Multiple LOBs, Segments and Layers

Glen Barnett, Insureware Ben Zehnwirth, Insureware

More information will be available at

CABINET ROOM

6:30pm-11:30pm

Thursday September $18^{\text {th }}$

Insureware

Breaking up a triangle due to change in mix of risks

1. Change of mix of business
2. Different development and/or inflation
3. Different process variability

Layer 1: Limit 100k

Layer ...

BENEFITS

- One composite model for all LOBs!

- Level of Diversification- optimal risk capital allocation by LOB and calendar year
- Reserve and underwriting risk charge
- Combined reserve and underwriting risk charge is not additive
- No two companies are the same in respect of volatility and correlations

Mack and Bootstrap

- You cannot measure process correlation unless the model captures the trend structure in the data (correctly)
- Mack induces spurious correlations
- In respect of risk charges (Economic Capital) it is the calendar year relationships and the calendar year liability stream that are important

When do two LOBs (LOB A \& LOB B) have common drivers?
TWO LOBs "same" trend structure

When do two LOBs (LOB A \& LOB B) have common drivers? TWO LOBs "same" trend structure and high process correlation

When do two LOBs (LOB A \& LOB B) have common drivers? TWO LOBs "same" trend structure and high process correlation Trace of calendar year 2006 versus accident years. Note high process correlation (of 0.85).

Model Displays for LOB1 and LOB3 Calendar year trend change in 01 for each LOB

LOB1 and LOB3 Weighted Residual Plots for Calendar Year.
Note some process correlation of 0.35

Which could be rewritten as

$$
\mathbf{y}=\mathbf{X} \boldsymbol{\beta}+\boldsymbol{\varepsilon}
$$

For illustration of the most simple case we suppose that size of vectors y in models (1) are the same and equal to n, also we
suppose that

$$
E\left(\boldsymbol{\varepsilon}_{\mathbf{i}}, \boldsymbol{\varepsilon}_{\mathbf{i}}^{\mathbf{T}}\right)=\operatorname{var}\left(\boldsymbol{\varepsilon}_{\mathbf{i}}\right)=\mathbf{I}_{\mathbf{n}} \sigma_{i}^{2}, i=1,2 ; \quad \mathbf{C}=\mathbf{I}_{\mathbf{n}} \sigma_{12}
$$

In this case

$$
\operatorname{var}(\boldsymbol{\varepsilon})=\boldsymbol{\Sigma}=\left(\begin{array}{ll}
\mathbf{I}_{\mathbf{n}} \sigma_{1}^{2} & \mathbf{I}_{\mathbf{n}} \sigma_{12} \\
\mathbf{I}_{\mathbf{n}} \sigma_{12} & \mathbf{I}_{\mathbf{n}} \sigma_{2}^{2}
\end{array}\right)
$$

Pictures shown above correspond to two linear models, which described by the following equations

$$
\begin{align*}
& \mathbf{y}_{1}=\mathbf{X}_{1} \boldsymbol{\beta}_{1}+\varepsilon_{1}, \\
& \mathbf{y}_{2}=\mathbf{X}_{2} \boldsymbol{\beta}_{2}+\varepsilon_{2} \tag{1}
\end{align*}
$$

$E \boldsymbol{\varepsilon}_{\mathbf{i}}=\mathbf{0}, i=1,2 ; E\left(\boldsymbol{\varepsilon}_{1}, \boldsymbol{\varepsilon}_{2}^{\mathbf{T}}\right)=\operatorname{cov}\left(\boldsymbol{\varepsilon}_{1}, \boldsymbol{\varepsilon}_{2}\right)=\mathbf{C} ; \quad \operatorname{corr}\left(\boldsymbol{\varepsilon}_{1}, \boldsymbol{\varepsilon}_{2}\right)=\mathbf{R}$
Without loss of sense and generality two models in (1) could be considered as one linear model:

$$
\binom{\mathbf{y}_{1}}{\mathbf{y}_{2}}=\left(\begin{array}{cc}
\mathbf{X}_{1} & \mathbf{0} \tag{2}\\
\mathbf{0} & \mathbf{X}_{2}
\end{array}\right)\binom{\boldsymbol{\beta}_{1}}{\boldsymbol{\beta}_{2}}+\binom{\varepsilon_{1}}{\varepsilon_{2}}
$$

For example, when $n=3$

$$
\boldsymbol{\Sigma}=\left(\begin{array}{cccccc}
\sigma_{1}^{2} & 0 & 0 & \sigma_{12} & 0 & 0 \\
0 & \sigma_{1}^{2} & 0 & 0 & \sigma_{12} & 0 \\
0 & 0 & \sigma_{1}^{2} & 0 & 0 & \sigma_{12} \\
\sigma_{12} & 0 & 0 & \sigma_{2}^{2} & 0 & 0 \\
0 & \sigma_{12} & 0 & 0 & \sigma_{2}^{2} & 0 \\
0 & 0 & \sigma_{12} & 0 & 0 & \sigma_{2}^{2}
\end{array}\right)
$$

There is a big difference between linear models in (1) and linear model (2), as in (1) we consider models separately and could not use additional information, from dependency of these models, what we can do in model (2). To extract this additional information we need to use proper methods to estimate vector of parameters β. The estimation

$$
\hat{\boldsymbol{\beta}}=\left(\mathbf{X}^{\mathrm{T}} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}} \mathbf{y}
$$

which derived by ordinary least square (OLS) method, does not provide any advantage, as covariance matrix Σ is not participating in estimations. Only general least square (GLS) estimation

$$
\tilde{\boldsymbol{\beta}}=\left(\mathbf{X}^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} \mathbf{X}\right)^{-1} \mathbf{X}^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} \mathbf{y}
$$

could help to achieve better results.
However, it is necessary immediately to underline that we do not know elements of the matrix Σ and we have to estimate them as well. So, practically, we should build iterative process of estimations

$$
\tilde{\boldsymbol{\beta}}^{(m)}, \tilde{\mathbf{\Sigma}}^{(m)}
$$

and this process will stop, when we reach estimations with satisfactory statistical properties.

There are some cases, when model (2) provides the same results as models in (1). They are:

1. Design matrices in (1) have the same structure (they are the same or proportional to each other).
2. Models in (1) are non-correlated, another words

$$
\sigma_{12}=0
$$

However in situation when two models in (1) have common regressors model (2) again will have advantages in spite of the same structure of design matrices.

Clusters of LOBs

- For 40 LOBs there are 780 pair wise correlations
- Set up clusters
- Zero correlations between clusters

Weighted Residual Plots for LOB 1 and LOB 3 versus
Calendar Years
What does correlation mean? (Regression of one set of residuals against the other)

Model Displays for LOB1 and LOB3 for Calendar Years

Model for individual iota parameters

$$
\begin{array}{lll}
\hat{\imath}_{1} \sim N\left(\mu_{1},\right. & \left.\sigma_{1}^{2}\right) ; & \hat{\mu}_{1}=0.1194 ;
\end{array} \hat{\sigma}_{1}=0.0331
$$

$$
\binom{l_{1}}{t_{2}} \sim N(\boldsymbol{\mu}, \boldsymbol{\Sigma}), \quad \hat{\boldsymbol{\mu}}=\binom{0.1194}{0.0814}, \quad \hat{\boldsymbol{\Sigma}}=\left(\begin{array}{ll}
0.001097 & 0.000344 \\
0.000344 & 0.001027
\end{array}\right)
$$

$$
\rho=\operatorname{corr}\left(l_{1}, l_{2}\right), \quad \hat{\rho}=0.359013
$$

There are two types of correlations involved in calculations of reserve distributions.

Weighted Residual Correlations, that is process correlation between datasets:
0.359013 - is weighted residual correlation between datasets LOB1 and LOB3;

Correlations in parameter estimates:
0.324188 - is correlation between iota parameters in LOB1 and LOB3.

These two types of correlations induce correlations between triangle cells and within triangle cells. These induce reserve correlations between accident years, calendar years and aggregates.

Common iota parameter in both triangles

$$
\imath \sim N\left(\mu, \quad \sigma^{2}\right) ; \quad \hat{\mu}=0.0996 ; \quad \hat{\sigma}=0.0267
$$

Two effects:

Same parameter for each LOB increases correlations and CV of aggregates
Single parameter with lower CV reduces CV of aggregates

Forecasted reserve distributions by accident year, calendar year and total are correlated
\longleftrightarrow Indicates dependency through residuals’ and parameters’ correlations

Indicates dependency through parameter estimate correlations only

Dependency of aggregates in aggregate table

In each forecast cell and in aggregates by accident year and calendar year (and total)
$\operatorname{Var}($ Aggregate $) \gg \operatorname{Var}(\mathrm{LOB} 1)+\operatorname{Var}(\mathrm{LOB} 2)$.
Correlation between reserve distributions is 0.833812

Forecast tables- means and standard deviations

| Aggregate \|LOB 1:PLII) L LOB3:PLIII| | | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | | Accident Period vs Development I | | | | | |
| | Cal. Per. Total | 0 | 1 | 2 | 3 | 4 | |
| 1999 | 556,988 | 189,228 | 159,750 | 78,696 | 60,749 | 47,388 | 3 |
| | 528,693 | 185,925 | 145,365 | 79,106 | 69,145 | 58,323 | |
| 2000 | 589,958 | 210,160 | 200,323 | 100,868 | 77,243 | 59,794 | 5 |
| | 563,241 | 182,549 | 177,216 | 121,784 | 110,365 | 12,139 | |
| 2001 | 664,716 | 214,273 | 184,441 | 83,467 | 66,778 | 53,839 | 4 |
| | 583,994 | 157,342 | 159,261 | 77,836 | 13,890 | 11,695 | |
| 2002 | 650,118 | 169,078 | 157,737 | 77,789 | 60,160 | 47,013 | 3 |
| | 652,459 | 149,481 | 158,285 | 16,266 | 13,044 | 10,698 | |
| 2003 | 745,017 | 271,726 | 255,924 | 127,389 | 98,226 | 76,543 | 6 |
| | 655,937 | 152,377 | 55,024 | 28,026 | 22,533 | 18,488 | |
| | Total Fitted/Paid | | 2004 | 2005 | 2006 | 2007 | |
| $\begin{aligned} & \text { Cal. Per. } \\ & \text { Total } \\ & \hline \end{aligned}$ | 5,182,400 | | 577,384 | 373,171 | 281,102 | 209,809 | 15 |
| | 5,035,182 | | 70,955 | 47,090 | 40,275 | 34,059 | 2 |

Simulations from lognormals correlated within LOB and between LOBs to find distribution of aggregate of LOB 1 and LOB 3

Percentiles and V@R for aggregate based on explicit assumptions. Can also compute by calendar year and accident year

LOB 1 LOB 3:Composite DS:MPTF[0 ptimal-1]:Reserve PALD Summary						
Quantile Statistics and Value at						
\%	Sample			Kernel		
	Quantile	\# S.D.'s	V -a	Quantile	\# S.D.'s	V-a-R
99.995	2.848	4.509	1.01	2.925	4.85	1.08
99.99	2.767	4.148	0.929	2.855	4.543	1.018
99.98	2.766	4.145	0.929	2.781	4.2	0.944
99.97	2.714	3.914	0.87	2.746	4.05	0.909
99	2.693	3.818	0.855	2.721	3.945	0.884
99.95	2.668	3.710	0.83	2.702	3.859	0.865
99.94	2.662	3.682	0.825	2.686	3.789	0.84
99.93	2.653	3.641	0.816	2.673	3.730	0.836
99.92	2.642	3.591	0.80	2.661	3.678	0.824
99.91	2.638	3.574	0.801	2.651	3.633	0.814
99.9	2.622	3.503	0.785	2.642	3.592	0.805
99.8	2.562	3.236	0.725	2.581	3.319	0.744
99.7	2.531	3.098	0.694	2.544	3.153	0.706

Risk Capital Allocation by LOB based on variance covariance formulae

```
G LOB 1 LOB 3:Composite DS:MPTF[optimal-1]:Reserve Forecast Summaries
Aggregate [LOB 1:PLII| LOB3:PLII)|
```



```
    M,
        Correlations Standard Deviations | Corelations llogs) Capital Allocation |
    Totas
    \MAc._
\
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Capital Allocation (Totals)} \\
\hline & \% \\
\hline LOB 1:PL(I) & 37.63 \\
\hline LOB3:PL() & 62.37 \\
\hline
\end{tabular}
```

Risk Capital allocation by calendar year for the aggregate reserves of LOB1 and LOB3

SAD and SAM Two WC segments
Mack residuals for each. Note remaining structure and have no idea how these two segments maybe related

SAD and SAM- WC segments (PTF)
Removal of Development Yr trends only. Note accident year and calendar year similarities in trend structure. Have an immediate idea of how the segments maybe related

SAD and SAM- WC segments (PTF) Strong similarities in accident year trend structure

Gross and Net of Reinsurance
Weighted Residuals versus Calendar year. Note high process correlations (common drivers)

Is your outward reinsurance program optimal?
Model Displays- same trend structure. Have common
drivers. Net zero calendar year trend and gross
$6.81 \%+_1.27 \%$. Net has higher process variance!

Weighted Residual Covariances Between Datasets

	FAC ENG G:Paid Incremental	FAC ENG N:Paid Incremental
FAC ENG G:Paid Incremental	0.174511	0.174520
FAC ENG N:Paid Incremental	0.174520	0.248382

Weighted Residual Correlations Between Datasets

	FAC ENG G:Paid Incremental	FAC ENG N:Paid Incremental
FAC ENG G:Paid Incremental	1	0.838250
FAC ENG N:Paid Incremental	0.838250	1

Note CV of gross reserves < CV of net reserves Because Net data has higher process variance!!

2 Comp N\& G:Composite DS:MPTF[optimal-2]:Reserve Forecast S... |- |l| Aggregate FAC ENG G:Paid Incremental FAC ENG 2 :Paid Incremental \quad Aggregate | FAC ENG G:Paid Incremental FAC ENG N:Pail ${ }^{X_{X}(\%) \text { Differences }}$ Summary Graphs SI Summary Graphs

Accident Yr Summary

Aggregate \mid FAC ENG G:Paid Incremental
$x_{x}(\%)$ Differences

Accident Yr Summary

- Similar Structure
- Highly Correlated
- Surprise Finding!

CV of reserves limited to $\$ 1 \mathrm{M}$ is the same as CV of reserves limited to $\$ 2 \mathrm{M}$!

Model Display for All 1M: PL(I)

Model Display for All 2M: PL(I)

Note that All 1Mxs1M has zero inflation, and All 2M has lower inflation than All 1M, and distributions of parameters going forward are correlated

Residual displays vs calendar years show high correlations between three triangles

Compare Accident Year Summary

2]. Comparisons 1 Ace. Years	14 Sumanyy Gropht		Carentation and SDi		\| 目 Clunters
Accident Year Summary					
Acc. Year	Mean		Standard Dev.	cv	
	Reserve	Ultimat		Reserve	Unt
1985	0	48.940	0	0.00
1986	1,731	46.283	1.274	0.74	0.03
1987	4.268	57.25	2,312	0.54	0.04
1988	7.944	56.959	3.592	0.45	0.06
1989	8.4	.038	3.616	0.43	0.07
1990	21,169	70,392	7,486	0.35	0.11
1991	32,445	74,090	10.359	0.32	0.14
1992	47,7	89,314	14.284	0.30	0.16
1993	63.9	90,534	17.645	0.28	0.19
1994	79.474	97.967	19.623	0.25	0.20
1995	95.679	109.426	21.712	0.23	0.20
1996	112.626	118,155	23,938	0.21	0.20
1997	124,732	127.021	26.080	0.21	0.21
1998	135.287	1356.75	28,250	0.2	0.21
Total					
	735.192	1,171,112	84,443	0.11	0.07
		1 Unit $=$	\$1,000		

Consistent forecasts based on composite model.
If we compare forecast by accident year for Limited 1 M and limited $2 \mathrm{M} t$ is easy to see that CV is the same.

reon					
$\text { IT canemion } 1 \text { I }$		Sumasgy Geaphs	$\begin{aligned} & \square \text { Correlations and SDs } \\ & \text { Loss flatios } \end{aligned}$		$\left.\right\|_{\times \times 12} ^{1}$ Cunten
Accident Year Summary					
Ace. Year	Mean		Standard Dev.	cv	
	Reserve	Utrimate		Reserve	Ulimate
1985	0	48.940	0	0.00
1988	1,731	46,283	1,274	0.74	0.03
1987	4.268	57,281	2.312	0.54	0.04
1988	7.944	56.959	3.592	0.45	0.06
1989	8.439	49.038	3.166	0.43	0.07
1990	21.169	70.392	7.486	0.35	0.11
1991	32.145	74.080	10,359	0.32	0.14
1992	47.762	89,314	14.284	0.30	0.16
1993	63.937	90,534	17,445	0.28	0.19
1994	79,47	97.967	${ }^{19.623}$	0.25	0.20
1995	95.679	109, 226	21.712	0.23	0.20
1996	112,628	118,155	23,938	0.21	0.20
1997	124,732	127.021	26.080	0.21	0.21
1998	135,287	135,753	28,25	0.21	0.21
Total	735,192	1.171,112	84,43	0.11	0.07
		1 Unit $=$	\$1,000		

