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More information will be available 
at

CABINET ROOM

6:30pm-11:30pm 

Thursday September 18th
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MULTIPLE  TRIANGLE  MODELLING ( or MPTF )
APPLICATIONS
• MULTIPLE LINES OF BUSINESS- DIVERSIFICATION?

• MULTIPLE SEGMENTS

– MEDICAL VERSUS INDEMNITY

– SAME LINE, DIFFERENT STATES

– GROSS VERSUS NET OF REINSURANCE

– LAYERS INCLUDING HIGH SEVERITY/LOW FREQUENCY

• CREDIBILITY MODELLING

– ONLY A FEW YEARS OF DATA AVAILABLE

– HIGH PROCESS VARIABILITY LEADS TO IMPRECISE 
ESTIMATES OF TRENDS
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Breaking up a triangle due to change in mix of risks

1. Change of mix of business
2. Different development and/or inflation
3. Different process variability
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Layer 1: Limit 100k

Layer 2: Limit 200k

Composite (Layer 1 & Layer 2)

Layer …

Layer 2: Limit 200k

Layer 1: Limit 100k

Layer 2: Limit 200k

Layer 1: Limit 100k

Pricing different limits for different
accident years
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BENEFITS
• One composite model for all LOBs!
• Level of Diversification- optimal risk 

capital allocation by LOB and calendar 
year

• Reserve and underwriting risk charge
• Combined reserve and underwriting risk 

charge is not additive
• No two companies are the same in 

respect of volatility and correlations
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Mack and Bootstrap

• You cannot measure process correlation 
unless the model captures the trend 
structure in the data (correctly)

• Mack induces spurious correlations
• In respect of risk charges (Economic 

Capital) it is the calendar year 
relationships and the calendar year liability 
stream that are important

7

When do two LOBs (LOB A & LOB B) have common 
drivers?

TWO LOBs “same” trend structure
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When do two LOBs (LOB A & LOB B) have common drivers?
TWO LOBs “same” trend structure and high process correlation

Wtd Std Res vs Cal. Yr
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When do two LOBs (LOB A & LOB B) have common drivers?
TWO LOBs “same” trend structure and high process correlation

Trace of calendar year 2006 versus accident years. 
Note high process correlation (of  0.85).

Wtd Std Res vs Acc. Yr
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When do two LOBs (LOB A & LOB B) have common drivers?
TWO LOBs “same” trend structure and high process correlation
(Data adjusted for development and accident period trends only)

Wtd Std Res vs Cal. Yr
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Model Displays for LOB1 and LOB3
Calendar year trend change in 01 for each LOB
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LOB1 and LOB3 Weighted Residual 
Plots for Calendar Year.

Note some process correlation of 0.35
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Pictures shown above correspond to two linear models, which 
described by the following equations

Without loss of sense and generality two models in (1) could 
be considered as one linear model:
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For illustration of the most simple case we suppose that size of
vectors y in models (1) are the same and equal to n, also we 
suppose that

In this case
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Which could be rewritten as

15

For example, when n = 3
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There is a big difference between linear models in (1) and linear 
model (2), as in (1) we consider models separately and could not
use additional information, from dependency of these models, what 
we can do in model (2).  To extract this additional information we 
need to use proper methods to estimate vector of parameters β.
The estimation 

which derived by ordinary least square (OLS) method, does not 
provide any advantage, as covariance matrix  Σ is not participating 
in estimations.  Only general least square (GLS) estimation 

yXXXβ TT 1)(ˆ −=

yΣXXΣXβ 1T1T −−−= 1)(~

could help to achieve better results.  
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However, it is necessary immediately to underline that we do not
know elements of the matrix Σ and we have to estimate them as 
well.  So, practically, we should build iterative process of 
estimations

and this process will stop, when we reach estimations with 
satisfactory statistical properties.

)()( ~,~ mm Σβ
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There are some cases, when model  (2) provides the same results 
as models in (1).  They are:

1. Design matrices in (1) have the same structure ( they are the 
same    or proportional to each other ).

2. Models in (1) are non-correlated, another words 

012 =σ

However in situation when two models in (1) have common regressors 
model (2) again will have advantages in spite of the same structure of design 
matrices.
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Clusters of LOBs

• For 40 LOBs there are 780 pair wise 
correlations

• Set up clusters
• Zero correlations between clusters
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Weighted Residual Plots for LOB1 and LOB3 versus 
Calendar Years

What does correlation mean? (Regression of one set of 
residuals against the other)
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Model Displays for LOB1 and LOB3 for Calendar 
Years
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Model for individual iota parameters
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There are two types of correlations involved in 
calculations of reserve distributions.

Weighted Residual Correlations, that is 
process correlation between datasets:

0.359013 – is weighted residual 
correlation between datasets LOB1 and 
LOB3;

Correlations in parameter estimates:
0.324188 – is correlation between iota 

parameters in LOB1 and LOB3.

These two types of correlations induce 
correlations between triangle cells and within 
triangle cells. These induce reserve 
correlations between accident years, calendar 
years and aggregates.

24



Common iota parameter in both triangles
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( ) 0267.0ˆ;0996.0ˆ;,~ 2 == σµσµι N

Two effects:

Same parameter for each LOB increases 
correlations and CV of aggregates

Single parameter with lower CV reduces CV 
of aggregates
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Forecasted reserve distributions by accident year, calendar 
year and total are correlated

Indicates dependency through residuals’ and parameters’
correlations

Indicates dependency through parameter estimate
correlations only
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Dependency of aggregates in aggregate 
table

In each forecast cell and in 
aggregates by accident year and 

calendar year (and total)

Var(Aggregate) >> Var(LOB1) + Var(LOB2).

Correlation between 
reserve distributions is 
0.833812
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Forecast tables- means and standard deviations
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Histogram
Kernel
Lognormal
Gamma

Density Comparisons (Acc. Year: Total)

1 Unit = $1,000,000,000
1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Simulations from lognormals correlated within LOB and 
between LOBs to find distribution of aggregate of LOB 1 
and LOB 3
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Percentiles and V@R for aggregate based on explicit 
assumptions. Can also compute by calendar year and accident 

year
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Risk Capital Allocation by LOB based on variance 
covariance formulae
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Calendar year liability stream based on explicit 
assumptions
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Risk Capital allocation by calendar year for the aggregate 
reserves of LOB1 and LOB3
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SAD and SAM Two WC segments
Mack residuals for each. Note remaining structure and have 

no idea how these two segments maybe related

Wtd Std Res vs Dev. Yr
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SAD and SAM- WC segments (PTF)
Removal of Development Yr trends only. Note accident year and calendar year 

similarities in trend structure. Have an immediate idea of how the segments 
maybe related

Wtd Std Res vs Dev. Yr
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SAD and SAM- WC segments (PTF)
Strong similarities in accident year trend structure
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Gross versus Net of Reinsurance

Model Displays- same trend structure. Have common 
drivers. Net zero calendar year trend and gross 
6.81%+_1.27%. Net has higher process variance!

Is your outward reinsurance program optimal?
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Gross and Net of Reinsurance
Weighted Residuals versus Calendar year. Note high 

process correlations (common drivers)

Wtd Std Res vs Cal. Yr
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Weighted Residual Covariances Between 
Datasets

Weighted Residual Correlations Between Datasets
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Note CV of gross reserves < CV of net reserves
Because Net data has higher process variance!!
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MODELING   LAYERS

• Similar Structure
• Highly Correlated
• Surprise Finding!

CV of reserves limited to $1M is the same 
as CV of reserves limited to $2M !
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Model Display for All 1M: PL(I)
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Model Display for All 2M: PL(I)
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Model Display for All 1Mxs1M: PL(I)

Note that All 1Mxs1M has zero inflation, and  All 2M has lower inflation than 
All 1M, and distributions of parameters going forward are correlated
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Residual displays vs 
calendar years show high 
correlations between three 
triangles
.
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Compare Accident Year Summary

Consistent forecasts based on composite model.
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If we compare forecast by accident year for Limited 
1M and limited 2M t is easy to see that CV is the 

same.
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