Evaluating Risk Transfer: The Bootstrap Model And Other Techniques

Susan J. Forray, FCAS, MAAA susan.forray@milliman.com 262.796.3328 Casualty Loss Reserve Seminar September 15, 2009

Outline

- Loss Distribution
 - Parameterized
 - Loss Ratio
 - Frequency/severity
 - Bootstrap Model
- Bootstrap Model
 - Reserve Variability
 - Prospective (i.e., Risk Transfer) Application
- Examples
- Considerations in Selection of Loss Distribution
- Other Applications
- Questions

Loss Distribution

- Parameterized Loss Ratio
 - E.g., lognormal
 - Most common method
- Parameterized Frequency/Severity
 - Frequency: Poisson, binomial, negative binomial, normal, etc.
 - Severity: Lognormal, gamma, inverse Gaussian, etc.
 - Typically developed on a ground-up basis
- Bootstrap model
 - Used frequently for
 - Reserve variability
 - Capital modeling, etc.
 - Can also provide a prospective loss distribution

Bootstrap Model

- Main application is reserve variability
 - Usually a retrospective model
 - Can be prospective
- Basis of model
 - Uses entire triangle
 - Calculates "scaled Pearson residual" for each accident year/ development period
 - Assumption is that these are independent and identically distributed
 - Residuals then used to simulate triangle "as it could have been"

Bootstrap Model (cont.)

- Versions of model
 - Original based on paid chain ladder only (given in England/Verrall paper)
 - Multiple papers since then (England/Verrall, Pinheiro, etc.)
 - More sophisticated models now exist
 - Incurred chain ladder
 - Bornhuetter-Ferguson
 - Paid and incurred
 - Uses lognormal or other distribution for a priori
 - Cape Cod
 - Can weight methods together
 - Multiple lines of business correlated, etc.
- Typical uses
 - Reserve distribution
 - Capital requirements

Example 1

- Proposed Reinsurance Treaty
 - Per occurrence excess of loss
 - No swing rating, corridors, etc.
- Parameter Method Assumptions
 - Discounted ceded loss ratio lognormally distributed
 - Mean of 75%
 - CV of 0.3

EXPECTED REINSURER DEFICIT			
Cumulative	Discounted	Discounted	Reinsurer
Probability	Loss Ratio	Profit / (Loss)	Deficit
90%	104.6%	-4.6%	4.6%
91%	106.5%	-6.5%	6.5%
92%	108.5%	-8.5%	8.5%
93%	110.8%	-10.8%	10.8%
94%	113.4%	-13.4%	13.4%
95%	116.4%	-16.4%	16.4%
96%	120.1%	-20.1%	20.1%
97%	124.8%	-24.8%	24.8%
98%	131.3%	-31.3%	31.3%
99%	142.2%	-42.2%	42.2%
Avg of Above	XXX	XXX	1.8%
Expected Value	XXX	XXX	2.2%

- Average of scenario reinsurer deficits
 - Will understate expected value
 - If sufficient points are included, will approximate the expectation
- Expected Reinsurer Deficit
 - Under parameterized distribution, can be calculated directly from parameters
 - E.g., lognormal:
 - ERD = exp(μ + $\sigma^2/2$) x $\Phi[(\mu + \sigma^2) / \sigma] \Phi(\mu / \sigma^2)$

Example 1 – Parameter Assumptions

- Mean
 - Developed from cedant data
- Coefficient of Variation
 - Developed loss ratios will typically understate this
 - Inherently "expected value" estimates
 - Small sample
 - Includes volatility due in part to market forces (could overstate CV)

Bootstrap Model Requirements

- Minimum
 - Paid triangle
- Also helpful
 - Incurred triangle
 - Premium/exposure
 - A Priori loss distribution (for Bornhuetter-Ferguson)
 - Loss trends / on-level factors (for Cape Cod)

Bootstrap Model Variance

- Parameter Variance
 - "Recreates" paid/incurred triangles as they could have been
 - Develops unpaids from these using standard development methods
 - Chain ladder
 - Bornhuetter-Ferguson
 - Cape Cod
- Process Variance
 - Simulates incremental unpaids
 - Typically uses Gamma (proxy for overdispersed Poisson)
 - Lognormal, etc. also an option

Bootstrap Model Variance (cont.)

14

Example 1 – Cumulative Distributions

Example 2

- Proposed Reinsurance Treaty
 - Per occurrence excess of loss (as Example 1)
 - Aggregate deductible of \$20,000,000
 - Aggregate limit of \$40,000,000
 - Ceded premium of \$25 million (half of Example 1)
 - Other assumptions the same

Example 2 – Effect on Distribution

Example 2 – Cumulative Distribution

Example 2 – Expected Reinsurer Deficit

Example 2 – Bootstrap Model

- Triangles of paid/incurred losses
 - Historical years restated under proposed treaty terms
 - Losses stated prior to aggregates
 - Include parameter & process variance in all triangle cells
- Resulting distribution
 - Gross of aggregate deductible/limit
 - Can adjust each simulated loss scenario for these

Example 3 – Aggregate Excess

22

Example 4 – Quota Share Reinsurance

Estimated Loss Ratio

Considerations in Selection of Loss Distribution

- Parameterized loss ratio distribution
 - May be the simplest formulaically
 - Difficult to estimate variance
- Compound frequency/severity distribution
 - May be easier to estimate variance for these components
 - Computationally more time-consuming
 - May require simulation
- Bootstrap model
 - Requires historical data
 - Does not require variance or correlation assumptions
 - May require working with numerous simulated scenarios
 - May allow parameter estimation for parameterized distributions

What If There's No Risk Transfer?

- To Account For As Reinsurance
 - Aggregate Cover
 - Increase aggregate limit
 - Decrease aggregate deductible
 - Decrease ceded premium
 - Quota Share
 - Increase loss ratio cap
 - Decrease ceded premium at higher percentiles
 - Greater provisional ceding commission
 - Lesser swing range
 - Use Deposit Accounting
 - Only option if treaty already in effect

A Note on Other Applications

- Reserving for aggregate deductibles / limits
 - Example:
 - Per occurrence excess of loss treaty
 - Developed accident year losses of \$45 million
 - \$50 million aggregate limit
 - IBNR indications
 - Judgmental provision, e.g.:
 - 30% likelihood of losses exceeding aggregate
 - \$10 million expected value loss in excess of aggregate (if exceeded)
 - Implies \$3 million increase in net reserve
 - Parameterized distribution
 - Should incorporate data to date
 - Bootstrap model
 - Losses would most likely be stated gross of aggregate limit

Questions

Susan Forray, FCAS, MAAA

Consulting Actuary

susan.forray@milliman.com

262.796.3328