Dirty Data Anathema to Best Estimates

Louise Francis Simon Sheaf

Casualty Loss Reserve Seminar Chicago 15 September 2009

Working Party Members

Robert Campbell
Louise Francis (chair)
Virginia R. Prevosto
Mark Rothwell
Simon Sheaf

Agenda

Context Literature Review Horror Stories Survey Experiment Actions Concluding remarks Questions and discussion

Agenda

Context Literature Review Horror Stories Survey Experiment Actions Concluding remarks Questions and discussion

Cost of Poor Data

Olson: 15% - 20% of operating profits Insurance Data Management Association (IDMA): Cost to US economy is \$600bn a year The IDMA believes that the true cost is higher than these figures reflect, as they do not allow for "opportunity costs of wasteful use of corporate assets."

PWC Survey

- Almost 50% of respondents did not believe that senior management placed enough importance on data quality
- Only 18% were very confident in the quality of data shared with third parties
- On average, respondents thought that data represented 37% of value of their companies
- Where data improvement initiatives were undertaken, significant returns on the investment are realized

Agenda

Context Literature Review Horror Stories Survey Experiment Actions Concluding remarks Questions and discussion

Literature Review

- The vast majority of the available literature on data quality is directed towards the IT industry
- However, the following sources of information are more actuary- or insurance-specific:
 - Actuarial Standard of Practice #23: Data Quality
 - Insurance Data Management Association (IDMA)
 - CAS White Paper on Data Quality
 - Data Management Educational Materials Working Party
 - Board for Actuarial Standards Exposure Draft: Data (UK)

Actuarial Standard of Practice #23

- The American standard for all practice areas developed by the Actuarial Standards Board
- Provides descriptive standards for:
 - selecting data
 - relying on data supplied by others
 - reviewing and using data
 - making disclosures about data quality
- http://www.actuarialstandardsboard.org/pdf/asops/asop023_097.pdf
- In the UK, the Board for Actuarial Standards is working on an actuarial standard on data

Insurance Data Management Association

- The IDMA is an American organisation which promotes professionalism in the Data Management discipline through education, certification and discussion forums
- The IDMA web site:
 - suggests publications on data quality
 - describes a data certification model
 - contains Data Management Value Propositions which document the value to various insurance industry stakeholders of investing in data quality

http://www.idma.org

CAS White Paper on Data Quality

- Developed by the Casualty Actuarial Society's Committee on Management Data and Information
- Provides guidelines to satisfy ASOP 23
- Describes a system of standardised procedures to insure the integrity of statistical data for personal automobile
- http://www.casact.org/pubs/forum/97wforum/97wf145.pdf

CAS Data Management Educational Materials Working Party

- Reviewed a shortlist of texts recommended by the IDMA for actuaries (9 in total)
- Publishing a review of each text in the CAS Actuarial Review (starting with the August 2006 issue)
- Combined the reviews into an actuarial introduction to data management
- This was published in the Winter 2007 CAS Forum
- Both the reviews and the final paper are available through www.casact.org

Literature Review Summary

- Standards are generally prescriptive but descriptive information is available
- www.idma.org and www.casact.org are good sources for more information, containing papers and other information in addition to those reviewed in the paper

Agenda

Context Literature Review Horror Stories Survey Experiment Actions Concluding remarks Questions and discussion

Horror Stories – Non-Insurance

- Heart-and-Lung Transplant Wrong blood type
- Bombing of Chinese Embassy in Belgrade
- Mars Orbiter Confusion between units of measurement
- Fidelity Mutual Fund Withdrawal of dividend
- Porter County, Illinois Tax bill and budget shortfall

Horror Stories – Madoff Fund - Fake Data

Madoff Fund -Real Return vs Fake Data

Madoff Fund - Descriptive Statistics for Various Assets

Asset	Mean	Std. Deviation	Skewness	Ν	
Balanced Fund	0.46%	2.84%	(0.89)	149	
Long Bond Fund	0.60%	2.40%	(0.36)	149	
S&P 100	0.31%	4.77%	(0.47)	149	
S&P 500	0.30%	4.61%	(0.70)	149	
Madoff Feeder Fund	0.75%	0.62%	1.01	149	
Note: Data from July, 1996 to Oct, 2008					

Horror Stories -Independent Insurance

- Independent Insurance collapsed in June 2001
- A year earlier, Independent's market valuation had reached £1bn
- Independent's collapse came after an attempt to raise £180m in fresh cash by issuing new shares failed because of revelations that the company faced unquantifiable losses
- The insurer had received claims from its customers that had not been entered into its accounting system, which contributed to the difficulty in estimating the company's liabilities

Horror Stories - Reserving

NAIC concerns over non-US country data Canadian federal regulator uncovered: inaccurate accident year allocation – double-counted IBNR – claims notified but not properly recorded Former US regulator – requirement for reconciliation exhibits in actuarial opinions motivated by belief that inaccurate data being used

Horror Stories – Rating/Pricing

Examples faced by ISO:

- Exposure recorded in units of \$10,000 instead of \$1,000
- Large insurer reporting personal auto data as miscellaneous and as a result it was omitted from ratemaking calculations

 One company reporting all its Florida property losses as fire (including in years when they had significant hurricane losses)

– Mismatched coding for policy and claims data

Horror Stories - Katrina

 US catastrophe models underestimated costs of Katrina by approximately 50% (Westfall, 2005)
 2004 RMS study highlighted exposure data that was:

- out-of-date
- incomplete
- mis-coded
- Many flood victims had no flood insurance after being told by brokers that they were not in flood risk areas

Possible Error in Assumptions: Do US House Prices Go Down?

Agenda

Context Literature Review Horror Stories Survey Experiment Actions Concluding remarks Questions and discussion

Survey of Actuaries

Purpose: Assess the impact of data quality issues on the work of general insurance actuaries

- Two questions:
 - What percentage of time is spent on data quality issues?
 - What proportion of projects are adversely affected by such issues?

Targeted Distribution

Members of the Working Party

- Members of CAS Committee on Management Data and Information
- Members of CAS Data Management and Information Educational Materials Working Party
- Working Party members each contacted a number of additional people
- This resulted in 76 responses

Results of Survey

Question 1: Percentage of Time Spent on Data Quality Issues

Employer	Number of Responses	Mean	Median	Minimum	Maximum
Insurer/Reinsurer	40	25.0%	20.0%	2.0%	75.0%
Consultancy	17	26.9%	25.0%	5.0%	75.0%
Other	17	29.6%	25.0%	1.0%	80.0%
All	74	26.5%	25.0%	1.0%	80.0%

Results of Survey

Question 2: Percentage of Projects Adversely Affected by Data Quality Issues

Employer	Number of Responses	Mean	Median	Minimum	Maximum
	^				
Insurer/Reinsurer	40	32.5%	20.0%	3.5%	100.0%
Consultancy	17	37.6%	30.0%	5.0%	100.0%
Other	17	35.4%	25.0%	1.0%	100.0%
All	74	34.3%	25.0%	1.0%	100.0%

Survey Conclusions

 Data quality issues have a significant impact on the work of general insurance actuaries:

 about a quarter of time is spent on such issues
 about a third of projects are adversely affected

 The impact varies widely between different

- actuaries, even those working in similar organizations
- Limited evidence to suggest that the impact is less significant for company actuaries

Agenda

Context Literature Review Horror Stories Survey Experiment Actions Concluding remarks Questions and discussion

Hypothesis

The uncertainty of actuarial claim reserve estimates based on poor quality data is significantly greater than those based on better quality data

Data Quality Experiment

Examine the impact of incomplete and/or erroneous data on the actuarial estimates of ultimate claims and claim reserves

 Use real data with simulated limitations and/or errors and observe the potential error in the actuarial estimates

Data Used in Experiment

Real data for primary private passenger bodily injury liability business for a single no-fault state
 18 accident years of fully developed data, so actual ultimate claims are known

Actuarial Methods Used

Paid claim methods

 Chain Ladder
 Bornhuetter-Ferguson
 Berquist-Sherman closing rate adjustment

 Incurred chain ladder method
 Inverse power curve for tail factors
 No judgment used in applying methods

Measure Impact of Data Quality

- Compared estimated and actual ultimate claims
- Used bootstrapping to evaluate the uncertainty of the results

Varying Quantity of Data

Varied completeness of the data

Three scenarios:

- use all accident years and diagonals
- use only 6 accident years
- use only last 3 diagonals

Estimated Ultimate Claims Based on Paid Claims

Estimated Ultimate Claims Based on Adjusted Paid Claims

Estimated Ultimate Claims Based on Incurred Claims

Results of Adjusting Quantity of Data

More data generally leads to better estimates

Introducing Data Errors

Six simulated data errors:

- Misclassification of losses by accident year
- Early years not available
- Late processing of financial information
- Paid losses replaced by crude estimates
- Overstatements followed by corrections in following period
- Definition of reported claims changed
- Applied first three errors individually and all six errors together

Estimated Ultimate Claims Based on Adjusted Paid Claims

Standard Errors for Adjusted Paid Claims Data

Results of Introducing Errors

Extreme volatility, especially those based on paid data

- Actuaries ability to recognise and account for data quality issues is critical
- Actuarial adjustments to the data may never fully correct for data quality issues

Distribution of Reserve Errors

Results of Bootstrapping

- Less dispersion in results for error free data
- Standard deviation of estimated ultimate claims is greater for the data with errors
- Confirms original hypothesis that errors increase the uncertainty of estimates

Experiment Conclusions

- Generally greater accuracy and less variability in actuarial estimates when:
 - quality data used
 - greater number of accident years used
- Data quality issues can erode or even reverse the benefits of increased volumes of data
 - If errors are significant, more data may worsen estimates due to the propagation of errors for certain projection methods
- Significant uncertainty in results when:
 - data is incomplete
 - data has errors

Agenda

Context Literature Review Horror Stories Survey Experiment Actions Concluding remarks Questions and discussion

Actions – What can we do?

Data quality advocacy
Data quality measurement
Management issues
Screening data

Data Quality Advocacy -Examples

The Casualty Actuarial Society:

- Data Management and Information Committee
- Data Management and Information Education Materials Working Party

Data Quality Measurement Ideas

Quantify traditional aspects of quality data such as accuracy, consistency, uniqueness, timeliness and completeness using a score assigned by an expert

- Measure the consequences of data quality problems
 - measure the number of times in a sample that data quality issues cause errors in analyses, and

- the severity of those errors

Use measurement to motivate improvement

Management Issues

Redman : Manage Information Chain

- Establish management responsibilities
- Describe information flow
- Understand customer needs
- Establish measurement system
- Establish control and check performance
- Identify improvement opportunities
- Make improvements

Management Issues

Data supplier management

- Let suppliers know what you want
- Provide feedback to suppliers
- Balance the following:
 - Known issues with supplier
 - Importance to the business
 - Supplier willingness to experiment together
 - Ease of meeting face to face

Screening Data – Box and Whisker Plot

Box and Whisker Plot by Category - Age by Injury

Box and Whisker Plot with Outlier

Screening Data – Histogram

Screening Data – Bar Plot by Category

Screening Data -Descriptive Statistics

	N	Minimum	Maximum	Mean	Std. Deviation
License Year	30,250	490	2,049	1,990	16.3
Valid N	30,250				

Multivariate Methods

$$\mathbf{MD} = (\mathbf{x} - \boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\mathbf{x} - \boldsymbol{\mu})$$

x is a vector of variables

- $\boldsymbol{\mu}$ is a vector of means
- Σ is a variance-covariance matrix

MD is Mahalanobis Distance

Agenda

Context Literature Review Horror Stories Survey Experiment Actions Concluding remarks Questions and discussion

Conclusions

- Anecdotal horror stories illustrate possible dramatic impact of data quality problems
- Data quality survey suggests data quality issues have a significant cost on actuarial work
- Data quality experiment shows data quality issues have significant effect on accuracy of results

Conclusions

- The Working Party believes that insurers should devote more time and resources to increasing the accuracy and completeness of their data by improving their practices for collecting and handling data
- In particular, insurers would benefit from the investment of increased senior management time in this area
- By taking such action, they could improve both their profitability and their efficiency.

Questions and Discussion

The paper can be found at: www.casact.org/pubs/forum/08wforum/Dirty_Data.pdf

Louise Francis Francis Analytics +215 923 1567 Iouise-francis@msm.com Simon Sheaf Grant Thornton UK LLP +44 20 7728 3280 simon.h.sheaf@gtuk.com