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Why analyze uncertainty of claim liabilities?

 Rating Agencies

 Increasing focus on economic capital, potential for reserves 
to vary from their stated values

 Solvency II

 Solvency Capital Requirement (SCR) – capital to absorb 
significant unforeseen losses and give reasonable assurance 
to policyholders (0.5% probability of ruin over a one year 
timeframe)

 Market value

 Value of an asset in the market reflects the uncertainty of 
its future cash flows

 Actuarial Standards of Practice

 Encouraged
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For ASB, Uncertainty is becoming more abstract, broad

Actuary should consider – but is not 
required to measure – the 
uncertainty of the estimate

 If measuring uncertainty, actuary 
should choose appropriate 
methods, models, and 
assumptions

Types and sources of uncertainty 
may include

—Model risk

—Parameter risk

—Process risk

MATHEMATICAL

Stated reserves “make a reasonable 
provision” if within actuary’s “range 
of reasonable estimates” = 
{estimates | method and 
assumptions are reasonable in 
actuary’s judgment}

 In determining range, actuary 
should consider implications of 
uncertainty; sources include

 Changes in: operations, 
environment, data, trends, 
actuarial patterns, types of 
claims, frequency or severity

 Erratic development data

 Random chance

PRACTICAL

Estimates of unpaid claims – broadWritten SOP – narrow 

ASOP 43 (eff. 9-1-07)ASOP 36 (eff. 10-15-00)
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Methods vs. Models, and Assumptions of each

Mathematical description of the 
unpaid claim phenomenon

Parameters are estimated

Can be tested

Model assumed appropriate

Can be tested

Mathematical algorithm for 
estimating unpaid claim amount

Parameters are selected

Judged appropriate

Method assumed appropriate

Judged appropriate

ModelMethod

Chain Ladder Model*

εi,k ~ independent Standard Normal rv’s

i corresponds to accident year (row)

k corresponds to development age (column)

* Majidi, Bardis, Murphy, CAS E-Forum, Fall 2008
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Sources and quantifiability of uncertainty in
unpaid claim estimate from a modeler’s perspective

 Model risk
 Perhaps paid loss development method is 

inappropriate
— Does AY ’06 contain different state?

 A.k.a, “Bias”
 Quantifiability of model risk requires new 

data, broader model
 Parameter risk

 Selected LDF is itself subject to the whim of 
the data
— May not coincide with “true” LDF

 Final estimate will change with variable 
parameters

 Quantifiability of impact of potential 
parameter variability depends on model

 Process risk
 Even if selection luckily coincides with “true”

LDF, still expect final Age-2 amount to be 
different from expected amount $66,360

 A.k.a, Residual or “unexplained” risk
— Variability of age-2 losses not explained 

by paid losses at age 1
 Quantifiability depends on model

ABC Insurance Company

Paid Losses
AY\Age 1 2 AY\Age LDF

1999 10,238   24,654   1999 2.408     
2000 5,508     16,235   2000 2.948     
2001 7,374     20,620   2001 2.796     
2002 6,153     19,182   2002 3.118     
2003 7,253     25,066   2003 3.456     
2004 10,855   38,520   2004 3.549     
2005 10,313   34,341   2005 3.330     
2006 16,411   42,228   2006 2.573     
2007 21,234   

Variance Simple 3.022   
of Age-2 Weighted 2.980   
Losses 5-Yr Wtd 3.125   

91,785,515 3-Yr SA 3.151   

Selected 3.125   

2007 Estimated Age-2 Loss 66,360 
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Total Risk is statistical equivalent of Pythagorean Theorem

Eventual future
payment amount

Your model’s unpaid 
claim estimate given a 
random triangle

Your model’s mean 
estimate averaged over 

all possible triangles

Process Risk =
“Unexplained” variation

Error EstimationRisk Process

            

Error" Square Mean"    
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Model Risk,
“bias”

Parameter Risk =
Variation “explained”

by parameters of  model

)ˆ(CVar
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Total Risk =
Total variability of your model’s 

estimate from eventual value
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Liability’s 
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A Risk by any other name …
 The word Risk can be ambiguous

 Layperson uses risk broadly
 For a “quant,” risk usually refers to “variance” or “standard deviation”
 Other terms

— Value at Risk (VaR) is a quantile (e.g., the 75th percentile)
— Tail Value at Risk (TVar) is the expected value of tail losses

 Most stochastic methods estimate risk of ultimate loss first, then back into risk 
of outstanding loss

 std(OS) = std(Ult - Paid) = std(Ult) because paid loss is a scalar

 Coefficient of Variation, or CV, is a popular measure of relative risk



 Scalability
 Often, cv(X) determined from one stochastic method is applied to the mean 

µY of another method – or a carried reserve – to impute the standard 
deviation of the other method/reserve:

—

— Justification: lognormals with same shape parameter σ have same cv

X
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Mack/Murphy Method: Overview

 The Mack/Murphy method derives formulas for standard error of the 
chain ladder unpaid claim estimate

 Method only uses data in the triangle 

 Tail variability beyond the triangle can be incorporated in various 
ways

 There are formulas for parameter risk, process risk, and total risk

 This is an analytic calculation, analogous to finding the standard 
deviation of a random sample

 Given the central estimate of the unpaid claim liability and this 
method’s standard error, 

 One can fit almost any two-parameter probability distribution to 
model the distribution of unpaid claims

 Mack recommends normal or lognormal, Murphy suggests 
student-t

 Benefit: confidence levels, VaR’s, TVars, etc.
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But first, the M/M model and Mack’s formula

 Mack and Murphy start with the same three simple assumptions

 Mack derives the closed-form formula

where

the “f-hats” are the weighted average link ratios, I = # AYs,
k denotes age, and the “C-hats” are the chain ladder
estimates of future loss for accident yr i.

 Mack’s formula is a thing of beauty!
 Murphy’s formula is not closed-form but recursive, with an extra term 

in the parameter risk formula
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M/M Method Example: Point Estimate

Original data triangle

Estimated future values based on weighted average RTR factors

ABC Insurance Company
Chain Ladder Projection of Paid Losses

AY \ Age 1 2 3 4 5 6 7 8 9 = Ult
1999 10,238    24,654    38,025    46,550    52,842    58,722    65,227    67,604    69,559    
2000 5,508      16,235    25,586    32,863    38,111    42,315    45,171    47,666    49,045    
2001 7,374      20,620    34,220    43,438    50,898    55,475    58,367    60,943    62,706    
2002 6,153      19,182    31,005    40,424    46,949    50,942    54,931    57,354    59,014    
2003 7,253      25,066    40,134    51,063    58,376    64,144    69,166    72,218    74,307    
2004 10,855    38,520    62,348    82,710    95,382    104,806  113,011  117,998  121,411  
2005 10,313    34,341    51,110    65,632    75,688    83,166    89,677    93,634    96,343    
2006 16,411    42,228    66,770 85,743    98,879    108,649  117,155  122,324  125,863  
2007 21,234    66,360 104,927  134,743  155,386  170,740  184,106  192,230  197,791  

sum below
diagonal 0 66,360 171,697 286,118 425,335 531,505 628,046 716,701 786,478  

Total O/S = 373,845     

5 year

RTRs 3.125 1.581 1.284 1.153 1.099 1.078 1.044 1.029
LDFs 9.315 2.981 1.885 1.468 1.273 1.158 1.074 1.029 1.000
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Total variance is estimated recursively ala Murphy

 Parameter variance, process variance, and their sum = total variance 
are calculated separately using Murphy recursive formulas 

 Mack’s closed-form formula gives ultimate, not intermediate, values

 σk we saw in Mack’s formula, σβ = standard deviation of VW RTR

ABC Insurance Company
Total Risk
Based on Chain Ladder Projection of Paid Losses

Variance ($2)
AY \ Age 1 2 3 4 5 6 7 8 9 = Ult

1999
2000                                                                                                                   1,902,220         
2001                                                                                                2,088,335       4,923,348         
2002                                                                             1,580,389       3,648,369       6,344,119         
2003                                                          1,788,756       4,196,447       7,208,241       11,127,982       
2004                                       1,125,201       4,718,811       9,582,414       15,800,096     24,311,856       
2005                    3,419,436       5,389,037       8,988,368       13,431,950     18,448,005     24,759,471       
2006 4,769,700 12,580,548     17,909,193     25,149,906     33,550,992     42,230,778     52,757,030       
2007 61,452,982 161,965,332   275,457,646   368,485,450   451,544,103   533,388,343   593,026,502   645,188,188     

sum below
diagonal 61,452,982 169,601,444 303,662,011 413,691,192 539,824,418 692,048,696 870,481,277 1,141,875,645

mse = 33,792$     

k 45.201 9.558 7.402 3.133 4.838 4.838 4.838 4.838

β 0.200 0.023 0.015 0.007 0.011 0.012 0.015 0.019
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M/M Method Example: 
Numerical summary that actuaries love to see

 Here, “risk” = standard deviation (“standard error”)

 Total Risk is the square root of the variances in the ultimate 
column on previous slide

 Total cv of O/S and of Ultimate use same standard error in the 
numerator; only denominators differ

ABC Insurance Company
M/M Stochastic Analysis based on Chain Ladder Projection of Paid Losses

AY (i) Ultimatei O/Si Proc risk Parm risk Total risk Process Parameter Total

Tot cv of 
Ultimate

1999 69,559    -          -          -          -          
2000 49,045    1,379      1,056      887         1,379      0.766      0.643      1.000      0.028      
2001 62,706    4,338      1,695      1,432      2,219      0.391      0.330      0.511      0.035      
2002 59,014    8,071      2,020      1,505      2,519      0.250      0.186      0.312      0.043      
2003 74,307    15,931    2,640      2,039      3,336      0.166      0.128      0.209      0.045      
2004 121,411  38,701    3,564      3,407      4,931      0.092      0.088      0.127      0.041      
2005 96,343    45,233    4,014      2,940      4,976      0.089      0.065      0.110      0.052      
2006 125,863  83,635    5,896      4,242      7,263      0.070      0.051      0.087      0.058      
2007 197,791  176,557  20,977    14,323    25,401    0.119      0.081      0.144      0.128      

Total: 786,478  373,845 22,774    24,964    33,792   0.061      0.067      0.090     0.043      

Murphy s.e. Formulation cv of O/S Loss
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M/M Method Example: Graphical summary 
displays “smile” of cv(O/S) and “blow up” of cv(Ultimate)

 The further an accident year from ultimate resolution, the more relative 
uncertainty in its estimated ultimate value

 Same cannot be said for cv metric for outstanding loss
 Mature AY cv’s of O/S are larger due to smaller amounts in denominator

 Slide illustrates slight difference between Mack and Murphy 
 Formulation of parameter risk
 Treatment of limited data in tail

Accident Year CVs Based on M/M Stochastic Method
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Familiar regression graph illustrates M/M theory

 The “true” linear relationship will almost certainly be different from 
our selection
 Dotted line = ±2 parameter risks (standard errors)

 In addition, whatever the linear relationship “truly” is, actual results 
will deviate from that mean value
 Dashed line = ±2 total risks (s.e.’s)

 Recall: ±2 standard deviations enclose a 98% confidence interval 
(standard normal)

Graph illustrates 
actuary’s selected 
linear relationship

y = 9.315 x
Statistical theory 

cautions against 
extrapolations 
beyond experience 
interval

Relationship between Age 1 Loss and Ultimate Loss
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M/M VaR estimates of total outstanding can vary 
substantially depending on assumed probability distribution 

 Even assuming the more skewed distribution, the Mack/Murphy 
method has been criticized for understating tail risk (GIRO working 
party, July 2007)

* S&P confidence levels under a one year time horizon

$478,270$458,735Norminv( p, 373845, 33792)

~$13,800~$8,300difference

$492,025$467,025Loginv( p, 12.828, 0.090)

.999 (‘AAA’*).994 (‘A’*)VaR %-ile (p)

From 
slide 16

ABC Insurance Company
M/M Stochastic Analysis Based on Paid Loss

AY (i) Ultimatei O/Si Proc risk Parm risk Total risk

Total: 786,478  373,845 22,774    24,964    33,792   

Murphy s.e. Formulation



20©2008 Trinostics

Mack/Murphy method: wrapup

 Advantages 
 Strictly analytical method, no simulation required
 Instantaneously fast
 Well-known

 Disadvantages
 Not robust to outliers
 Probably understates cv, tail variability

— See 2007 GIRO report
 Overparameterizes the data
 Does not necessarily model situation when actuary selects factors 

other than weighted or simple average
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Monte Carlo Simulation takes a Methodizer’s approach

 A simulation of the distribution of unpaid claims generally follows these steps:
 Choose a deterministic method (a process) to generate ultimate loss outcomes

— Model inputs as random variables
 Randomly generate input values
 Calculate ultimate outcome, unpaid claim value (save result!)
 Repeat many many times
 Empirical distribution estimates the theoretical distribution of unpaid claims

— Reflects variability of assumed process (process risk)

 Chosen method determines types of inputs to simulate
 Chain ladder, BF: link ratios (or link_ratio–1) usually simulated as normal or 

lognormal random variables
 Pure premium, BF: loss ratios usually simulated as lognormals

 Parameters (e.g., µ and σ) of simulated distributions must be selected before random 
draws can occur
 µ, σ estimated from the data, selected from benchmarks, judgment
 How to reflect risk that selected µ, σ might not equal “true” value (parameter 

risk)?
— Various approaches exist in the literature (e.g., Kreps, PCAS 1997; see also 

Hodes, Feldblum, and Blumsohn, PCAS 1999)
— Beyond scope of this presentation
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Monte Carlo Simulation of the Loss Development Method:
All losses at age k use the same simulated RTR at age k

 Values in first subsequent diagonal use Sim’d RTRs from box

 Subsequent cells have that formula buried within

ABC Insurance Company
Chain Ladder Simulation of Paid Losses
AY \ Age 1 2 3 4 5 6 7 8 9 = Ult

1999 10,238   24,654   38,025   46,550   52,842   58,722   65,227   67,604   69,559     
2000 5,508     16,235   25,586   32,863   38,111   42,315   45,171   47,666   48,651     
2001 7,374     20,620   34,220   43,438   50,898   55,475   58,367   60,119   61,000     
2002 6,153     19,182   31,005   40,424   46,949   50,942   54,371   55,998   58,579     
2003 7,253     25,066   40,134   51,063   58,376   65,348   70,832   73,891   76,454     
2004 10,855   38,520   62,348   82,710   95,125   105,683 111,751 116,266 119,504   
2005 10,313   34,341   51,110   65,000   75,571   82,604   89,805   93,425   101,151   
2006 16,411   42,228   67,339   87,368   100,911 110,832 118,540 122,824 127,805   
2007 21,234   68,053   105,940 135,776 156,966 171,817 183,325 192,057 195,364   

sum below
diagonal 68,053 173,279 288,144 428,573 536,284 628,624 714,579 788,509   

375,876   =Est'd O/S
5 year

Selected 3.125 1.581 1.284 1.153 1.099 1.078 1.044 1.029
LDFs 9.315 2.981 1.885 1.468 1.273 1.158 1.074 1.029 1.000

Steps to simulate RTRs
RTR-1 2.125 0.581 0.284 0.153 0.099 0.078 0.044 0.029
Parameter risk cv's from M/M formula; will assume appropriate for selected 1-2 RTR:
cvβ 0.079 0.039 0.054 0.044 0.113 0.156 0.330 0.643

2 0.006 0.00151 0.00293 0.00195 0.01262 0.02411 0.10336 0.34622 =ln(1+cv2)

µ 0.751 -0.543 -1.260 -1.877 -2.321 -2.559 -3.172 -3.716 =ln(mean)-2/2
Sim'd RTR 3.205 1.595 1.272 1.150 1.119 1.067 1.030 1.021 =loginv(rand(),µ,σ)+1
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Simulated distribution mellows over time

ABC Insurance Co.
Simulated Distribution of Unpaid Claim Amounts

# trials = 2048000; 10 hrs, 48 min



25©2008 Trinostics

Finding minimum number of MC trials has no neat solution

 Compared with a pdf graph, a convergence graph gives a better 
picture of how closely statistics of interest settle down
 E.g., if you want to estimate the 99.9th percentile to within 0.1% of 

the mean, you should run at least 1 million iterations
 For the 70th percentile, just 4,000 iterations might be sufficient

Monte Carlo Simulation
Change in VaR Ratio

Number of Trials Doubled Each Time
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Monte Carlo simulation: wrapup

 Advantages 
 Well-known in many sciences
 Extremely flexible

— Technique can model highly complex processes

 Disadvantages
 Parameters describing the process inputs must be selected ahead 

of time
 Slow to execute

— Quantity of random deviates increases with complexity
— Number of trials increases with complexity

 Without extra steps, only measures process risk
— Ask your consultant if/how parameter risk is incorporated
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Bootstrapping is a “modern” simulation technique

 Whereas Monte Carlo simulates parametric inputs (e.g., LDFs) to a 
complex process, Bootstrapping simulates the data

 If the data’s distribution is “known,” then
 Estimate parameters of the distribution
 Sample from that distribution
 Calculate your desired output
 Repeat
 Make inferences (cv, VaR) from output’s empirical distribution
 Called Parametric Bootstrapping

 If cannot assume data’s distribution is of a specific type
 Sample from the data itself (with replacement; “resample”)
 Continue as above
 Called Nonparametric Bootstrapping

 When the process is modelled, can bootstrap the residuals
 Resample the residuals
 Recast history with synthetic data
 Continue as above
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Simple example of non-parametric bootstrapping of residuals: 
estimate the distribution of AY 2008 paid as of 12 months

 Randomly draw from the fitted L/R distribution
 Calculate the indicated 12-month paid loss (the desired “output”)
 Repeat many times
 Builds the empirical distribution of AY 2008 paid @ 12 months

 How would bootstrapping differ from this approach?

 Same data as before, now with 
premium

 Based on a selected 12-month paid loss 
ratio of 22%, a deterministic estimate 
of AY 2008’s paid amount at 12/31/08 
is about $21.6 million

 To get a range around that point 
estimate, we could try good old 
fashioned Monte Carlo simulation:

 Model the partial L/Rs as 
lognormals

 Fit µ and σ to the 8 L/R data points

Earned Paid @ Partial

AY \ Age Premium 12 mo L/R
A B B/A

1999 61,428   10,238   16.7%
2000 16,524   5,508     33.3%
2001 43,297   7,374     17.0%
2002 24,016   6,153     25.6%
2003 21,100   7,253     34.4%
2004 139,052 10,855   7.8%
2005 59,535   10,313   17.3%
2006 67,864   16,411   24.2%
2007 128,447 21,234   16.5%

Average 21.4%
C.  Selected 22.0%

deterministic
2008 98,156   21,594  



30©2008 Trinostics

With Bootstrapping we create synthetic historical data  
and select as we normally would in our deterministic analysis

 Given selected L/R, calculate the residuals (“noise”) that we assume 
could have happened at any time

 Resample residuals to create synthetic historical data
 Given that data, select a L/R and calculate the paid amount
 Repeat to generate a set of actuarial central estimates for paid @ 12 

months
 Seen that way, Bootstrapping measures parameter risk

Expected "pseudo"
Earned Paid @ Partial Paid @ Paid @ Partial

AY \ Age Premium 12 mo L/R 12 mo Residuals index Residuals 12 mo L/R
A B B/A D=AC E=B-D =random F G=D+F H=G/A

1999 61,428   10,238   16.7% 13,514    (3,276)      4 870         14,384    23.4%
2000 16,524   5,508     33.3% 3,635      1,873       4 870         4,505      27.3%
2001 43,297   7,374     17.0% 9,525      (2,151)      3 (2,151)     7,374      17.0%
2002 24,016   6,153     25.6% 5,283      870          8 1,481      6,764      28.2%
2003 21,100   7,253     34.4% 4,642      2,611       4 870         5,511      26.1%
2004 139,052 10,855   7.8% 30,591    (19,736)    1 (3,276)     27,315    19.6%
2005 59,535   10,313   17.3% 13,098    (2,785)      5 2,611      15,709    26.4%
2006 67,864   16,411   24.2% 14,930    1,481       5 2,611      17,541    25.8%
2007 128,447 21,234   16.5% 28,258    (7,024)      6 (19,736)   8,522      6.6%

Average 21.4% 22.3%
C.  Selected 22.0% 23.0%

deterministic simulated
2008 98,156   21,594  22,576  

Residuals
"Resampled"

Based on SelectedUsual Deterministic Estimate Simulated Deterministic Estimate

Legend
actual data
calculations

synthetic data
selection
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Nonparametric bootstrapping applied to 
Chain Ladder model also bootstraps the residuals

 From standard chain ladder approach, back into expected cumulative 

ABC Insurance Company
Bootstrapping Paid Loss Development Method
AY \ Age 1 2 3 4 5 6 7 8 9 = Ult

1999 10,238     24,654      38,025       46,550     52,842      58,722       65,227      67,604      69,559        
2000 5,508       16,235      25,586       32,863     38,111      42,315       45,171      47,666      49,045        
2001 7,374       20,620      34,220       43,438     50,898      55,475       58,367      62,706        
2002 6,153       19,182      31,005       40,424     46,949      50,942       59,014        
2003 7,253       25,066      40,134       51,063     58,376      74,307        
2004 10,855     38,520      62,348       82,710     121,411      
2005 10,313     34,341      51,110       96,343        
2006 16,411     42,228      125,863      
2007 21,234     197,791      

sum below
diagonal 786,478      

373,845      =Est'd O/S
5 year

Selected 3.125 1.581 1.284 1.153 1.099 1.078 1.044 1.029 tail
LDFs 9.315 2.981 1.885 1.468 1.273 1.158 1.074 1.029 1.000

Expected cumulative paid amounts based on selected link ratios
AY \ Age 1 2 3 4 5 6 7 8 9 = Ult

1999 7,468      23,337      36,901      47,386    54,646      60,046      64,747     67,604      69,559        
2000 5,265      16,455      26,018      33,411    38,530      42,337      45,651     47,666      
2001 6,732      21,038      33,265      42,717    49,262      54,130      58,367      
2002 6,335      19,799      31,306      40,202    46,362      50,942       
2003 7,977      24,930      39,420      50,621    58,376      
2004 13,034    40,734      64,408      82,710     
2005 10,343    32,324      51,110       
2006 13,512    42,228      
2007 21,234     
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Residuals are based on incremental, not cumulative, paids

Incremental Actuals
AY \ Age 1 2 3 4 5 6 7 8 9 = Ult

1999 8,239       14,416      13,371       8,525       6,292        5,880         6,505        2,377        1,956          
2000 3,508       10,727      9,351         7,277       5,248        4,204         2,856        2,495        
2001 5,373       13,246      13,600       9,218       7,460        4,577         2,892        
2002 4,151       13,029      11,823       9,419       6,525        3,993         
2003 5,250       17,813      15,068       10,929     7,313        
2004 8,851       27,665      23,828       20,362     
2005 8,308       24,028      16,769       
2006 14,405     25,817      
2007 19,227     

Incremental Expecteds
AY \ Age 1 2 3 4 5 6 7 8 9 = Ult

1999 5,469      15,870      13,563      10,485    7,260        5,399        4,701       2,857        1,956          
2000 3,265      11,190      9,563        7,393      5,119        3,807        3,314       2,014        
2001 4,731      14,306      12,227      9,452      6,545        4,867        4,238       
2002 4,333      13,464      11,507      8,896      6,159        4,581        
2003 5,974      16,953      14,489      11,201    7,755        
2004 11,030    27,700      23,674      18,302    
2005 8,338      21,981      18,786      
2006 11,506    28,716      
2007 19,227    

Incremental Residuals
AY \ Age 1 2 3 4 5 6 7 8 9 = Ult

1999 2,770       (1,454)       (192)           (1,960)      (968)          481            1,804        (480.37)                    
2000 243          (463)          (212)           (116)         129           397            (458)          480           
2001 642          (1,060)       1,373         (234)         915           (290)           (1,346)       
2002 (182)         (435)          316            523          366           (587)           
2003 (724)         860           579            (272)         (442)          
2004 (2,179)      (35)            154            2,060       
2005 (30)           2,047        (2,017)        
2006 2,899       (2,899)       
2007 0
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Residuals are generally ill-behaved without their massage

 Here the residuals are massaged into “scaled pearson residuals”

 “Standardized” residuals can be scrambled among all AY’s and ages

 We’ll skip the details … (and the massage)

 Resample with replacement

Random index
AY \ Age 1 2 3 4 5 6 7 8 9 = Ult

1999 23 15 39 14 3 40 28 1 8
2000 6 17 29 10 14 26 43 37
2001 5 5 21 41 19 42 42
2002 24 44 23 20 19 20
2003 23 19 44 23 33
2004 4 22 16 26
2005 39 42 16
2006 10 5
2007 35

"Resampled" residuals (pretend post-massage)
AY \ Age 1 2 3 4 5 6 7 8 9 = Ult

1999 154         (35)            (587)          860          642           1,804        523          2,770        2,899          
2000 (2,179)     (2,899)      (272)          (1,454)     860           (116)          (480)         397           
2001 (724)        (724)          316           (458)        (212)          (1,346)       (1,346)      
2002 (2,017)     480           154           1,373      (212)          1,373        
2003 154         (212)          480           154          915           
2004 (182)        579           2,047        (116)        
2005 (587)        (1,346)      2,047        
2006 (1,454)     (724)          
2007 (442)        
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Recast historical cumulative triangle, reproject ultimates

 Use resampled residuals to create synthetic incremental amounts
 Re-cumulate
 Now you have a synthetic triangle from which to pick factors and

project ultimates, unpaid amount
Synthetic incremental amounts
AY \ Age 1 2 3 4 5 6 7 8 9 = Ult

1999 5,623      15,835      12,976      11,345    7,902        7,204        5,224       5,627        4,854          
2000 1,086      8,291        9,291        5,939      5,979        3,691        2,834       2,411        
2001 4,007      13,582      12,543      8,994      6,332        3,522        2,892       
2002 2,316      13,944      11,661      10,269    5,947        5,954        
2003 6,128      16,741      14,970      11,355    8,671        
2004 10,848    28,279      25,721      18,186    
2005 7,751      20,635      20,833      
2006 10,052    27,991      
2007 18,785    

Synthetic cumulative amounts
AY \ Age 1 2 3 4 5 6 7 8 9 = Ult

1999 5,623      21,458      34,434      45,779    53,681      60,885      66,109     71,736      76,591        
2000 1,086      9,377        18,668      24,607    30,586      34,277      37,111     39,522      42,197        
2001 4,007      17,588      30,131      39,125    45,458      48,979      51,871     59,695        
2002 2,316      16,261      27,922      38,191    44,138      50,091      62,025        
2003 6,128      22,869      37,839      49,194    57,865      80,046        
2004 10,848    39,126      64,848      83,033    135,181      
2005 7,751      28,386      49,219      104,893      
2006 10,052    38,043      137,544      
2007 18,785    264,894      

sum below
diagonal 886,474      

498,043      
5 year

Selected 3.900 1.696 1.309 1.177 1.117 1.076 1.078 1.068 tail
LDFs 14.102 3.615 2.131 1.628 1.383 1.238 1.151 1.068 1.000
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Bootstrap distribution appears slightly skewed

 Bootstrapping takes less time than MC to run same number of trials

 The Bootstrapping mean is about $425,000 whereas the deterministic 
estimate was about $375,000

 Not uncommon

 Usual solution is to scale the empirical output so the means 
coincide

ABC Insurance Co.
Bootstrap Distribution of Unpaid Claim Amounts

# trials = 2048000; 24 min.

290,000 328,000 366,000 404,000 442,000 480,000 518,000 556,000 594,000
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Finding minimum number of MC trials has no neat solution

 For the same level of tolerance, Bootstrapping needed 2M trials 
where MC needed only 1M

 Might be wise to double the trials again to make sure the 
empirical data has actually stabilized; relatively quick

Monte Carlo Simulation
Change in VaR Ratio

Number of Trials Doubled Each Time
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Bootstrapping: wrapup

 Advantages
 The data drives the simulation

— No assumptions necessary for process input parameters
 Faster than MC simulation (although more trials may be necessary)

 Disadvantages
 Without extra steps, only measures parameter risk

— Ask your consultant if/how process risk is incorporated
 Misconception: “Bootstrapping doesn’t work with incurred losses!”

— Some methods of massaging the residuals are better able to 
allow for negative development

 Heteroscedasticity
— When development data is widely different by age (e.g., E&S 

data), separate residuals into similar resampling groups
— Plot residuals by age for visual cues

 Bootstrap mean may not equal deterministic mean
— Scale the output

 Bootstrapping has also been criticized by GIRO for understating tail 
variability
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Summary of popular methods’ results:
MM and BS densities appear similar, MC not so

 Without parameter risk, MC clearly understates mean square error

 MM may have more spread than BS, but BS here omits process risk

ABC Insurance Co.
Unpaid Claim Estimate Density Comparisons

Mack/Murphy vs Monte Carlo vs. Bootstrapping

242,000 276,000 310,000 344,000 378,000 412,000 446,000 480,000

Mack Murphy

Monte Carlo

Bootstrapping
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CLRS 2008 Agenda

 Why Analyze Reserve Ranges?

 General Terminology

 Popular Stochastic Methods

 Aggregation
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Here are a few familiar formulas when aggregating lines

 Mean of aggregate is the aggregate of the marginals’ means

 E(X+Y) = E(X) + E(Y)

 Variance of the aggregate is the aggregate of marginals’ variances 
with an extra cross-product term

 V(X+Y) = V(X) + 2Cov(X,Y) + V(Y)    (1)
 Analogous to (x+y)2 = x2 + 2xy + y2

 Confidence level (e.g., 75% VaR) of the aggregate is the aggregate 
of marginals’ confidence levels less the diversification benefit

 VaR75% (X+Y) = VaR75% (X) + VaR75% (Y) – DB75%

 Q: When would DB75% = 0?

 Distribution of the aggregate is the aggregate of marginals’
distributions
 FX+Y = Copula(FX,FY)
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More aggregation formulas: correlation

 Correlation scales the covariance of two lines by dividing by their 
standard deviations

 Allows comparison of two lines of difference sizes

 Such relationships between N lines of business are encapsulated in 
the covariance matrix and the correlation matrix

 These matrices should always be positive-semidefinite (you can 
take their “square root”)
— Can find the “square root” of ∑ using Cholesky decomposition

— Used to simulate correlated random variables
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A simple example of the “correlation matrix” approach

 As a standard practice an actuary might assume that a lognormal 
distribution applies to the aggregated lines

 Fit to the calculated mean (560768) and standard error (44702)

 Read 75% VaR off the indicated lognormal distribution

 The diversification benefit at the 75% confidence level would be about 
$4million

 Suppose monoline ABC 
Insurance Co. writes in 
two states, X and Y 

 Ran the Mack / Murphy 
method on state X

 The reserves for Y are 
half those for X

 Assume cv for Y is same 
as for X 

 Correlation based on 
judgment

A B C D E F
1
2 Mean CV S.E. mse 75%VaR
3
4 Line X 373,845 0.090     33,792   1,141,875,645 395,684         
5 Line Y 186,923 0.090     16,896   285,468,911 197,842         
6
7 Correlation 80% Cov-> 456,750,258
8
9 X+Y 560,768 0.086     48,382   2,340,845,072 592,106         
10
11 Calculations: E4=D4^2
12 E5=D5^2
13 E7=B7*D4*D5
14 E9=E4+E5+2*E7
15 F9 based on lognormal distribution with mean=B9, stdev=D9
16 Notes: Assume B5=B4/2
17 Assume C5=C4. So D5=B5*C5
18 Back into standard error of sum: = sqrt(E9)
19 and cv of sum = D9/B9

Outstanding Loss
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Above correlation approach violates basic mathematics

 In the preceding example we assumed that the individual lines X 
and Y had lognormally distributed unpaid claim amounts

 We also assumed that the unpaid claim amounts of the combined 
portfolio X+Y were also lognormally distributed
 Unfortunately, the sum of two lognormals is not a lognormal
 Loss of precision remains to be seen

 We seek a more flexible way of combining two marginal 
distributions into a joint distribution when
 We have reasonable knowledge of the marginals
 We have some idea of the strength of the dependency between 

the lines
 We want to make as few additional assumptions as necessary

 Enter: the Copula!
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The word copula comes from the discipline of Logic

 Mirriam-Webster’s Dictionary defines copula as “the connecting 
link between the subject and predicate of a proposition”

 Sklar’s Theorem (1959) (abbreviated):
For every joint distribution FX,Y there exists a function C that 
breaks down FX,Y into its marginals FX and FY:

FX,Y(x,y)=C(FX(x),FY(y))

 In practice, copulas are applied in reverse, i.e.,

 Starting with the marginals, pick a copula and form the joint 
distribution

 Copula you choose is unrelated to distributional form of the 
marginals

 Each is simply a “marginal aggregation machine” with unique 
characteristics

 Characteristic of importance to actuaries is the strength of 
interdependence in regions – especially tails, especially upper 
tails – of the combined lines
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Copulas provide a convenient way 
to aggregate the distributions of several lines

 Three popular copulas in actuarial use today are the Normal, the 
Student-t, and the Gumbel

 Normal copula

 Average correlation is the sole input parameter

 Combined lines will have no tail dependency

 Student-t

 Uses correlation and degrees of freedom (df) as input parameters

 The fewer df, the greater the tail dependency

 Gumbel

 Related to extreme value theory for multivariates

 Like normal, takes one parameter, a
— a =1 implies independence, increasing values imply greater 

upper tail dependence

 Combined lines will have independent lower tails
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Aggregation VaR’s: correlation matrix vs. copulas

 Correlation-matrix values calculated analytically

 Copula values calculated from simulated empirical distribution 
using R
 1 million trials took about 5 seconds

 In this example, correlation-matrix VaR’s are bracketed by the 
Student-t and the Gumbel

Method of Combination 75.0% 99.0% 99.9%

Assume combined line is lognormally
distributed, parameters from correlation matrix 592,106 682,622 729,038

Normal Copula ρ=.5 589,818 673,151 715,217

Student-t ρ=.5 df=25 589,692 673,674 718,007
df=2 588,048 678,252 728,509

Gumbel a=1.5 588,419 680,511 730,112
a=20 593,472 689,223 737,617
a=100 593,633 688,578 738,001

Tail Percentiles
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Disparity of cumulative distributions revealed 
when using copulas’ most exaggerated parameters
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Questions?
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