
Given iidru sequence $X_{1}, ., X_{n}$ with CDF F, we want to estimate the
distribution of distribution of $\begin{aligned} & \\ & M_{n}\end{aligned}=\max \left\{X_{1}, \ldots, X_{n}\right\}$
The observations usually represent values of a process measured at
regular intervals, so that M_{n} regular intervals, so that M_{n}
represents the maximum of the process over n time units.
We would like to apply the eyan

$$
\operatorname{Pr}\left\{M_{n} \leq z\right\}=\{F(z)\}^{n}
$$

- Since we don't know F, we look for approximations that can be estimated based upon extreme value analog of the central limit theory.
\qquad
\qquad

\qquad
\qquad

Generalized Pareto Distribution
(1) Let X represent an arbitrary term in the iidry sequence $X_{1}, X_{2}, \ldots, 1$ with common CDF F, and assume that F satisfies the Extrema Types Theorem. Let $M_{n}=\max \left\{X_{1}, \ldots, X_{n}\right\}$
Then for large $n, \operatorname{Pr}\{M \approx z\} \approx G(z)$
where $G(z ; \mu \sigma, \xi)$ is a member of the Generalized Extreme Value (GEV) Family of Distributions.
(2) Then for large enough u , the distribution of $\mathrm{Y}=\mathrm{X}-\mathrm{u}$ is approximately
$H(y)=1-\left(1+\frac{\xi y)}{\tilde{\sigma}}\right)$
and is defined on $\{y: y>0$ and $(1+\xi y / \sigma)>0\}$ where
and is defined on $\{y: y>0$ and $(1+\xi y / \sigma)>0\}$ where
$\tilde{\sigma}=\sigma+\xi(u-\mu) \quad$ Parameters are function of GEV parameters $\mathrm{H}(\mathrm{y})$ is known as Generalized Pareto family of distributions (GPD). Conclusion: If block maxima have approximate $G E V$ distribution G, then threshold excesses have an approximate distribution within
Generalized Pareto family H with the same shape parameter 5 . Generalized Pareto family H with the same shape parameter ξ

Generalized Pareto Properties
The GPD is bounded only for negative values of ξ
The GPD is bounded only for negative values of ς
The GPD model for trieshold excesses is equivalent to the
familiar Shifted Pareto
$H(y)=1-\left(\frac{\theta}{y+\theta}\right)^{\alpha}$ where $\theta=\tilde{\sigma} \alpha$ and $\alpha=1 / \xi$
The mean of a GPD distribution $H(y ; \tilde{\sigma}, s)$ is
$E(Y)=\frac{\tilde{\sigma}}{1-\xi}(\xi<1)$

- $E(y)$ is a linear function of u. If the GPD is valid for excesses of threshold ψ, then it should be equally valid for all thresholds
$u>u_{0}$ with adjustment to the scale parameter $\tilde{\sigma}$ $u>u_{0}$ with adjustment to the scale parameter $\tilde{\sigma}$ The plot of (u, average claim excess of u), called the mean residual
life plot, should be linear in u above a threshold u_{0} at which the GPD is a valid approximation to the excess distribution.

Threshold Selection for GPD

(1) Select the smallest threshold u_{0} above which the graph of the
mean residual plot is approximately linear. mean residual plot is approximately linea
(2) Given a sequence of iidr's. fit GPD to losses excess of various
relatively high thresholds. Let $\tilde{\sigma}_{\sigma}$ represent the GPD scale parameter for a threshold $u>u_{u}$ represent the GPD scale parameter for a threst
$\tilde{\sigma}_{u}=\tilde{\sigma}_{u_{0}}+\xi\left(u-u_{0}\right)$ and so estimates of $\sigma^{*}=\tilde{\sigma}_{u}-\xi u=\tilde{t}_{4}-\xi u_{0}$ and ξ should be
constant above u_{0} of u_{0} is a valid threshhold for excesses constant aboves u_{o} if
codel
modeled by the GPD.
This suggests plotting both estimates of
This suggests ploting both estimates of
os and
of agains for which the estimates selecting semain nearly constant.

(1) Assume a GPD is a suitable model for the excess of a variable X
above a threshold u . For $x>\mathrm{u}$,
$P\{X>x \mid X>u\}=\left(1+\frac{\xi(x-u)}{\tilde{\sigma}}\right)^{-1}$
Then $P\{X>x\}=\zeta_{u}\left(1+\frac{\xi(x-u)}{\tilde{\sigma}}\right)^{-1 / \xi}$ where $\zeta_{u}=P\{X>u\}$ Then $P\{X>x\}=\zeta_{u}\left(1+\frac{\tilde{\sigma}}{\tilde{n}}\right)$ where $\zeta_{u}=P\{X>$
(2) If X_{m} is the level that is exceeded on average once every m (2) If x_{m} is the level that is exceeded on average once
observations, then

$$
x_{m}=u+\frac{\sigma}{\xi}\left[\left(m \zeta_{u}\right)^{\xi}-1\right]
$$

provided that m is sufficientily large so that $X_{m}>u$ and $\xi \neq 0$
(3) If $\xi=0$ then $X_{m}=u+\tilde{\sigma} \log (m, m)$ (3)If $\xi=0$ then $x_{m}=u+\tilde{\tilde{\sigma}} \log \left(m \zeta_{u}\right)$
(4)f there are n, observations per year and
(4)f there are n, observations per year and you want the N-year return
evel then compute the m-observation return level where
$m=N * n$ Ievel, then compute the m-observation return level where $\quad m=N * n_{y}$,
(5) The sample proportion of observations exceeding uis the MLE for 5

\square	\square	
\square	\square	
\square	\square	
\square	\square	\square
\square	\square	\square

$$
\begin{aligned}
& \text { within } k \text { observations is } \\
& \left.r_{k}=P\{L(u) \leq k]\right\}=1-(1-p)^{4} \\
& r^{2}
\end{aligned}
$$ probabily tha i wil occur before 1,000 years is approximaiely 65%.

\qquad

