

Overview

- Session is based on two call papers Detailed description of model and how to go about fitting it in MS Excel using Visual Basic
Bootstrapping GLMs for Development Triangles using Deviance Residuals
- Algorithm for rescaling deviance residuals and case study of bootstrapping with Pearson residuals vs bootstrapping with deviance residuals
\qquad

Objectives
Understand issues encountered when fitting a regression model to an incomplete development triangle
Understand nature of bootstrapping
Understand some practical limitations encountered when bootstrap based on residual resampling is employed

Fitting a GLM to Incomplete

 Development Triangles- Outline of presentation

Description of the model
Issues encountered when dealing with incomplete triangles
Quick introduction to graph theory
What can be learned about the model for a particular
development triangle

Description of the model

Multiplicative factorial GLM for incremental development amounts (using exposure and development period parameters)
Reserve projection based on out-of-sample projection of future incremental development amounts
Fit is accomplished using pseudo-likelihood framework - i.e. model is specified by choice of variance function
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Description of the model

- Multiplicative GLM $\Rightarrow \log$ link function

Factorial model \Rightarrow discrete parameters

- Out-of-sample projection \Rightarrow we fit a regression model to past development amounts
Pseudo-likelihood \Rightarrow fitting procedure only depends on second moment assumptions

Issues with incomplete triangles

- Not enough data points for all parameters

γ	$\gamma+\beta_{2}$	$\gamma+\beta_{3}$	X	$\gamma+\beta_{5}$
$\gamma+\alpha_{2}$	$\gamma+\alpha_{2}+\beta_{2}$	$\gamma+\alpha_{2}+\beta_{3}$	X	
$\gamma+\alpha_{3}$	$\gamma+\alpha_{3}+\beta_{2}$	$\gamma+\alpha_{3}+\beta_{3}$		
$\gamma+\alpha_{4}$	$\gamma+\alpha_{4}+\beta_{2}$			
$\gamma+\alpha_{5}$				

\qquad
\qquad
\qquad

\qquad

Quick intro to graph theory
A graph is a collection of NODES which are pair-wise connected by EDGES

Quick intro to graph theory

- Maximal connected components

A, B, D, E \& F
C, $\mathrm{G} \& \mathrm{H}$

Quick intro to graph theory

- Development triangles as graphs:

All cells in a row are pair-wise connected
All cells in a column are pair-wise connected

\qquad

Quick intro to graph theory
Breadth first search for triangles
Start with all included cells untested
Pick one cell to start with

-

- 0
-
-

Quick intro to graph theory

- Breadth first search for triangles (step 3) Mark all cells in column of first untested cell with component counter and column tested flag

Quick intro to graph theory

Breadth first search for triangles (step 5)
Loop over column tested cells: mark cell as done and mark other cells in row as row tested

$\bigcirc \bigcirc$ (1)
$\bigcirc \bigcirc$
$\bigcirc \bigcirc$
*

Quick intro to graph theory
Breadth first search for triangles (step 5)
Loop over column tested cells: mark cell as done and mark other cells in row as row tested

Quick intro to graph theory

- Breadth first search for triangles (step 5)

Loop over column tested cells: mark cell as done and mark other cells in row as row tested

Quick intro to graph theory

- Breadth first search for triangles (step 5)

Loop over column tested cells: mark cell as done and mark other cells in row as row tested

\qquad
\qquad
\qquad

Quick intro to graph theory
Breadth first search for triangles (step 5)
Loop over column tested cells: mark cell as done and mark other cells in row as row tested

Quick intro to graph theory

- Breadth first search for triangles (step 6)

Loop over row tested cells: mark cell as done and mark other cells in column as column tested

Quick intro to graph theory

Breadth first search for triangles (step 6)
Loop over row tested cells: mark cell as done and mark other cells in column as column tested

\qquad

Quick intro to graph theory
Breadth first search for triangles (step 6)
Loop over row tested cells: mark cell as done and mark other cells in column as column tested

Quick intro to graph theory

- Breadth first search for triangles (step 6)

Loop over row tested cells: mark cell as done and mark other cells in column as column tested

Quick intro to graph theory

- Breadth first search for triangles (step 5)

Loop over column tested cells: mark cell as done and mark other cells in row as row tested

\qquad

Quick intro to graph theory
Breadth first search for triangles (step 3)
Mark all cells in column of first untested cell with component counter and column tested flag

Quick intro to graph theory

- Breadth first search for triangles (step 5)

Loop over column tested cells: mark cell as done and mark other cells in row as row tested

Quick intro to graph theory

- Breadth first search for triangles (step 5)

Loop over column tested cells: mark cell as done and mark other cells in row as row tested

0	0	\oplus	\oplus	\oplus
0	0	\oplus	\oplus	
0	0	\oplus		
\oplus	(2)			
(1)				

Quick intro to graph theory

- Breadth first search for triangles (step 5)

Loop over column tested cells: mark cell as done and mark other cells in row as row tested

0	0	Π	Π	Π
0	0	Π	Π	
0	0	Π		
4	(2)			
4				

Quick intro to graph theory

- Breadth first search for triangles (step 6) Loop over row tested cells: mark cell as done and mark other cells in column as column tested

\circ	0	\oplus	\oplus	\oplus
0	0	\oplus	\oplus	
0	0	\oplus		
\oplus	\oplus			
\oplus				

We can use the Breadth First algorithm to find the maximal connected components of an incomplete development triangle \Rightarrow Projecting future development amounts is only possible within the row and column range of each maximal connected component
For each connected component we can also analyze what each cell contributes to our knowledge of the inherent variability
\qquad
\qquad
\qquad
\qquad

\qquad

What do we learn?

- Single parameter cells and critical connector cells are exact fit cells $\Rightarrow \underline{\text { no information about }}$ variability for these cells
Fit for connected components of regression cells is independent of what is going on in rest of triangle \Rightarrow can be used to split regression fit into isolated subcomponents (if there are any critical connector cells)

What else is in the call paper?

Section 3 covers how to fit a GLM using MS Excel based Visual Basic code

- Section 4 covers how to calculate and plot standardized residuals
Spreadsheet with illustrative implementation of algorithms discussed in call paper is available from author at request
\qquad

Illustrative spreadsheet

- Input 10×10 triangle
- Select data points to include in model
- Analyze graph topology of incomplete triangle
- Choose variance function
- Fit GLM to incomplete triangle
- Study standardized residual plots

Bootstrap range of reserve outcomes using Pearson residuals of Deviance residuals

Bootstrapping GLMs for Development Triangles using Deviance Residuals

Not covered in presentation: Newton-Raphson algorithm for rescaling deviance residuals based on identity variance function
Covered in presentation: case study of bootstrapping with Pearson residuals vs bootstrapping with deviance residuals

Bootstrapping GLMs for Development Triangles using Deviance Residuals

- Outline of presentation
- What is bootstrapping?

Linear rescaling with Pearson residuals
Non-linear rescaling with Deviance residuals
Demonstration I: negative resampling values
Demonstration II: non-linear rescaling not possible
What do we learn?
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

What is bootstrapping?

- Approximates the distribution of a function that depends on sampled data
- Assumes that data is randomly distributed according to specified stochastic model
- Uses observed error structure to approximate random distributions of model

Any distributions derived are conditional on
specified stochastic model being correct

Bootstrapping and Stochastic Reserving

- Reserves are a function of development triangle
- Get bootstrap distribution of reserve estimates by repeatedly resampling triangle
- Above only gives parameter uncertainty
- To approximate distribution of reserve outcomes we also need process error
- Can approximate process error using the same resampling procedure used for triangle

Bootstrapping and Heteroscedasticity

- Use resampling of standardized residuals to adjust for non-constant error structure
- Multiple definitions for residuals available
- Residual rescaling is the inverse process of residual standardization
Want to approximate distributions of data points \Rightarrow resampling distributions should be consistent with stochastic model assumptions
\qquad

Rescaling Pearson Residuals

Definition residuals:

$$
r_{\mathrm{p}}=\frac{y-\hat{\mathrm{y}}}{\sqrt{\mathrm{~V}(\hat{\mathrm{y}})}}
$$

Definition resampling distribution:

$$
y_{p}^{\prime}=\hat{y}+\sqrt{v(\hat{y}) \cdot s}
$$

Rescaling Pearson Residuals

Rescaling Pearson Residuals

- Resampling distribution - fitted mean of 67,948 (values below mean only)

\qquad

Rescaling Deviance Residuals
- Definition residuals (identity variance function):
$r_{\mathrm{D}}=\operatorname{sign}(y-\hat{\mathrm{y}}) \cdot \sqrt{2(y \cdot \log (y / \hat{\mathrm{y}})-y+\hat{\mathrm{y}})}$
- Definition resampling distribution:
- No closed form expression available
- Substitute s for r_{D} in above equation and numerically
solve for y
- Need slight correction to make sure model
assumption about variance function is satisfied

Rescaling Deviance Residuals

- Resampling distribution - fitted mean of 185,586

Rescaling Deviance Residuals

Resampling distribution - fitted mean of 67,948

\qquad

Rescaling Deviance Residuals

Resampling distribution - fitted mean of 67,948 (values below mean only)

Demonstration I

- Negative resampling values

Top right cell is only cell for which we get a negative resampling value
Can directly compare bootstrapping results with Pearson and deviance residuals for model excluding top right cell
Bootstrapping with deviance residuals is also possible for model including top right cell

Demonstration I

Bootstrapping results excluding top right corner Pearson residuals (10,000 iterations)

$\left.\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|c} \\ \text { Period } \end{array} \right\rvert\,$	$\substack{\text { Modeled } \\ \text { Reserve }}$	$\xrightarrow{\text { Bootstap }}$ Projecion	Stime	$\xrightarrow{\substack{\text { Standard } \\ \text { Pred. Eror }}}$	5\%-ile Sim utcome	95\%-ile Sim Outcome
${ }_{2}^{1}$						
3	596,051	${ }^{603,398}$	595,127	${ }^{166,522}$	(254,940)	38
${ }_{5}^{4}$	${ }^{498,753}$		498,789	${ }_{\text {l }}^{1355,273}$		
${ }_{5}$	1,123					
${ }_{7}$	${ }_{\text {2,610,534 }}^{1}$	2,640,194	${ }^{2,612,849}$	${ }_{4}^{302,758}$	(613,245)	(1) ${ }^{86}$
8	4,127,3,	4,164,901	4,132,367	586,	(892,087)	
9	4,956,065	4,990,267	4,959,138	${ }_{801,618}$	(1,232,	1,417,929
年tal	${ }^{\frac{5}{20,087,731,34}}$	${ }^{5,160,1,854}$	- ${ }^{\text {L,082,032 }}$ 20,027			${ }^{2,510,119} 4.6$

\qquad

Demonstration I

Bootstrapping results excluding top right corner Deviance residuals (10,000 iterations)

Demonstration I

Bootstrapping results including top right corner Deviance residuals (10,000 iterations)

\qquad

Demonstration II

- Difference to previous example: the two data points in column 6 excluded for demo I
- Minimum value for fitted values is 67,948
- Lower bound for deviance residuals is therefore $-368.64=(2 * 67,948)^{0.5}$ [derived in paper]
- Unscaled deviance residual of -530.16 for cell $(3,6)$ is below this bound [equation 3.7 in paper]
- Unable to rescale residual

What do we learn?

- Limited scope of "distribution free" resampling
- Reconsider parametric bootstrapping

Makes distributional assumptions
Avoids inconsistencies with model
Still captures correlations among parameter estimates that are difficult to calculate explicitly

- Further research into "robust" resampling schemes is required

Contact Information

Spreadsheet with illustrative implementation of algorithms discussed in call papers is available from author at request

- thomas.hartl@us.pwc.com
- 617-530-7524
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

