GUY CARPENTER

Distribution and Value of Reserves — Paid and Incurred

GARY G. VENTER

Paid and Incurred Indications

- Often very different
- Quarg and Mack found a way to do a simultaneous paid and incurred chain ladder
- ■Marker-Mohl 1980 suggested predicting incremental paid from previous case reserves
- Here do development factors as regressions but use paid, incurred, or case reserves as predictors for any of these

Paid Development Factors as a Function of Previous Incurred to Paid Ratio [from Quarg and Mack]

Example Cumulative Paid Triangle

	0	1	2	3	4	5	6
0	576	1804	1970	2024	2074	2102	2131
1	866	1948	2162	2232	2284	2348	
2	1412	3758	4252	4416	4494		
3	2286	5292	5724	5850			
4	1868	3778	4648				
5	1442	4010					
6	2044						

- ■Paid losses usually increase left to right
- ■Year 3 highest, year 6 next

Incurred (which has some decreases, in orange)

	0	1	2	3	4	5	6
0	978	2104	2134	2144	2174	2182	2174
1	1844	2552	2466	2480	2508	2454	
2	2904	4354	4698	4600	4644		
3	3502	5958	6070	6142			
4	2812	4882	4852				
5	2642	4406					
6	5022						

- ■Year 3 pretty high
- ■Year 6 way high for incurred

Other Modeling Issues

• More of a problem for row-column factors

Diagonal effects

• Cells on a diagonal are all same calendar year

- Claims department activity for the year or outside economic events could make some diagonals low and some high
- Not accounting for this can distort other parameters
- Projecting calendar-year effects can increase ranges

Residuals

- Not always normal variance proportional to mean^k
- In exponential family k = 0, 1, 2, 3 or 1 < k < 2 give:
- Normal, Poisson, Gamma, Inverse Gaussian, Tweedie
- Won't stick to exponential family
- Normal regression good starting point
 - Usually coefficients and their significance not too far off

Regression: An Art and a Science

Dullully Illoudis	Buildin	g model	S
-------------------	---------	---------	---

- Find explanatory variables
- Use statistical criteria for evaluating models
- Automated searches to optimize criteria may invalidate some of them

Criteria

- Significant variables
 - Coefficient should be at least as high as its standard error and usually at least twice as high
- Standard error of regression useful for comparison of models
 - Reduces with better fits
 - Increases with more parameters

Variables

- Often better to look at first differences or ratios, especially in time series
 - Can separate among variables that generally move together
- In reserving, use incremental data

Exploratory Analysis – Incremental Paid Data Lags 1 and 2 Predictive ability of previous cumulative

Correlation with previous:	<u>Incurred</u>	<u>Paid</u>	<u>Unpaid</u>
Paid at Lag 1	88%	84%	70%
Paid at Lag2	68%	57%	92%

Previous unpaid as predictor of incremental paid

- ■Paid at Lag 1 2 3 4 5 6
- ■Factor 1.95 0.67 0.33 0.33 0.28 0.36
- ■After lag 2, incremental paid about 1/3 of previous unpaid
- ■Single coefficient may be significant but 4 separate not

Preliminary Results

Paid	Prev	Prev	Prev
Incrs	Inc	Unpd	Unpd
1228	978	0	0
1082	1844	0	0
2346	2904	0	0
3006	3502	0	0
1910	2812	0	0
2568	2642	0	0
166	0	300	0
214	0	604	0
494	0	596	0
432	0	666	0
870	0	1104	0
54	0	0	164
70	0	0	304
164	0	0	446
126	0	0	346
50	0	0	120
52	0	0	248
78	0	0	184
28	0	0	100
64	0	0	224
29	0	0	80

- Three variable model —» Coefficients: 0.818 0.696 0.325
 - Standard errors: 0.033 0.131 0.264
 - ●1st 2 significant, 3rd not really
 - Sum of Residuals and # of Positive Residuals by Diagonal
 - Diagonal 1 2 3 4 5 6
 - Sum
 427.5 -470.2 -236.8 200.9 -437.3 532.8
 +> 0
 1
 3
 5

- Diagonals seem to come in offsetting pairs
- Strong diagonal effects may distort coefficients in model
- Diagonal dummy variables may account for this
- Scale dummies by independent variables

Including Diagonal Dummies

Addi	Adding Diagonal Pair Dummies —»							
Paid	Incrd	Unpd	Unpd	d 6 - 5	d 4 - 3	d 1- 2		
1228	978	0	0	0	0	978		
1082	1844	0	0	0	0	-1844		
2346	2904	0	0	0	-2904	0		
3006	3502	0	0	0	3502	0		
1910	2812	0	0	-2812	0	0		
2568	2642	0	0	2642	0	0		
166	0	300	0	0	0	-300		
214	0	604	0	0	-604	0		
494	0	596	0	0	596	0		
432	0	666	0	-666	0	0		
870	0	1104	0	1104	0	0		
54	0	0	164	0	-164	0		
70	0	0	304	0	304	0		
164	0	0	446	-446	0	0		
126	0	0	346	346	0	0		
50	0	0	120	0	120	0		
52	0	0	248	-248	0	0		
78	0	0	184	184	0	0		
28	0	0	100	-100	0	0		
64	0	0	224	224	0	0		
29	0	0	80	80	0	0		

Parameter	Estimate 5	St dev
Incurred o	0.8286	0.0107
Unpaid 1	0.6619	0.0406
Unpaid 2 - 5	0.3342	0.0808
Diag 6 – 5	0.1378	0.0155
Diag 4 – 3	0.0326	0.0138
Diag 2 -0.2384	0.0355	
Diag 1 0.4270	0.0656	

- SE down from 207 to 73 with 3 dummies, and to 63 with 4 of them
- All variables now significant

Unpaid Model

Parameter	Estimate	St dev
Paid Cum o	0.8215	0.1036
Paid Incr 1	-0.5436	0.0864
Constant 1	522.68	96.860
Paid Cum 1	0.0766	0.0098
Unpaid 2 - 5	0.6615	0.0983
Diag 3 0.0800	0.0281	

Distribution of Residuals

p – Distributions: Variance ∞ Mean^p

Q Take
$$\sigma^2 = k\mu^p$$

• Take
$$\sigma^2 = k\mu^p$$
• $f(x) = (2\pi k\mu^p)^{-1/2} \exp[-(x-\mu)^2/(2k\mu^p)]$

Gamma – p

- Gamma $F(x,\theta,\alpha) = \Gamma(x/\theta;\alpha)$ with incomplete gamma Γ .
- This has mean $\alpha\theta$ and variance $\alpha\theta^2$.
- To make mean a parameter, set $F(x,\mu,\alpha) = \Gamma(x\alpha/\mu;\alpha)$. Then the variance is μ^2/α .
- For gamma-p, take $F(x;\mu,k,p) = \Gamma[x/(k\mu^{p-1}); \mu^{2-p}/k],$ which has mean μ and variance $k\mu^p$, with skewness = 2CV.

- Lognormal $F(x; \mu, \sigma) = N\left(\frac{\ln(x) \mu}{\sigma}\right)$ This has mean $e^{\mu + \sigma^2/2}$ and variance $e^{2\mu + \sigma^2}\left(e^{\sigma^2} 1\right)$
 - Now reparameterize with three parameters p, m and s:

$$F(x; m, s, p) = N \left(\frac{\ln((x/m)\sqrt{1 + s^2 m^{p-2}})}{\sqrt{\ln(1 + s^2 m^{p-2})}} \right)$$

• This has mean m, variance s^2m^p , and skewness $3CV+CV^3$, where CV = $sm^{p/2-1}$. Here m has been replaced by $\left(\frac{m}{\sqrt{1+s^2m^{p-2}}}\right)$ and s² by ln(1+s²m^{p-2}).

Fits of p-Distributions by MLE

Paid regression

	р	<u>– Ln L</u>	<u>Skew</u>
Lognormal-p	1.50	111.94	> 3CV
Gamma-p	1.57	111.23	2CV
■ ZMCSP-p	1.60	110.52	CV
Normal-p	1.61	109.88	0
Weibull	2	108.76	-0.50

Unpaid regression —»

ı	<u>p</u>	<u>–Ln L</u>	<u>Skew</u>
◎ ZMCSP-p	1.96	113.30	CV
Normal-p	2.03	112.93	0
Weibull	2	111.88	-0.38

Weibull Parameters and Completing the Square

<u>Paid</u>	<u>Estimate</u>	<u>Unpaid</u> Estima	<u>ate</u>
Incurred o	0.7811	Paid Cum o	0.7358
Unpaid 1	0.6854	Paid Incr 1	-0.4275
Unpaid 2 – 5	0.3306	Constant 1	388.41
Diag 6-5+4-	-3 0.0339	Paid Cum 1	0.0908
Diagonal 2	-0.1873	Unpaid 2 – 5	0.7234
Diagonal 1	0.3971	Diagonal 3	0.0525

Incurred	d o	1	2	3	4	5	6
0	978	2104	2134	2144	2174	2182	2174
1	1844	2552	2466	2480	2508	2454	2460
2	2904	4354	4698	4600	4644	4652	4658
3	3502	5958	6070	6142	6158	6169	6177
4	2812	4882	4852	4863	4871	4877	4881
5	2642	4406	4646	4665	4679	4690	4697
6	5022	6182	6656	6685	6707	6722	6733

Runoff Ranges

Simulating Runoff Ranges

Basic approach

- Simulate possible parameter sets
 - Parameter uncertainty
 - Regression coefficients and Weibull shape parameter could all be different
 - Need distribution of possible parameters
- For each parameter set, simulate possible runoff
 - Process uncertainty
 - Simulate from coefficients and Weibull parameters

Distribution of possible parameters —»

- MLE estimates are asymptotically normal with variances from steepness of loglikelihood function
 - For small samples, lognormal may be better
- Or could bootstrap parameters by resampling residuals of fit and re-fitting

Parameter Variance

- Asymptotically minimum variance of parameters given the sample
- Starts with matrix of 2nd derivatives of NLL wrt all the parameters
 - First derivatives should be zero at the minimum
 - 2nd should be positive lower if flat near minimum
 - Mixed partials can be positive, negative, or neither
- Matrix inverse of information matrix is estimate for covariance matrix of the parameters
 - Higher variance if flat near minimum

Simulation of possible parameters —»

- Simulate normal copula with correlation matrix from Fisher information
- Invert simulated probabilities to get possible parameters
- Even if using lognormal marginals, rank correlation and Kendall's tau are preserved

The Model in Detail

$$\P$$
 F(y_{w,u}) = 1 - exp[-(y_{w,u}/b_{w,u})^c]

- Weibull regression —»

 In triangle, $y_{w,u}$ is cell in w^{th} row, u^{th} column
 - In design matrix, it is an element in the 1st column
 - x_{w,u,i} are the covariates for that element

$$\mathbf{\Phi} \partial \mathbf{b}_{w,u} / \partial \beta_j = \mathbf{x}_{w,u,j}$$

Similarly,
$$\partial^2 NLL / \partial \beta_i \partial \beta_k = -\sum_{w,u} x_{w,u,i} x_{w,u,k} \frac{\partial^2 \ln f(y_{w,u})}{\partial b_{w,u}^2}$$

Only dependence on covariates is x_{w,u,i}x_{w,u,k}

$$\partial^2 \ln f(y) / \partial b^2 = \frac{c}{b^2} \left[1 - (1+c) \left(\frac{y}{b} \right)^c \right]$$

Paid	Inc o	Unpd 1	Unpd 2-5	Diag 6543	Diag 2	Diag 1	C
Param	0.832	0.730	0.352	0.036	-0.200	0.423	7.427

Std dev 0.050 0.052 0.014 0.069 0.176 1.392 Ratio 16.70 14.08 -2.87 22.31 2.49 2.40 5.33

0.016

Unpaid	Pd Cum o	Pd Inc 1	Const	Pd Cum 1	Unpd 2-5	Diag 3	C
Param	0.793	-0.461	418.5	0.098	0.780	0.057	6.037
Std dev	0.145	0.100	102.9	0.008	0.042	0.022	1.148
Ratio	5.48	-4.62	4.07	11.64	18.55	2.52	5.26

Correlation Matrices Paid and Unpaid

1	0.17	0.00	-0.12	-0.24	-0.28	0.11
0.17	1	0.00	-0.19	-0.62	-0.05	0.14
0.00	0.00	1	0.19	0.01	0.00	0.26
-0.12	-0.19	0.19	1	0.13	0.03	-0.03
-0.24	-0.62	0.01	0.13	1	0.07	-0.08
-0.28	-0.05	0.00	0.03	0.07	1	-0.03
0.11	0.14	0.26	-0.03	-0.08	-0.03	1

1	-0.86	0.00	0.02	0.01	-0.03	0.06
-0.86	1	-0.49	0.00	-0.01	-0.05	-0.03
0.00	-0.49	1	-0.02	-0.01	0.07	-0.03
0.02	0.00	-0.02	1	0.07	-0.29	0.29
0.01	-0.01	-0.01	0.07	1	-0.04	0.22
-0.03	-0.05	0.07	-0.29	-0.04	1	-0.09
0.06	-0.03	-0.03	0.29	0.22	-0.09	1

Simulating Runoff

Procedure —»

Probability	Percentile
0.4%	3639
1.0%	3848
5.0 %	4356
10.0%	4640
25.0%	5093
50.0 %	5607
75.0 %	6105
90.0%	6557
95.0%	6818
99.0 %	7344
99.6%	7632

- Simulate parameters from lognormals with correlation matrices
- Simulate paid and unpaid from Weibull model
 - Mean = 5600, Std dev = 750
 - Result very close to normal
- Paid and unpaid parameters assumed independent
 - Bootstrap may get correlations
 - E.g., 2 5 previous unpaid in paid and unpaid regressions may be negatively correlated
 - The less is paid, the more there is unpaid
- May or may not increase runoff ranges

Adding Systematic Risk

Other Systematic Risk

Runoff risk sources —»

Gluck's model —»

(Stochastic factor to apply to paid loss in accident year w for lag d)

- (i) Frequency or severity trends that are different is built into the projection model
- (ii) Year-to-year fluctuation in trends
- (iii) New claim types arising, like asbestos, mold, etc., with retroactive application to prior accident years
- (iv) Changes in the portfolio that lead to changes in loss emergence patterns
- (v) Changes in the economy that affect claim filing and emergence
- (vi) Misestimation and changes in payout patterns
- \bullet $H_{w,d} = B_{w+d}D^{w+d-n}E_{w+d}[P_{dC^{(w+d)}} P_{(d-1)C^{(w+d-1)}}];$
- B_{w+d} is a mean ≥ 1 factor to represent (iii) (v) for calendar year w+d in the simulation;
- D is a mean 1 draw for all calendar years in the simulation to represent (i); n is last diagonal in data;
- E_{w+d} is from an AR-1 model to represent (ii)
- For (vi), P_i is portion of losses expected paid by lag i; C^(w+d) is mean 1 random draw of acceleration factor for calendar year w+d, and so P_{dC^(w+d)} is the accelerated (or decelerated) cumulative payment portion.

AR – 1 Model for Trend Fluctuations

- Let X_i 's be independent $N(0, \sigma^2)$ random draws
- **■** $\rho \in [0,1]$ is the autocorrelation coefficient
- ■Let $t_1 = X_1$, and $t_{i+1} = \rho t_i + X_{i+1}$. Then

$$E_{w+d} = \exp\left(\sum_{j=1}^{w+d-n} t_j\right)$$

Value of Reserves

Theories of Value

- (i) Standard deviation load
- (ii) Percentile of distribution
- (iii) CAPM
- (iv) CLPM?
 - a) If an asset is more risky its value is less
 - b) If a liability is more risky its value is greater
- (v) Transformed distribution mean
- (vi) Market value of disposal
- (vii) Undiscounted mean

- Fair value: market value of disposal to counterparty with similar credit risk
 - So value decreases with credit risk?
 - Never gets to zero?
 - Accounting theory is in a crisis about how close book should be to market

In general

Additive Valuations

- Accountants like to add and subtract
 - Short-term liabilities + long-term liabilities = all liabilities
- Market values should be additive
 - If sum of values > value of sum, reinsure a lot of individual lines, then retrocede for a profit with no risk
 - Basically prices for pieces reflects pooling that will be done
- **■**Favors means of transformed distributions
 - Transform puts more weight on adverse outcomes
 - CAPM can be so expressed
- ■But any homogeneous degree-1 loading (e.g., standard deviation, VaR can be allocated additively using the Euler method
 - Derivative of total risk wrt to line volume

Probability Transform

(NN)

- Original Wang Transform \longrightarrow S(x) is survival probability 1 F(x)

 - lacktriangle Gets normal percentile of S(x), increases it, and then gets probability of the higher percentile
 - Increases probability of higher percentiles

New form (John Major)

- - Puts more weight in both tails, especially for low v
 - Sometimes too much weight on left tail

Esscher transform

(on density)

- - Frequency $\lambda^* = \lambda E[\exp(cX/EX)]$

Transforms for Reserve Example

Summary

Summary

- ■Paid and incurred triangles can be used together
- ■Exploratory analysis gives you a way to start regression process
- ■Regression software helps identify useful models
- Can then try other distributions for residuals
- ■Information matrix gives parameter uncertainty
 - Bootstrapping is an alternative
- ■Simulating parameters then losses can estimate the runoff distribution
- ■Systematic risk should be considered to get realistic distribution of actual runoff
- Additive methods helpful for risk pricing once you have the distribution

GUY CARPENTER

