CLRS 2008

What Color is Your Copula: The Language of Uncertainty

Terminology Surrounding Loss Reserve Variability/Ranges

Daniel Murphy, FCAS, MAAA Trinostics

September 18, 2008

Agenda

- Why Analyze Reserve Ranges?
- General Terminology
- Popular Stochastic Methods
- Aggregation

CLRS 2008

• Why Analyze Reserve Ranges?

- General Terminology
- Popular Stochastic Methods
- Aggregation

Why analyze uncertainty of claim liabilities?

Rating Agencies

- Increasing focus on economic capital, potential for reserves to vary from their stated values
- Solvency II
 - Solvency Capital Requirement (SCR) capital to absorb significant unforeseen losses and give reasonable assurance to policyholders (0.5% probability of ruin over a one year timeframe)
- Market value
 - Value of an asset in the market reflects the uncertainty of its future cash flows
- Actuarial Standards of Practice
 - Encouraged

For ASB, Uncertainty is becoming more abstract, broad

ASOP 36 (eff. 10-15-00)	ASOP 43 (eff. 9-1-07)
Written SOP – narrow	Estimates of unpaid claims – broad
 Stated reserves "make a reasonable provision" if within actuary's "range of reasonable estimates" = {estimates method and assumptions are reasonable in actuary's judgment} In determining range, actuary should consider implications of uncertainty; sources include Changes in: operations, environment, data, trends, actuarial patterns, types of claims, frequency or severity Erratic development data Random chance 	 Actuary should consider – but is not required to measure – the uncertainty of the estimate If measuring uncertainty, actuary should choose appropriate methods, models, and assumptions Types and sources of uncertainty may include Model risk Parameter risk Process risk
PRACTICAL	MATHEMATICAL

Agenda

- Why Analyze Reserve Ranges?
- General Terminology
 - Methods, Models, and Assumptions
 - The "Risks"
 - Model Risk
 - Parameter Risk
 - Process Risk
- Popular Stochastic Methods
- Aggregation

Methods vs. Models, and Assumptions of each

Method	Model				
 Mathematical algorithm for estimating unpaid claim amount 	 Mathematical description of the unpaid claim phenomenon 				
 Parameters are selected Judged appropriate 	 Parameters are estimated Can be tested 				
 Method assumed appropriate Judged appropriate 	 Model assumed appropriate Can be tested 				
Chain Ladder Method	Chain Ladder Model*				
Loss Triangle $ \begin{array}{c c} C_{ij} \\ \hline \\ C_{ij}$	Generalization of Murphy, Mack model: $C_{i,k+1} = f_k C_{i,k} + \sigma_k \varepsilon_{i,k} C_{i,k}^{\alpha_k}$ $\varepsilon_{i,k} \sim$ independent Standard Normal rv's <i>i</i> corresponds to accident year (row) <i>k</i> corresponds to development age (column)				
Cumulative	* Majidi, Bardis, Murphy, CAS <i>E-Forum</i> , Fall 2008				

Sources and quantifiability of uncertainty in unpaid claim estimate from a modeler's perspective

Model risk

- Perhaps paid loss development method is inappropriate
 - Does AY '06 contain different state?
- ► A.k.a, "Bias"
- Quantifiability of model risk requires new data, broader model
- Parameter risk
 - Selected LDF is itself subject to the whim of the data
 - May not coincide with "true" LDF
 - Final estimate will change with variable parameters
 - Quantifiability of impact of potential parameter variability depends on model

Process risk

- Even if selection luckily coincides with "true" LDF, still expect final Age-2 amount to be different from expected amount \$66,360
- A.k.a, Residual or "unexplained" risk
 - Variability of age-2 losses not explained by paid losses at age 1

Quantifiability depends on model

ABC Insurance Company Paid Losses 2 LDF **AY\Age** 1 **AY\Age** 1999 10,238 24.654 1999 2.408 2000 5,508 16.235 2000 2.948 2001 7,374 20,620 2001 2.796 2002 19,182 2002 3.118 6.153 2003 7.253 25.066 2003 3.456 2004 10.855 38.520 2004 3.549 2005 10.313 34,341 2005 3.330 2006 16,411 42,228 2006 2.573 2007 21,234 Simple 3.022 Variance 2.980 Weighted of Age-2 5-Yr Wtd 3.125 Losses 3-Yr SA 3.151 91.785.515 Selected 3.125 2007 Estimated Age-2 Loss 66,360

Total Risk is statistical equivalent of Pythagorean Theorem

©2008 Trinostics

A Risk by any other name ...

- The word **Risk** can be ambiguous
 - Layperson uses risk broadly
 - For a "quant," risk usually refers to "variance" or "standard deviation"
 - Other terms
 - Value at Risk (VaR) is a quantile (e.g., the 75th percentile)
 - Tail Value at Risk (TVar) is the expected value of tail losses
- Most stochastic methods estimate risk of ultimate loss first, then back into risk of outstanding loss
 - ► std(OS) = std(Ult Paid) = std(Ult) because paid loss is a scalar
- Coefficient of Variation, or CV, is a popular measure of relative risk

•
$$cv(X) = \frac{std(X)}{mean(X)} = \frac{\sigma_X}{\mu_X}$$

- Scalability
 - Often, cv(X) determined from one stochastic method is applied to the mean µ_Y of another method – or a carried reserve – to impute the standard deviation of the other method/reserve:

— If reasonable to assume
$$cv(Y) = cv(X)\left(\text{ie}, \frac{\sigma_Y}{\mu_Y} = \frac{\sigma_X}{\mu_X}\right)$$
, then $\sigma_Y = \frac{\sigma_X}{\mu_X}\mu_Y$

– Justification: lognormals with same shape parameter σ have same cv

Agenda

- Why Analyze Reserve Ranges?
- General Terminology
- Popular Stochastic Methods
 - Mack/Murphy
 - Monte Carlo Simulation
 - Bootstrapping
- Aggregation

Mack/Murphy Method: Overview

- The Mack/Murphy method derives formulas for standard error of the chain ladder unpaid claim estimate
 - Method only uses data in the triangle
 - Tail variability beyond the triangle can be incorporated in various ways
- There are formulas for parameter risk, process risk, and total risk
- This is an analytic calculation, analogous to finding the standard deviation of a random sample
- Given the central estimate of the unpaid claim liability and this method's standard error,
 - One can fit almost any two-parameter probability distribution to model the *distribution* of unpaid claims
 - Mack recommends normal or lognormal, Murphy suggests student-t
 - Benefit: confidence levels, VaR's, TVars, etc.

But first, the M/M model and Mack's formula

- Mack and Murphy start with the same three simple assumptions
 - (CL1) $E(C_{i,k+1}|$ the triangle) = $C_{ik}f_k$
 - (CL2) **Var**($C_{i,k+1}$ | the triangle) = $C_{ik}\sigma_k^2$ for unknown parameters σ_k^2
 - (CL3) accident years are independent
- Mack derives the closed-form formula

$$m\hat{s}e(\hat{C}_{il}) = \hat{C}_{il}^{2} \sum_{k=l+1-i}^{l-1} \frac{\hat{\sigma}_{k}^{2}}{\hat{f}_{k}^{2}} \left(\frac{1}{\hat{C}_{ik}} + \frac{1}{\sum_{j=1}^{l-k} C_{jk}} \right)$$

where

$$\hat{\sigma}_{k}^{2} = \frac{1}{I - k - 1} \sum_{i=1}^{I - k} C_{ik} \left(\frac{C_{i,k+1}}{C_{ik}} - \hat{f}_{k} \right)^{2}$$

the "*f*-hats" are the weighted average link ratios, I = # AYs, k denotes age, and the "*C*-hats" are the chain ladder estimates of future loss for accident yr i.

- Mack's formula is a thing of beauty!
- Murphy's formula is not closed-form but recursive, with an extra term in the parameter risk formula

M/M Method Example: Point Estimate

ABC Insurance Company Chain Ladder Projection of Paid Losses

AY \ Age	1	2	3	4	5	6	7	8	9 = UIt
1999	10,238	24,654	38,025	46,550	52,842	58,722	65,227	67,604	69,559
2000	5,508	16,235	25,586	32,863	38,111	42,315	45,171	47,666	49,045
2001	7,374	20,620	34,220	43,438	50,898	55,475	58,367	60,943	62,706
2002	6,153	19,182	31,005	40,424	46,949	50,942	54,931	57,354	59,014
2003	7,253	25,066	40,134	51,063	58,376	64,144	69,166	72,218	74,307
2004	10,855	38,520	62,348	82,710	95,382	104,806	113,011	117,998	121,411
2005	10,313	34,341	51,110	65,632	75,688	83,166	89,677	93,634	96,343
2006	16,411	42,228	66,770	85,743	98,879	108,649	117,155	122,324	125,863
2007	21,234	66,360	104,927	134,743	155,386	170,740	184,106	192,230	197,791
sum below									
diagonal	0	66,360	171,697	286,118	425,335	531,505	628,046	716,701	786,478
								Total O/S =	373,845
	5 year								
RTRs	3.125	1.581	1.284	1.153	1.099	1.078	1.044	1.029	
LDFs	9.315	2.981	1.885	1.468	1.273	1.158	1.074	1.029	1.000

Original data triangle

Estimated future values based on weighted average RTR factors

Total variance is estimated recursively ala Murphy

ABC Insu Total Ris Based on	ABC Insurance Company Total Risk Based on Chain Ladder Projection of Paid Losses											
		\$_)	4	-	,	7	0	0 1111				
	1 2	3	4	5	6	/	8	9 = UIt				
1999							г	1 002 220				
2000						г	2,000,225	1,902,220				
2001					Г	1 5 9 0 2 9 0	2,088,333	4,923,348				
2002				г	1 700 754	1,380,389	3,048,309	0,344,119				
2003			г	1 125 201	1,788,756	4,196,447	7,208,241	11,127,982				
2004		Г	0.440.404	1,125,201	4,718,811	9,582,414	15,800,096	24,311,856				
2005	-		3,419,436	5,389,037	8,988,368	13,431,950	18,448,005	24,759,471				
2006		4,769,700	12,580,548	17,909,193	25,149,906	33,550,992	42,230,778	52,757,030				
2007	61,452,982	161,965,332	275,457,646	368,485,450	451,544,103	533,388,343	593,026,502	645,188,188				
sum below												
diagonal	61,452,982	169,601,444	303,662,011	413,691,192	539,824,418	692,048,696	870,481,277	1,141,875,645				
							mse =	\$ 33,792				
							-					
σ _k	45.201	9.558	7.402	3.133	4.838	4.838	4.838	4.838				
σ_{β}	0.200	0.023	0.015	0.007	0.011	0.012	0.015	0.019				

- Parameter variance, process variance, and their sum = total variance are calculated separately using Murphy recursive formulas
- Mack's closed-form formula gives ultimate, not intermediate, values
- σ_k we saw in Mack's formula, σ_β = standard deviation of VW RTR

M/M Method Example: Numerical summary that actuaries love to see

M/M Stochastic Analysis based on Chain Ladder Projection of Paid Losses											
			Murph	y s.e. Form	ulation	C۱	S				
AY (i)	Ultimate _i	O/S _i	Proc risk	Parm risk	Total risk	Process	Parameter	Total	Tot cv of Ultimate		
1999	69,559	-	-	-	-						
2000	49,045	1,379	1,056	887	1,379	0.766	0.643	1.000	0.028		
2001	62,706	4,338	1,695	1,432	2,219	0.391	0.330	0.511	0.035		
2002	59,014	8,071	2,020	1,505	2,519	0.250	0.186	0.312	0.043		
2003	74,307	15,931	2,640	2,039	3,336	0.166	0.128	0.209	0.045		
2004	121,411	38,701	3,564	3,407	4,931	0.092	0.088	0.127	0.041		
2005	96,343	45,233	4,014	2,940	4,976	0.089	0.065	0.110	0.052		
2006	125,863	83,635	5,896	4,242	7,263	0.070	0.051	0.087	0.058		
2007	197,791	176,557	20,977	14,323	25,401	0.119	0.081	0.144	0.128		
Total:	786,478	373,845	22,774	24,964	33,792	0.061	0.067	0.090	0.043		

ABC Insurance Company

- Here, "risk" = standard deviation ("standard error")
 - Total Risk is the square root of the variances in the ultimate column on previous slide
- Total cy of O/S and of Ultimate use same standard error in the numerator; only denominators differ

M/M Method Example: Graphical summary displays "smile" of cv(O/S) and "blow up" of cv(Ultimate)

- The further an accident year from ultimate resolution, the more relative uncertainty in its estimated ultimate value
- Same cannot be said for cv metric for outstanding loss
 - Mature AY cv's of O/S are larger due to smaller amounts in denominator
- Slide illustrates slight difference between Mack and Murphy
 - Formulation of parameter risk
 - Treatment of limited data in tail

Familiar regression graph illustrates M/M theory

- The "true" linear relationship will almost certainly be different from our selection
 - Dotted line = ±2 parameter risks (standard errors)
- In addition, whatever the linear relationship "truly" is, actual results will deviate from that mean value
 - Dashed line = ±2 total risks (s.e.'s)
- Recall: ±2 standard deviations enclose a 98% confidence interval (standard normal)

M/M VaR estimates of total outstanding can vary substantially depending on assumed probability distribution

ABC Insu M/M Sto	ABC Insurance Company M/M Stochastic Analysis Based on Paid Loss									
	Murphy s.e. Formulation									
AY (i)	Ultimate _i	O/S _i	Proc risk	Parm risk	Total risk	_				
Total:	Total: 786,478 373,845 22,774 24,964					From slide 16				
VaR	%-ile (p)		.99	4 ('A'*)	.999 ('A	AA'*)				
Norminv(p	\$45	8,735	\$478,	270						
Loginv(p,	\$467,025 \$492		\$492	,025						
dif	ference		~\$	8,300	~\$13	,800				

- Even assuming the more skewed distribution, the Mack/Murphy method has been criticized for understating tail risk (GIRO working party, July 2007)
- * S&P confidence levels under a one year time horizon

Mack/Murphy method: wrapup

- Advantages
 - Strictly analytical method, no simulation required
 - Instantaneously fast
 - Well-known
- Disadvantages
 - Not robust to outliers
 - Probably understates cv, tail variability
 - See 2007 GIRO report
 - Overparameterizes the data
 - Does not necessarily model situation when actuary selects factors other than weighted or simple average

Agenda

- Why Analyze Reserve Ranges?
- General Terminology
- Popular Stochastic Methods
 - Mack/Murphy
 - Monte Carlo Simulation
 - Bootstrapping
- Aggregation

Monte Carlo Simulation takes a Methodizer's approach

- A simulation of the distribution of unpaid claims generally follows these steps:
 - Choose a deterministic method (a **process**) to generate ultimate loss outcomes
 - Model inputs as random variables
 - Randomly generate input values
 - Calculate ultimate outcome, unpaid claim value (save result!)
 - Repeat many many times
 - Empirical distribution estimates the theoretical distribution of unpaid claims
 - Reflects variability of assumed process (process risk)
- Chosen method determines types of inputs to simulate
 - Chain ladder, BF: link ratios (or link_ratio–1) usually simulated as normal or lognormal random variables
 - Pure premium, BF: loss ratios usually simulated as lognormals
- Parameters (e.g., μ and σ) of simulated distributions must be selected before random draws can occur
 - μ , σ estimated from the data, selected from benchmarks, judgment
 - How to reflect risk that selected μ, σ might not equal "true" value (parameter risk)?
 - Various approaches exist in the literature (e.g., Kreps, PCAS 1997; see also Hodes, Feldblum, and Blumsohn, PCAS 1999)
 - Beyond scope of this presentation

Monte Carlo Simulation of the Loss Development Method: All losses at age k use the same simulated RTR at age k

ABC Insurance Company											
Chain Ladder Simulation of Paid Losses											
AY \ Age	1	2	3	4	5	6	7	8	9 = UIt	_	
1999	10,238	24,654	38,025	46,550	52,842	58,722	65,227	67,604	69,559		
2000	5,508	16,235	25,586	32,863	38,111	42,315	45,171	47,666	48,651		
2001	7,374	20,620	34,220	43,438	50,898	55,475	58,367	60,119	61,000		
2002	6,153	19,182	31,005	40,424	46,949	50,942	54,371	55,998	58,579		
2003	7,253	25,066	40,134	51,063	58,376	65,348	70,832	73,891	76,454		
2004	10,855	38,520	62,348	82,710	95,125	105,683	111,751	116,266	119,504		
2005	10,313	34,341	51,110	65,000	75,571	82,604	89,805	93,425	101,151		
2006	16,411	42,228	67,339	87,368	100,911	110,832	118,540	122,824	127,805		
2007	21,234	68,053	105,940	135,776	156,966	171,817	183,325	192,057	195,364		
sum below											
diagonal		68,053	173,279	288,144	428,573	536,284	628,624	714,579	788,509		
									375,876	=Est'd O/S	
	5 year										
Selected	3.125	1.581	1.284	1.153	1.099	1.078	1.044	1.029			
LDFs	9.315	2.981	1.885	1.468	1.273	1.158	1.074	1.029	1.000		
<u>Steps to sir</u>	nulate RTRs	<u>5</u>									
RTR-1	2.125	0.581	0.284	0.153	0.099	0.078	0.044	0.029			
Parameter r	isk cv's froi	m M/M for	mula; will a	issume app	propriate fo	r selected	1-2 RTR:				
cv _β	0.079	0.039	0.054	0.044	0.113	0.156	0.330	0.643			
σ^2	0.006	0.00151	0.00293	0.00195	0.01262	0.02411	0.10336	0.34622	=ln(1+cv ²)		
μ	0.751	-0.543	-1.260	-1.877	-2.321	-2.559	-3.172	-3.716	=In(mean)-o	² /2	
Sim'd RTR	3.205	1.595	1.272	1.150	1.119	1.067	1.030	1.021	=loginv(ran	d(),μ,σ)+1	

- Values in first subsequent diagonal use Sim'd RTRs from box
- Subsequent cells have that formula buried within

Simulated distribution mellows over time

Finding minimum number of MC trials has no neat solution

- Compared with a pdf graph, a convergence graph gives a better picture of how closely statistics of interest settle down
 - E.g., if you want to estimate the 99.9th percentile to within 0.1% of the mean, you should run at least 1 million iterations
 - For the 70th percentile, just 4,000 iterations might be sufficient

Monte Carlo simulation: wrapup

- Advantages
 - Well-known in many sciences
 - Extremely flexible
 - Technique can model highly complex processes
- Disadvantages
 - Parameters describing the process inputs must be selected ahead of time
 - Slow to execute
 - Quantity of random deviates increases with complexity
 - Number of trials increases with complexity
 - Without extra steps, only measures process risk
 - Ask your consultant if/how parameter risk is incorporated

Agenda

- Why Analyze Reserve Ranges?
- General Terminology

Popular Stochastic Methods

- Mack/Murphy
- Monte Carlo Simulation
- Bootstrapping
- Aggregation

Bootstrapping is a "modern" simulation technique

- Whereas Monte Carlo simulates parametric *inputs* (e.g., LDFs) to a complex process, Bootstrapping simulates the *data*
- If the data's distribution is "known," then
 - Estimate parameters of the distribution
 - Sample from that distribution
 - Calculate your desired output
 - Repeat
 - Make inferences (cv, VaR) from output's empirical distribution
 - Called Parametric Bootstrapping
- If cannot assume data's distribution is of a specific type
 - Sample *from the data itself* (with replacement; "resample")
 - Continue as above
 - Called Nonparametric Bootstrapping
- When the process is modelled, can **bootstrap the residuals**
 - Resample the residuals
 - Recast history with synthetic data
 - Continue as above

Simple example of non-parametric bootstrapping of residuals: estimate the distribution of AY 2008 paid as of 12 months

- Same data as before, now with premium
- Based on a selected 12-month paid loss ratio of 22%, a deterministic estimate of AY 2008's paid amount at 12/31/08 is about \$21.6 million
- To get a range around that point estimate, we could try good old fashioned Monte Carlo simulation:
 - Model the partial L/Rs as lognormals
 - Fit μ and σ to the 8 L/R data points

	Earned	Paid @	Partial					
AY \ Age	Premium	12 mo	L/R					
-	А	В	B/A					
1999	61,428	10,238	16.7%					
2000	16,524	5,508	33.3%					
2001	43,297	7,374	17.0%					
2002	24,016	6,153	25.6%					
2003	21,100	7,253	34.4%					
2004	139,052	10,855	7.8%					
2005	59,535	10,313	17.3%					
2006	67,864	16,411	24.2%					
2007	128,447	21,234	16.5%					
Average			21.4%					
C. Selecte	d		22.0%					
deterministic								
2008	98,156	21.594						

- Randomly draw from the fitted L/R distribution
- Calculate the indicated 12-month paid loss (the desired "output")
- Repeat many times
- Builds the empirical distribution of AY 2008 paid @ 12 months
- How would bootstrapping differ from this approach?

©2008 Trinostics

With Bootstrapping we create synthetic historical data and select as we normally would in our deterministic analysis

Us	sual Determi	ate	Based or	Selected	Simu	lated Deter	ministic Es	timate		
				Expected		"Resa	mpled"	"pseudo"		
	Earned	Paid @	Partial	Paid @		Res	duals	Paid @	Partial	
AY \ Age	Premium	12 mo	L/R	12 mo	Residuals	index	Residuals	12 mo	L/R	
	А	В	B/A	D=AC	E=B-D	=random	F	G=D+F	H=G/A	
1999	61,428	10,238	16.7%	13,514	(3,276)	4	870	14,384	23.4%	
2000	16,524	5,508	<mark>33.3%</mark>	3,635	1,873	4	870	4,505	27.3%	
2001	43,297	7,374	17.0%	9,525	(2,151)	3	(2,151)	7,374	17.0%	
2002	24,016	6,153	25.6%	5,283	870	8	1,481	6,764	28.2%	
2003	21,100	7,253	34.4%	4,642	2,611	4	870	5,511	26.1%	
2004	139,052	10,855	7.8%	30,591	(19,736)	1	(3,276)	27,315	19.6%	
2005	59,535	10,313	17.3%	13,098	(2,785)	5	2,611	15,709	26.4%	
2006	67,864	16,411	24.2%	14,930	1,481	5	2,611	17,541	25.8%	
2007	128,447	21,234	16.5%	28,258	(7,024)	6	(19,736)	8,522	6.6%	
										Legend
Average			21.4%						22.3%	actual data
C. Selecte	ed		22.0%						23.0%	calculations
	deterministic						simulated		synthetic data	
2008	98,156	21,594						22,576		selection

- Given selected L/R, calculate the residuals ("noise") that we assume could have happened at any time
- Resample residuals to create synthetic historical data
- Given that data, select a L/R and calculate the paid amount
- Repeat to generate a set of actuarial central estimates for paid @ 12 months
 - Seen that way, Bootstrapping measures parameter risk

Nonparametric bootstrapping applied to Chain Ladder model also bootstraps the residuals

From standard chain ladder approach, back into expected cumulative

Bootstra	ipping Paic	l Loss Dev	elopment	Method						
AY \ Age	1	2	3	4	5	6	7	8	9 = UIt	
1999	10,238	24,654	38,025	46,550	52,842	58,722	65,227	67,604	69,559	
2000	5,508	16,235	25,586	32,863	38,111	42,315	45,171	47,666	49,045	
2001	7,374	20,620	34,220	43,438	50,898	55,475	58,367		62,706	
2002	6,153	19,182	31,005	40,424	46,949	50,942			59,014	
2003	7,253	25,066	40,134	51,063	58,376				74,307	
2004	10,855	38,520	62,348	82,710					121,411	
2005	10,313	34,341	51,110						96,343	
2006	16,411	42,228							125,863	
2007	21,234								197,791	
sum below	1									
diagonal									786,478	
									373,845	=Est'd O/S
	5 year									
Selected	3.125	1.581	1.284	1.153	1.099	1.078	1.044	1.029	<u>tail</u>	
LDFs	9.315	2.981	1.885	1.468	1.273	1.158	1.074	1.029	1.000	
Expected	cumulative p	aid amounts	s based on s	elected link	c ratios					
AY \ Age	1	2	3	4	5	6	7	8	9 = Ult	l .
1999	7,468	23,337	36,901	47,386	54,646	60,046	64,747	67,604	69,559	
2000	5,265	16,455	26,018	33,411	38,530	42,337	45,651	47,666		
2001	6,732	21,038	33,265	42,717	49,262	54,130	58,367			
2002	6,335	19,799	31,306	40,202	46,362	50,942				
2003	7,977	24,930	39,420	50,621	58,376					
2004	13,034	40,734	64,408	82,710						
2005	10,343	32,324	51,110							
2006	13,512	42,228								
2007	21,234									

ABC Insurance Company Bootstrapping Paid Loss Development Method

Residuals are based on incremental, not cumulative, paids

Increment	al Actuals								
AY \ Age	1	2	3	4	5	6	7	8	9 = UIt
1999	8,239	14,416	13,371	8,525	6,292	5,880	6,505	2,377	1,956
2000	3,508	10,727	9,351	7,277	5,248	4,204	2,856	2,495	
2001	5,373	13,246	13,600	9,218	7,460	4,577	2,892		
2002	4,151	13,029	11,823	9,419	6,525	3,993			
2003	5,250	17,813	15,068	10,929	7,313				
2004	8,851	27,665	23,828	20,362					
2005	8,308	24,028	16,769						
2006	14,405	25,817							
2007	19,227								

Incremental Expecteds

AY \ Age	1	2	3	4	5	6	7	8	9 = UIt
1999	5,469	15,870	13,563	10,485	7,260	5,399	4,701	2,857	1,956
2000	3,265	11,190	9,563	7,393	5,119	3,807	3,314	2,014	
2001	4,731	14,306	12,227	9,452	6,545	4,867	4,238		
2002	4,333	13,464	11,507	8,896	6,159	4,581	-		
2003	5,974	16,953	14,489	11,201	7,755				
2004	11,030	27,700	23,674	18,302					
2005	8,338	21,981	18,786						
2006	11,506	28,716							
2007	19,227								

Incremental Residuals

AY \ Age	1	2	3	4	5	6	7	8	9 = UIt
1999	2,770	(1,454)	(192)	(1,960)	(968)	481	1,804	(480.37)	
2000	243	(463)	(212)	(116)	129	397	(458)	480	
2001	642	(1,060)	1,373	(234)	915	(290)	(1,346)		
2002	(182)	(435)	316	523	366	(587)			
2003	(724)	860	579	(272)	(442)				
2004	(2,179)	(35)	154	2,060					
2005	(30)	2,047	(2,017)						
2006	2,899	(2,899)							
2007	0								

Residuals are generally ill-behaved without their massage

- Here the residuals are massaged into "scaled pearson residuals"
 - "Standardized" residuals can be scrambled among all AY's and ages
 - We'll skip the details ... (and the massage)
- Resample with replacement

"Resampled" residuals (pretend post-massage)

AY \ Age	1	2	3	4	5	6	7	8	9 = UIt
1999	154	(35)	(587)	860	642	1,804	523	2,770	2,899
2000	(2,179)	(2,899)	(272)	(1,454)	860	(116)	(480)	397	
2001	(724)	(724)	316	(458)	(212)	(1,346)	(1,346)		
2002	(2,017)	480	154	1,373	(212)	1,373			
2003	154	(212)	480	154	915				
2004	(182)	579	2,047	(116)					
2005	(587)	(1,346)	2,047						
2006	(1,454)	(724)							
2007	(442)								

Recast historical cumulative triangle, reproject ultimates

- Use resampled residuals to create synthetic incremental amounts
- Re-cumulate
- Now you have a synthetic triangle from which to pick factors and project ultimates, unpaid amount

Synthetic	incrementar ar	nounts							
AY \ Age	1	2	3	4	5	6	7	8	9 = UIt
1999	5,623	15,835	12,976	11,345	7,902	7,204	5,224	5,627	4,854
2000	1,086	8,291	9,291	5,939	5,979	3,691	2,834	2,411	
2001	4,007	13,582	12,543	8,994	6,332	3,522	2,892		
2002	2,316	13,944	11,661	10,269	5,947	5,954			
2003	6,128	16,741	14,970	11,355	8,671				
2004	10,848	28,279	25,721	18,186					
2005	7,751	20,635	20,833						
2006	10,052	27,991							
2007	18,785								
Synthetic	cumulative a	mounts							
AY \ Age	1	2	3	4	5	6	7	8	9 = UIt
1999	5,623	21,458	34,434	45,779	53,681	60,885	66,109	71,736	76,591
2000	1,086	9,377	18,668	24,607	30,586	34,277	37,111	39,522	42,197
2001	4,007	17,588	30,131	39,125	45,458	48,979	51,871		59,695
2002	2,316	16,261	27,922	38,191	44,138	50,091			62,025
2003	6,128	22,869	37,839	49,194	57,865				80,046
2004	10,848	39,126	64,848	83,033					135,181
2005	7,751	28,386	49,219						104,893
2006	10,052	38,043							137,544
2007	18,785								264,894
sum below									
diagonal									886,474
5									498,043
	5 year								
Selected	3.900	1.696	1.309	1.177	1.117	1.076	1.078	1.068	tail
LDFs	14.102	3.615	2.131	1.628	1.383	1.238	1.151	1.068	1.000

Bootstrap distribution appears slightly skewed

- Bootstrapping takes less time than MC to run same number of trials
- The Bootstrapping mean is about \$425,000 whereas the deterministic estimate was about \$375,000
 - Not uncommon
 - Usual solution is to scale the empirical output so the means coincide

Finding minimum number of MC trials has no neat solution

- For the same level of tolerance, Bootstrapping needed 2M trials where MC needed only 1M
- Might be wise to double the trials again to make sure the empirical data has actually stabilized; relatively quick

Bootstrapping: wrapup

- Advantages
 - The data drives the simulation
 - No assumptions necessary for process input parameters
 - Faster than MC simulation (although more trials may be necessary)
- Disadvantages
 - Without extra steps, only measures parameter risk
 - Ask your consultant if/how process risk is incorporated
 - Misconception: "Bootstrapping doesn't work with incurred losses!"
 - Some methods of massaging the residuals are better able to allow for negative development
 - Heteroscedasticity
 - When development data is widely different by age (e.g., E&S data), separate residuals into similar resampling groups
 - Plot residuals by age for visual cues
 - Bootstrap mean may not equal deterministic mean
 - Scale the output
 - Bootstrapping has also been criticized by GIRO for understating tail variability

Summary of popular methods' results: MM and BS densities appear similar, MC not so

- Without parameter risk, MC clearly understates mean square error
- MM may have more spread than BS, but BS here omits process risk

CLRS 2008

Agenda

- Why Analyze Reserve Ranges?
- General Terminology
- Popular Stochastic Methods
- Aggregation

Here are a few familiar formulas when aggregating lines

- Mean of aggregate is the aggregate of the marginals' means
 - E(X+Y) = E(X) + E(Y)
- Variance of the aggregate is the aggregate of marginals' variances with an extra cross-product term
 - ► V(X+Y) = V(X) + 2Cov(X,Y) + V(Y) (1)
 - Analogous to $(x+y)^2 = x^2 + 2xy + y^2$
- Confidence level (e.g., 75% VaR) of the aggregate is the aggregate of marginals' confidence levels less the *diversification benefit*
 - $VaR_{75\%} (X+Y) = VaR_{75\%} (X) + VaR_{75\%} (Y) DB_{75\%}$
 - Q: When would $DB_{75\%} = 0$?
- Distribution of the aggregate is the aggregate of marginals' distributions
 - $F_{X+Y} = Copula(F_X, F_Y)$

More aggregation formulas: correlation

 Correlation scales the covariance of two lines by dividing by their standard deviations

Correlation Coefficient : $\rho_{XY} = \frac{Cov(X, Y)}{\sigma_X \sigma_Y}$

- Allows comparison of two lines of difference sizes
- Such relationships between N lines of business are encapsulated in the covariance matrix and the correlation matrix

$$\Sigma = \begin{bmatrix} Var(X_{1}) & Cov(X_{1}, X_{2}) & \cdots & Cov(X_{1}, X_{N}) \\ Cov(X_{2}, X_{1}) & Var(X_{2}) & \cdots & Cov(X_{2}, X_{N}) \\ \vdots & \vdots & \ddots & \vdots \\ Cov(X_{N}, X_{1}) & Cov(X_{N}, X_{2}) & \cdots & Var(X_{N}) \end{bmatrix} \quad Corr = \begin{bmatrix} 1 & corr(X_{1}, X_{2}) & \cdots & corr(X_{1}, X_{N}) \\ corr(X_{2}, X_{1}) & 1 & \cdots & corr(X_{2}, X_{N}) \\ \vdots & \vdots & \ddots & \vdots \\ corr(X_{N}, X_{1}) & corr(X_{N}, X_{2}) & \cdots & 1 \end{bmatrix}$$

- These matrices should always be positive-semidefinite (you can take their "square root")
 - Can find the "square root" of Σ using Cholesky decomposition
 - Used to simulate correlated random variables

A simple example of the "correlation matrix" approach

- Suppose monoline ABC Insurance Co. writes in two states, X and Y
- Ran the Mack / Murphy method on state X
- The reserves for Y are half those for X
- Assume cv for Y is same as for X
- Correlation based on judgment

	A	В	С	D	E	F				
1		Outstanding Loss								
2		Mean	CV	S.E.	mse	75%VaR				
3										
4	Line X	373,845	0.090	33,792	1,141,875,645	395,684				
5	Line Y	186,923	0.090	16,896	285,468,911	197,842				
6										
7	Correlation	80%		Cov->	456,750,258					
8										
9	X+Y	560,768	0.086	48,382	2,340,845,072	592,106				
10										
11	Calculations:	E4=D4^2								
12		E5=D5^2								
13		E7=B7*D4*	D5							
14		E9=E4+E5+	-2*E7							
15		F9 based or	n lognormal	distribution	with mean=B9, st	dev=D9				
16	Notes:	Assume B5	Assume B5=B4/2							
17		Assume C5	5=C4. So D	5=B5*C5						
18		Back into standard error of sum: = sqrt(E9)								
19	and cv of sum = D9/B9									

- As a standard practice an actuary might assume that a lognormal distribution applies to the aggregated lines
 - Fit to the calculated mean (560768) and standard error (44702)
 - Read 75% VaR off the indicated lognormal distribution
- The diversification benefit at the 75% confidence level would be about \$4million

Above correlation approach violates basic mathematics

- In the preceding example we assumed that the individual lines X and Y had lognormally distributed unpaid claim amounts
- We also assumed that the unpaid claim amounts of the combined portfolio X+Y were also lognormally distributed
 - Unfortunately, the sum of two lognormals is not a lognormal
 - Loss of precision remains to be seen
- We seek a more flexible way of combining two marginal distributions into a joint distribution when
 - We have reasonable knowledge of the marginals
 - We have some idea of the strength of the dependency between the lines
 - We want to make as few additional assumptions as necessary
- Enter: the Copula!

The word *copula* comes from the discipline of Logic

- Mirriam-Webster's Dictionary defines *copula* as "the connecting link between the subject and predicate of a proposition"
- Sklar's Theorem (1959) (abbreviated):
 For every joint distribution F_{X,Y} there exists a function C that breaks down F_{X,Y} into its marginals F_X and F_Y:

 $F_{X,Y}(x,y) = C(F_X(x),F_Y(y))$

- In practice, copulas are applied in reverse, i.e.,
 - Starting with the marginals, pick a copula and form the joint distribution
- Copula you choose is unrelated to distributional form of the marginals
 - Each is simply a "marginal aggregation machine" with unique characteristics
 - Characteristic of importance to actuaries is the strength of interdependence in regions – especially tails, especially upper tails – of the combined lines

Copulas provide a convenient way to aggregate the distributions of several lines

- Three popular copulas in actuarial use today are the Normal, the Student-t, and the Gumbel
- Normal copula
 - Average correlation is the sole input parameter
 - Combined lines will have no tail dependency
- Student-t
 - Uses correlation and degrees of freedom (df) as input parameters
 - The fewer df, the greater the tail dependency
- Gumbel
 - Related to extreme value theory for multivariates
 - Like normal, takes one parameter, *a*
 - a = 1 implies independence, increasing values imply greater upper tail dependence
 - Combined lines will have independent lower tails

Aggregation VaR's: correlation matrix vs. copulas

		Tail Percentiles				
Method of Comb	oination	75.0%	99.0%	99.9%		
Assume combined distributed, parar	d line is lo meters fro	592,106	682,622	729,038		
Normal Copula	ρ =.5		589,818	673,151	715,217	
Student-t	ρ =.5	df=25	589,692	673,674	718,007	
		df=2	588,048	678,252	728,509	
Gumbel		a=1.5	588,419	680,511	730,112	
		a=20	593,472	689,223	737,617	
		a=100	593,633	688,578	738,001	

- Correlation-matrix values calculated analytically
- Copula values calculated from simulated empirical distribution using R
 - 1 million trials took about 5 seconds
- In this example, correlation-matrix VaR's are bracketed by the Student-t and the Gumbel

Disparity of cumulative distributions revealed when using copulas' most exaggerated parameters

Estimated Distribution of Portfolio (X+Y) O/S Loss

Questions?