            |            |            |            |            |            |            |
| Closure<br>CWA / ( | Ratio<br>CWA + Open | ı)         |            |            |            |            |            |            |            |            |            |            |            |
|                    | <u>120</u>          | <u>123</u> | <u>126</u> | <u>129</u> | <u>132</u> | <u>135</u> | <u>138</u> | <u>141</u> | <u>144</u> | <u>147</u> | <u>150</u> |            |            |
| 1993               | 100.00%             | 100.00%    | 100.00%    | 100.00%    | 100.00%    | 100.00%    | 100.00%    | 100.00%    | 100.00%    | 100.00%    | 100.00%    |            |            |
| 1994               | 100.00%             | 100.00%    | 100.00%    | 100.00%    | 100.00%    | 100.00%    | 100.00%    |            |            |            |            |            |            |
| 1995               | 100.00%             | 100.00%    | 100.00%    |            |            |            |            |            |            |            |            |            |            |
|                    |                     |            |            |            |            |            |            |            |            |            |            |            |            |

Closure Ratio

12

#### Net Paid Loss & ALAE

Exhibit 2

|             | <u>3</u>   | <u>6</u>   | <u>9</u>   | <u>12</u>  | <u>15</u>  | <u>18</u>  | <u>21</u>  | <u>24</u>  | <u>27</u>  | <u>30</u>  |
|-------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 1993        | 23,850     | 440,003    | 1,751,097  | 4,116,136  | 8,007,513  | 11,831,534 | 14,278,225 | 15,964,509 | 16,972,591 | 17,611,193 |
| 1994        | 91,158     | 864,423    | 2,311,886  | 5,194,806  | 8,138,088  | 11,220,809 | 13,671,712 | 15,040,857 | 15,717,248 | 16,392,829 |
| 1995        | 50,309     | 659,033    | 2,048,652  | 3,575,265  | 5,255,877  | 6,593,127  | 8,383,804  | 10,599,555 | 12,270,046 | 13,496,678 |
| 1996        | 8,759      | 166,574    | 802,108    | 2,395,691  | 4,695,914  | 7,698,792  | 10,443,855 | 13,009,514 | 15,069,204 | 16,353,709 |
| 1997        | 45,212     | 523,236    | 2,174,441  | 5,399,948  | 9,905,231  | 14,650,839 | 18,434,660 | 21,862,315 | 24,265,740 | 26,549,256 |
| 1998        | 72,687     | 541,156    | 1,655,582  | 4,395,460  | 8,315,417  | 13,052,565 | 18,438,977 | 23,245,442 | 26,921,907 | 30,469,043 |
| 1999        | 51,284     | 620,722    | 2,788,247  | 6,315,290  | 11,032,613 | 16,376,044 | 22,027,130 | 27,600,893 | 32,175,666 | 37,193,603 |
| 2000        | 49,795     | 510,115    | 1,879,673  | 4,394,381  | 8,213,158  | 13,818,971 | 20,718,279 | 28,087,482 | 33,234,257 | 37,530,775 |
| 2001        | 51,761     | 428,182    | 1,943,984  | 5,249,365  | 10,140,817 | 16,544,171 | 21,805,864 | 26,100,833 | 29,055,668 | 31,570,067 |
| 2002        | 71,883     | 622,682    | 2,480,476  | 5,631,654  | 10,285,303 | 15,869,288 | 21,187,513 | 25,809,388 | 29,432,258 | 32,323,392 |
| 2003        | 84,082     | 660,018    | 2,143,074  | 6,018,885  | 10,645,835 | 15,437,555 | 19,464,779 | 23,335,756 | 25,477,508 | 27,340,774 |
| 2004        | 104,833    | 752,085    | 2,643,954  | 5,872,516  | 9,367,849  | 13,256,219 |            |            |            |            |
| 2005        | 56,502     | 621,000    |            |            |            |            |            |            |            |            |
|             |            |            |            |            |            |            |            |            |            |            |
| Net Paid Lo | oss & ALAE |            |            |            |            |            |            |            |            |            |
|             | <u>33</u>  | <u>36</u>  | <u>39</u>  | <u>42</u>  | <u>45</u>  | <u>48</u>  | <u>51</u>  | <u>54</u>  | <u>57</u>  | <u>60</u>  |
| 1993        | 18,145,935 | 18,412,185 | 18,599,225 | 18,741,034 | 18,834,504 | 18,915,326 | 18,967,459 | 18,996,352 | 19,050,533 | 19,078,453 |
| 1994        | 16,952,098 | 17,564,927 | 17,867,592 | 18,114,938 | 18,249,237 | 18,346,070 | 18,405,621 | 18,422,544 | 18,425,305 | 18,456,108 |
| 1995        | 14,572,453 | 15,308,523 | 15,844,818 | 16,247,001 | 16,361,430 | 16,450,178 | 16,552,265 | 16,639,047 | 16,729,845 | 16,740,362 |
| 1996        | 17,207,743 | 17,887,704 | 18,276,301 | 18,501,618 | 18,698,400 | 18,745,079 | 18,841,748 | 18,897,751 | 18,940,734 | 18,987,524 |
| 1997        | 28,654,286 | 29,809,650 | 30,568,954 | 31,196,263 | 31,625,567 | 31,833,820 | 31,975,727 | 32,129,382 | 32,274,646 | 32,357,515 |
| 1998        | 33,014,258 | 34,859,098 | 36,209,913 | 37,021,153 | 37,616,331 | 38,092,555 | 38,387,968 | 38,524,498 | 38,566,044 | 38,597,300 |
| 1999        | 41,381,319 | 44,479,311 | 46,746,502 | 47,740,544 | 48,220,503 | 48,539,328 | 48,748,788 | 48,833,489 | 48,954,043 | 49,024,243 |

Net Paid Loss & ALAE

39,510,184

33,007,076

34,517,041

40,848,765

33,981,768

36,105,569

41,818,055

34,549,553

36,897,480

42,340,356

35,104,880

37,396,259

2000

2001

2002

|      | <u>63</u>  | <u>66</u>  | <u>69</u>  | <u>72</u>  | <u>75</u>  | <u>78</u>  | <u>81</u>  | <u>84</u>  | <u>87</u>  | <u>90</u>  |
|------|------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 1993 | 19,082,369 | 19,089,861 | 19,107,056 | 19,115,565 | 19,117,441 | 19,120,137 | 19,131,581 | 19,134,472 | 19,135,588 | 19,136,313 |
| 1994 | 18,463,166 | 18,465,864 | 18,469,158 | 18,499,305 | 18,498,019 | 18,501,301 | 18,501,301 | 18,501,301 | 18,501,301 | 18,501,301 |
| 1995 | 16,771,895 | 16,780,070 | 16,778,792 | 16,775,710 | 16,776,170 | 16,775,406 | 16,783,796 | 16,785,812 | 16,798,273 | 16,798,490 |
| 1996 | 19,004,406 | 19,045,673 | 19,066,056 | 19,089,768 | 19,092,758 | 19,093,003 | 19,091,813 | 19,092,168 | 19,093,407 | 19,101,396 |
| 1997 | 32,410,993 | 32,423,724 | 32,427,203 | 32,426,483 | 32,427,056 | 32,429,432 | 32,429,494 | 32,429,758 | 32,428,019 | 32,428,319 |
| 1998 | 38,612,777 | 38,640,427 | 38,683,117 | 38,690,362 | 38,698,432 | 38,699,871 | 38,699,996 | 38,703,929 | 38,704,824 | 38,704,779 |
| 1999 | 49,069,529 | 49,087,172 | 49,110,490 | 49,135,304 | 49,159,716 | 49,192,079 |            |            |            |            |

42,648,087

35,384,769

42,824,268

35,607,655

42,954,016

35,716,493

43,054,964

35,783,290

43,102,420

43,193,467

2000 43,209,409 43,227,069

Net Paid Loss & ALAE

|         | <u>93</u>     | <u>96</u>  | <u>99</u>  | <u>102</u> | <u>105</u> | <u>108</u> | <u>111</u> | <u>114</u> | <u>117</u> | <u>120</u> |
|---------|---------------|------------|------------|------------|------------|------------|------------|------------|------------|------------|
| 1993    | 19,144,923    | 19,145,048 | 19,145,048 | 19,145,048 | 19,127,253 | 19,127,253 | 19,127,253 | 19,127,253 | 19,127,253 | 19,127,253 |
| 1994    | 18,501,301    | 18,501,892 | 18,511,745 | 18,516,810 | 18,516,810 | 18,516,810 | 18,516,810 | 18,516,810 | 18,516,810 | 18,516,810 |
| 1995    | 16,798,495    | 16,798,495 | 16,798,495 | 16,798,495 | 16,798,495 | 16,798,495 | 16,798,495 | 16,798,495 | 16,798,495 | 16,798,495 |
| 1996    | 19,102,220    | 19,119,323 | 19,119,505 | 19,119,505 | 19,119,505 | 19,119,505 | 19,119,505 | 19,119,479 |            |            |
| 1997    | 32,428,319    | 32,428,319 | 32,428,319 | 32,428,319 |            |            |            |            |            |            |
| Net Pai | d Loss & ALAE |            |            |            |            |            |            |            |            |            |
|         | <u>123</u>    | <u>126</u> | <u>129</u> | <u>132</u> | <u>135</u> | <u>138</u> | <u>141</u> | <u>144</u> | <u>147</u> | <u>150</u> |
| 1993    | 19,127,253    | 19,127,253 | 19,127,253 | 19,127,253 | 19,127,253 | 19,127,253 | 19,099,702 | 19,099,702 | 19,099,702 | 19,099,702 |

 1994
 18,516,810
 18,516,810
 18,516,810
 18,516,810
 18,516,810
 18,516,810

1995 16,799,150 16,799,150

## Estimated Net Paid Loss & ALAE

## Exhibit 3

<u>80%</u>

| 1993 | 71.19% | 82.61% | 11,831,534 | 14,278,225 | 80.00% | 0.088 | 0.114 | 77.2% | 22.8% | 13,719,250 |
|------|--------|--------|------------|------------|--------|-------|-------|-------|-------|------------|
| 1994 | 68.76% | 81.04% | 11,220,809 | 13,671,712 | 80.00% | 0.112 | 0.123 | 91.6% | 8.4%  | 13,464,777 |
| 1995 | 73.06% | 81.30% | 10,599,555 | 12,270,046 | 80.00% | 0.069 | 0.082 | 84.2% | 15.8% | 12,006,002 |
| 1996 | 78.45% | 86.11% | 13,009,514 | 15,069,204 | 80.00% | 0.016 | 0.077 | 20.3% | 79.7% | 13,427,078 |
| 1997 | 77.10% | 82.63% | 21,862,315 | 24,265,740 | 80.00% | 0.029 | 0.055 | 52.4% | 47.6% | 23,121,585 |
| 1998 | 79.11% | 85.29% | 26,921,907 | 30,469,043 | 80.00% | 0.009 | 0.062 | 14.4% | 85.6% | 27,434,387 |
| 1999 | 74.56% | 81.91% | 32,175,666 | 37,193,603 | 80.00% | 0.054 | 0.073 | 74.1% | 25.9% | 35,891,725 |
| 2000 | 77.22% | 86.10% | 28,087,482 | 33,234,257 | 80.00% | 0.028 | 0.089 | 31.3% | 68.7% | 29,698,193 |
| 2001 | 69.56% | 80.55% | 21,805,864 | 26,100,833 | 80.00% | 0.104 | 0.110 | 95.0% | 5.0%  | 25,886,454 |
| 2002 | 74.93% | 82.28% | 25,809,388 | 29,432,258 | 80.00% | 0.051 | 0.074 | 69.0% | 31.0% | 28,309,584 |
| 2003 | 79.95% | 85.24% | 23,335,756 | 25,477,508 | 80.00% | 0.000 | 0.053 | 0.9%  | 99.1% | 23,354,111 |

| Estima | Estimated Net Paid Loss & ALAE Exhibit |        |            |            |        |       |       |       |       |            |                  |                           |
|--------|----------------------------------------|--------|------------|------------|--------|-------|-------|-------|-------|------------|------------------|---------------------------|
|        |                                        |        |            |            |        |       |       |       |       | <u>99%</u> | <u>Ultimate</u>  | <u>99% to ult</u><br>tail |
| 1993   | 98.50%                                 | 99.15% | 18,834,504 | 18,915,326 | 99.00% | 0.005 | 0.006 | 76.9% | 23.1% | 18,896,622 | 19,099,702       | 1.011                     |
| 1994   | 98.75%                                 | 99.16% | 18,346,070 | 18,405,621 | 99.00% | 0.002 | 0.004 | 61.3% | 38.7% | 18,382,576 | 18,516,810       | 1.007                     |
| 1995   | 98.16%                                 | 99.02% | 16,450,178 | 16,552,265 | 99.00% | 0.008 | 0.009 | 98.2% | 1.8%  | 16,550,423 | 16,799,150       | 1.015                     |
| 1996   | 98.62%                                 | 99.17% | 18,745,079 | 18,841,748 | 99.00% | 0.004 | 0.006 | 69.5% | 30.5% | 18,812,221 | 19,119,709       | 1.016                     |
| 1997   | 98.62%                                 | 99.15% | 31,975,727 | 32,129,382 | 99.00% | 0.004 | 0.005 | 71.3% | 28.7% | 32,085,267 | 32,428,694       | 1.011                     |
| 1998   | 98.83%                                 | 99.37% | 38,092,555 | 38,387,968 | 99.00% | 0.002 | 0.005 | 31.0% | 69.0% | 38,184,180 | 38,715,487       | 1.014                     |
| 1999   | 98.16%                                 | 99.03% | 47,740,544 | 48,220,503 | 99.00% | 0.008 | 0.009 | 96.2% | 3.8%  | 48,202,331 | 49,212,336       | 1.021                     |
| 2000   | 98.55%                                 | 99.06% | 42,340,356 | 42,648,087 | 99.00% | 0.005 | 0.005 | 87.5% | 12.5% | 42,609,579 |                  |                           |
| 2001   | 98.76%                                 | 99.25% | 35,384,769 | 35,607,655 | 99.00% | 0.002 | 0.005 | 49.8% | 50.2% | 35,495,854 | selected<br>tail | 1.016                     |

#### Net Paid Loss & ALAE Closure Point to 80% Closed LDF

|      | <u>3</u>  | <u>6</u> | <u>9</u> | <u>12</u> | <u>15</u> | <u>18</u> | <u>21</u> | <u>24</u> | <u>27</u> | <u>30</u> |
|------|-----------|----------|----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 1993 | 575.231   | 31.180   | 7.835    | 3.333     | 1.713     | 1.160     | N/A       | N/A       | N/A       | N/A       |
| 1994 | 147.708   | 15.577   | 5.824    | 2.592     | 1.655     | 1.200     | N/A       | N/A       | N/A       | N/A       |
| 1995 | 238.645   | 18.218   | 5.860    | 3.358     | 2.284     | 1.821     | 1.432     | 1.133     | N/A       | N/A       |
| 1996 | 1,532.946 | 80.607   | 16.740   | 5.605     | 2.859     | 1.744     | 1.286     | 1.032     | N/A       | N/A       |
| 1997 | 511.404   | 44.190   | 10.633   | 4.282     | 2.334     | 1.578     | 1.254     | 1.058     | N/A       | N/A       |
| 1998 | 377.432   | 50.696   | 16.571   | 6.242     | 3.299     | 2.102     | 1.488     | 1.180     | 1.019     | N/A       |
| 1999 | 699.862   | 57.823   | 12.873   | 5.683     | 3.253     | 2.192     | 1.629     | 1.300     | 1.115     | N/A       |
| 2000 | 596.409   | 58.219   | 15.800   | 6.758     | 3.616     | 2.149     | 1.433     | 1.057     | N/A       | N/A       |
| 2001 | 500.115   | 60.457   | 13.316   | 4.931     | 2.553     | 1.565     | 1.187     | N/A       | N/A       | N/A       |
| 2002 | 393.829   | 45.464   | 11.413   | 5.027     | 2.752     | 1.784     | 1.336     | 1.097     | N/A       | N/A       |
| 2003 | 277.754   | 35.384   | 10.897   | 3.880     | 2.194     | 1.513     | 1.200     | 1.001     | N/A       | N/A       |

Net Paid Loss & ALAE Closure Point to 99% Closed LDF

|      | <u>3</u>  | <u>6</u>  | <u>9</u>  | <u>12</u> | <u>15</u> | <u>18</u> | <u>21</u> | <u>24</u> | <u>27</u> |
|------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| 1993 | 792.311   | 42.947    | 10.791    | 4.591     | 2.360     | 1.597     | 1.323     | 1.184     | 1.113     |
| 1994 | 201.656   | 21.266    | 7.951     | 3.539     | 2.259     | 1.638     | 1.345     | 1.222     | 1.170     |
| 1995 | 328.975   | 25.113    | 8.079     | 4.629     | 3.149     | 2.510     | 1.974     | 1.561     | 1.349     |
| 1996 | 2,147.759 | 112.936   | 23.453    | 7.853     | 4.006     | 2.444     | 1.801     | 1.446     | 1.248     |
| 1997 | 709.663   | 61.321    | 14.756    | 5.942     | 3.239     | 2.190     | 1.740     | 1.468     | 1.322     |
| 1998 | 525.323   | 70.560    | 23.064    | 8.687     | 4.592     | 2.925     | 2.071     | 1.643     | 1.418     |
| 1999 | 939.910   | 77.655    | 17.288    | 7.633     | 4.369     | 2.943     | 2.188     | 1.746     | 1.498     |
| 2000 | 855.700   | 83.529    | 22.669    | 9.696     | 5.188     | 3.083     | 2.057     | 1.517     | 1.282     |
| 2001 | 685.764   | 82.899    | 18.259    | 6.762     | 3.500     | 2.146     | 1.628     | 1.360     | 1.222     |
|      |           |           |           |           |           |           |           |           |           |
|      | <u>30</u> | <u>33</u> | <u>36</u> | <u>39</u> | <u>42</u> | <u>45</u> | <u>48</u> | <u>51</u> | <u>54</u> |
| 1993 | 1.073     | 1.041     | 1.026     | 1.016     | 1.008     | 1.003     | N/A       | N/A       | N/A       |
| 1994 | 1.121     | 1.084     | 1.047     | 1.029     | 1.015     | 1.007     | 1.002     | N/A       | N/A       |
| 1995 | 1.226     | 1.136     | 1.081     | 1.045     | 1.019     | 1.012     | 1.006     | N/A       | N/A       |
| 1996 | 1.150     | 1.093     | 1.052     | 1.029     | 1.017     | 1.006     | 1.004     | N/A       | N/A       |
| 1997 | 1.209     | 1.120     | 1.076     | 1.050     | 1.028     | 1.015     | 1.008     | 1.003     | N/A       |
| 1998 | 1.253     | 1.157     | 1.095     | 1.055     | 1.031     | 1.015     | 1.002     | N/A       | N/A       |
| 1999 | 1.296     | 1.165     | 1.084     | 1.031     | 1.010     | N/A       | N/A       | N/A       | N/A       |
| 2000 | 1.135     | 1.078     | 1.043     | 1.019     | 1.006     | N/A       | N/A       | N/A       | N/A       |
| 2001 | 1.124     | 1.075     | 1.045     | 1.027     | 1.011     | 1.003     | N/A       | N/A       | N/A       |

## **Regression Analysis**

| % Closed to 8                  | 80% Regression | 80% to 99% F  | Regression |
|--------------------------------|----------------|---------------|------------|
| <u>Ciosure</u><br><u>Ratio</u> | <u>LDF</u>     | Closure Ratio | <u>LDF</u> |
| 21.14%                         | 6.758          | 80.5%         | 1.360      |
| 21.88%                         | 5.605          | 81.0%         | 1.345      |
| 21.95%                         | 5.683          | 81.3%         | 1.349      |
| 24.50%                         | 6.242          | 81.9%         | 1.296      |
| 26.46%                         | 5.027          | 82.6%         | 1.323      |
| 27.70%                         | 4.282          | 82.6%         | 1.322      |
| 27.77%                         | 4.931          | 85.3%         | 1.253      |
| 30.13%                         | 3.358          | 86.1%         | 1.226      |
| 30.79%                         | 3.880          | 86.1%         | 1.282      |
| 32.33%                         | 3.616          | 86.1%         | 1.248      |
| 32.50%                         | 3.253          | 87.1%         | 1.222      |
| 34.78%                         | 3.333          | 87.1%         | 1.209      |
| 35.33%                         | 2.859          | 87.3%         | 1.222      |
| 35.65%                         | 3.299          | 88.3%         | 1.165      |
| 39.10%                         | 2.752          | 88.7%         | 1.184      |
| 39.54%                         | 2.592          | 89.0%         | 1.157      |
| 40.94%                         | 2.553          | 90.0%         | 1.170      |
| 41.43%                         | 2.334          | 90.1%         | 1.150      |
| 41.74%                         | 2.284          | 90.5%         | 1.136      |
| 44.99%                         | 2.192          | 91.3%         | 1.135      |
| 45.57%                         | 2.194          | 91.3%         | 1.120      |
| 46.15%                         | 2.149          | 91.9%         | 1.124      |
| 48.91%                         | 2.102          | 92.4%         | 1.121      |
| 50.24%                         | 1.821          | 92.5%         | 1.095      |
| 51.63%                         | 1.744          | 92.8%         | 1.113      |
| 53.16%                         | 1.784          | 92.9%         | 1.093      |

| % Closed to 8 | 30% Regression | 80% to 99% F | Regression   |
|---------------|----------------|--------------|--------------|
| Closure       |                | Closure      | Cogi Cocioni |
| Ratio         | LDF            | Ratio        | <u>LDF</u>   |
| 53.67%        | 1.655          | 93.2%        | 1.084        |
| 54.43%        | 1.713          | 93.3%        | 1.081        |
| 56.01%        | 1.565          | 93.9%        | 1.076        |
| 56.38%        | 1.578          | 94.4%        | 1.075        |
| 56.79%        | 1.629          | 94.5%        | 1.078        |
| 60.12%        | 1.513          | 94.7%        | 1.084        |
| 60.50%        | 1.432          | 94.7%        | 1.073        |
| 61.68%        | 1.488          | 95.1%        | 1.055        |
| 61.84%        | 1.433          | 95.3%        | 1.052        |
| 65.78%        | 1.336          | 95.8%        | 1.045        |
| 66.61%        | 1.286          | 95.9%        | 1.050        |
| 67.07%        | 1.300          | 96.3%        | 1.047        |
| 67.95%        | 1.254          | 96.3%        | 1.045        |
| 68.76%        | 1.200          | 96.3%        | 1.041        |
| 69.56%        | 1.187          | 96.4%        | 1.029        |
| 71.03%        | 1.200          | 96.5%        | 1.043        |
| 71.19%        | 1.160          | 96.6%        | 1.031        |
| 72.63%        | 1.180          | 96.7%        | 1.031        |
| 73.06%        | 1.133          | 97.0%        | 1.029        |
| 74.56%        | 1.115          | 97.1%        | 1.026        |
| 74.93%        | 1.097          | 97.3%        | 1.017        |
| 77.10%        | 1.058          | 97.3%        | 1.028        |
| 77.22%        | 1.057          | 97.5%        | 1.027        |
| 78.45%        | 1.032          | 97.6%        | 1.019        |
| 79.11%        | 1.019          | 97.8%        | 1.016        |
| 79.95%        | 1.001          | 97.8%        | 1.019        |

| 80% to 99%                     | Regression |
|--------------------------------|------------|
| <u>Closure</u><br><u>Ratio</u> | LDF        |
| 97.9%                          | 1.015      |
| 97.9%                          | 1.012      |
| 98.0%                          | 1.015      |
| 98.1%                          | 1.015      |
| 98.1%                          | 1.007      |
| 98.1%                          | 1.008      |
| 98.2%                          | 1.006      |
| 98.2%                          | 1.010      |
| 98.2%                          | 1.006      |
| 98.3%                          | 1.011      |
| 98.3%                          | 1.008      |
| 98.5%                          | 1.003      |
| 98.5%                          | 1.006      |
| 98.6%                          | 1.004      |
| 98.8%                          | 1.002      |
| 98.8%                          | 1.003      |
| 98.8%                          | 1.002      |

## **Regression Analysis**

```
Exhibit 8
```





#### Bodily Injury Closure-Based Regression Method As Of 6/30/05

|   |          |         | Indicated  |            |       |       |             |             |
|---|----------|---------|------------|------------|-------|-------|-------------|-------------|
|   |          |         | LDF From   | Indicated  |       |       | Cumulative  | Ultimate    |
|   | Accident | Closure | Point To   | LDF To     |       |       | Net Paid    | Net Paid    |
| _ | Year     | Ratio   | 80% Closed | 99% Closed | Tail  | LDF   | Loss & ALAE | Loss & ALAE |
|   |          | (1)     | (2)        | (3)        | (4)   | (5)   | (6)         | (7)         |
|   | 1993     | 100.00% | 1.000      | 1.000      | 1.000 | 1.000 | 19,099,702  | 19,099,702  |
|   | 1994     | 100.00% | 1.000      | 1.000      | 1.000 | 1.000 | 18,516,810  | 18,516,810  |
|   | 1995     | 100.00% | 1.000      | 1.000      | 1.000 | 1.000 | 16,799,150  | 16,799,150  |
|   | 1996     | 100.00% | 1.000      | 1.000      | 1.000 | 1.000 | 19,119,479  | 19,119,709  |
|   | 1997     | 100.00% | 1.000      | 1.000      | 1.000 | 1.000 | 32,428,319  | 32,428,694  |
|   | 1998     | 99.98%  | 1.000      | 1.000      | 1.000 | 1.000 | 38,704,779  | 38,715,487  |
|   | 1999     | 99.95%  | 1.000      | 1.000      | 1.000 | 1.000 | 49,192,079  | 49,212,336  |
|   | 2000     | 99.86%  | 1.000      | 1.000      | 1.002 | 1.002 | 43,227,069  | 43,325,885  |
|   | 2001     | 99.56%  | 1.000      | 1.000      | 1.007 | 1.007 | 35,783,290  | 36,031,280  |
|   | 2002     | 96.75%  | 1.000      | 1.033      | 1.016 | 1.050 | 37,396,259  | 39,260,406  |
|   | 2003     | 89.45%  | 1.000      | 1.165      | 1.016 | 1.183 | 27,340,774  | 32,350,451  |
|   | 2004     | 56.69%  | 1.609      | 1.381      | 1.016 | 2.257 | 13,256,219  | 29,920,994  |
|   | 2005     | 14.80%  | N/A        | N/A        | N/A   | N/A   | N/A         | N/A         |
|   |          |         |            |            |       |       |             |             |

#### Bodily Injury Closure-Based Regression Method As Of 12/31/04

|          |         | Indicated  |            |       |            |             |             |
|----------|---------|------------|------------|-------|------------|-------------|-------------|
| Calendar |         | LDF From   | Indicated  |       |            | Cumulative  | Ultimate    |
| Accident | Closure | Point To   | LDF To     |       |            | Net Paid    | Net Paid    |
| Year     | Ratio   | 80% Closed | 99% Closed | Tail  | <u>LDF</u> | Loss & ALAE | Loss & ALAE |
|          | (1)     | (2)        | (3)        | (4)   | (5)        | (6)         | (7)         |
| 1993     | 100.00% | 1.000      | 1.000      | 1.000 | 1.000      | 19,099,702  | 19,099,702  |
| 1994     | 100.00% | 1.000      | 1.000      | 1.000 | 1.000      | 18,516,810  | 18,516,810  |
| 1995     | 100.00% | 1.000      | 1.000      | 1.000 | 1.000      | 16,798,495  | 16,798,495  |
| 1996     | 100.00% | 1.000      | 1.000      | 1.000 | 1.000      | 19,119,505  | 19,119,505  |
| 1997     | 100.00% | 1.000      | 1.000      | 1.000 | 1.000      | 32,428,319  | 32,437,317  |
| 1998     | 99.98%  | 1.000      | 1.000      | 1.001 | 1.001      | 38,703,929  | 38,736,432  |
| 1999     | 99.91%  | 1.000      | 1.000      | 1.001 | 1.001      | 49,135,304  | 49,187,057  |
| 2000     | 99.82%  | 1.000      | 1.000      | 1.003 | 1.003      | 43,193,467  | 43,337,380  |
| 2001     | 99.25%  | 1.000      | 1.000      | 1.014 | 1.014      | 35,607,655  | 36,101,300  |
| 2002     | 94.07%  | 1.000      | 1.078      | 1.014 | 1.094      | 36,105,569  | 39,482,369  |
| 2003     | 79.95%  | 1.000      | 1.381      | 1.014 | 1.400      | 23,335,756  | 32,667,960  |
| 2004     | 31.33%  | 3.686      | 1.381      | 1.014 | 5.159      | 5,872,516   | 30,298,806  |

Appendix A Exhibit 1

r^2 By Coverage

Using a single curve to 99% closure

| BI     | <u>UM</u> | <u>MP</u> | <u>PD</u> |
|--------|-----------|-----------|-----------|
| 0.9952 | 0.9798    | 0.9207    | 0.9775    |

Appendix A Exhibit 2

Simple Regression 35% to 80% Closure





Appendix A Exhibit 3 Simple Regression % Closed to 99% Closure Using Age 12 or Greater







