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1. Introduction

Reserve by definition is management’s best 
point estimate of future liability

A weighted average of various reserve 
methods is often used to reach a point estimate

The weights are subjective and from actuarial 
judgment

Sometimes, the weight selections are 
arbitrary
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1. Introduction

Why statistical weights?
Reduce reserve variability and projection 

errors
Objectivity and clarity
Easier to explain
Complement and supplement actuarial 

judgments
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1. Introduction

Three sources of projection errors
Process risks due to the random nature of claim 

generation, reporting, and settlement
Parameter risks due to small sample of data
Model risks due to unknown underlying models or 

distributions
Weighted average reduces parameter and model 

risks through diversification
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1. Introduction

Jing, Lebens and Lowe (2009) 
Minimize variance of error distribution
Pioneer the study of statistical weights

This study extends their work
Introduces a bias term into the optimization
Allows the weights to vary by accident years 
Adds practical constraints, such as non-negative 

weights and decreasing B-F weights with age  



7

2. Methodology

To minimize mean-square projection error (MSE)
Classical performance measure of a statistical 

estimation
Two components of MSE: a bias term and a 

variance term
The variance term can be further decomposed 

into a process variance and an estimation variance
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2. Methodology

Mean-square error
If 

reserve estimate has an even chance to be 0.9 
and 1.1, 
the future liability has an even chance to be 0.85 
and 1.25, 
and the correlation between reserve estimate 
and future liability is 0.25 

then: 
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2. Methodology

Ultimate Projection Errors
Cannot be observed till many years later
Estimable by development age

CLDF is not observable, but can be estimated by 
multiplying LDFs from each development year

Similarly, Ultimate projection errors can be 
estimated by adding projection errors of incremental 
losses from each development year
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2. Methodology

Out-of-sample projection to avoid over-fitting

Use only the historical data before a point of time to predict the 
future loss at that point of time

If we use 3.195 as LDF, it is not out-of-sample projection.
3.195=(102929+95725+95302+73097)/(33663+29222+30192+22077)

AY DY1 DY2 DY3 DY4 DY5

1 33,663 102,929 148,601 169,559 181,455

2 29,222 95,725 139,421 162,819

3 30,192 95,302 135,137

4 22,077 73,907

5 22,719
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2. Methodology

Projection Error Estimation: loss development

LDF1-2= 3.158=(102929+95725+95302)/(33663+29222+30192)
Projected incremental loss=22077*(3.158-1)=47647
Absolute projection error at DY2 =(73,907-22077)-47647=4184
Relative error=4184/EP=1.95%

AY DY1 DY2 DY3 DY4 DY5

1 33,663 102,929 148,601 169,559 181,455

2 29,222 95,725 139,421 162,819

3 30,192 95,302 135,137

4 22,077 73,907

5 22,719
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2. Methodology

Projection Error Estimation: BF

Projected incremental Loss at DY2=EP*LR*(1/CLDF2-1/CLDF1)=49110
CLDF1=5.893; CLDF2=1.866; LR=65%; 
Absolute error at DY2 =(73907-22077)-49110=2720
Relative error=4184/EP=1.32%

AY DY1 DY2 DY3 DY4 DY5

1 33,663 102,929 148,601 169,559 181,455

2 29,222 95,725 139,421 162,819

3 30,192 95,302 135,137

4 22,077 73,907

5 22,719
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2. Methodology

Theoretical framework
Notations
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2. Methodology

Theoretical framework (cont’d)
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2. Methodology
Theoretical framework (cont’d)
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2. Methodology
Theoretical framework (cont’d)
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3. Parameter Risk Mitigation

Parameter risk: many parameters (bias and var-cov 
terms) to be estimated with small triangular data

The underlying sample size of claims used to 
construct the triangle is very credible

To mitigate parameter risk, we propose a few 
sampling techniques to recreate many pseudo 
triangles, each representing a possible and reasonable 
realization of losses
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3. Parameter Risk Mitigation
Resampling technique could be used to mitigate 

parameter risk and improve the credibility on parameter 
estimation.

Bootstrapping (resampling with replacement): randomly pick 
1/n of policies to construct a triangle, and repeat it n time.

Randomization (resampling without replacement): randomly 
split data into n groups, and construct n triangles

Stratified bootstrapping
Stratified Randomization

Resampling technique requires data at policy and 
claim level.
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3. Parameter Risk Mitigation
Random LDF Selections

Using immediate past three observations, we will only 
have one error for cell (AY4, DY2)

Relaxing out-of-time projection, we can have 10 
errors for cell (AY4, DY2),    

AY DY1 DY2

1 33,663 102,929

2 29,222 95,725

3 30,192 95,302

4 22,077 73,907

5 22,719 74,457

6 18,424 61,632
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4. Case Study

Data for study
14-year paid and incurred loss triangles of liability 

of private passenger auto
Reasons for auto liability data

A relatively long-tail line compared to property 
lines

A commonly used line in reserve literature
A relative stable line so that the result is 

relatively robust
Data is resampled and scaled to block proprietary 

information 
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4. Case Study
Paid and incurred triangles

Age-to-age link raitos
Weighted 3-year LDF
Cumulative LDF (CLDF)
Incomplete ratios (1-1/CLDF)

AY DY 1 to 2 DY 2 to 3 DY 3 to 4 DY 4 to 5
1 3.058 1.444 1.141 1.070
2 3.276 1.456 1.168 1.067
… … … … …
10 3.680 1.504 1.215 1.092
11 3.365 1.544 1.226
12 3.621 1.407
13 3.118

3-year LDF 3.366 1.478 1.216 1.085
CLDF 6.886 2.046 1.384 1.138

Incomplete Ratio 85.5% 51.1% 27.8% 12.1%

Paid loss triangle
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4. Case Study
Chain-ladder and B-F Ultimate Loss Projections

The expected loss ratio in the B-F method for a 
specific AY usually varies by time.

For simplicity, we use expected LR when it first 
appeared.  

AY EP B-F LR
4 244,050,443 67.4%
5 235,873,906 65.3%
6 229,066,664 63.3%
7 214,159,547 59.7%
8 206,333,044 58.5%
9 198,979,451 58.3%
10 231,228,078 58.7%
11 279,796,492 58.6%
12 318,455,838 58.5%
13 321,007,995 57.9%
14 312,647,327 56.8%

Earned Premium and Expected LR
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4. Case Study
Out-of-sample loss development factors

When calculating the LDFs, only the information 
available before the point of time is used. 

This guarantees “true projections” of the LDFs.

AY DY 1 to 2 DY 2 to 3 DY 3 to 4 DY 4 to 5
1 0.929 1.051 0.994 0.998
2 0.870 1.050 1.018 1.007
3 0.866 1.069 1.022 1.000
4 0.811 1.073 1.006 1.005
5 0.875 1.114 1.013 1.004
6 0.838 1.102 1.025 0.992
7 0.866 1.107 1.019 1.004
8 0.980 1.112 1.026 1.005
9 1.038 1.126 1.014 1.004

10 1.063 1.089 1.034 1.023
11 0.946 1.137 1.022
12 0.989 1.077
13 0.982

Out-of-sample LDFs for Incurred  triangle
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4. Case Study
Projection error

B-F projection error as % of premium using paid triangle
AY DY2 DY3 DY4 DY5
4 3.4% -0.3% -0.3% 0.7%
… … … … …
10 -3.0% 0.3% -1.4% -1.3%
11 0.4% -0.1% -1.0%
12 -3.1% 1.8%
13 1.8%

Average Bias 0.4% 0.0% -0.5% -0.2%

Variance-covariance matrix at DY2

Method Covariance Correlation
IL CL IL B-F PD CL PD B-F IL CL IL B-F PD CL PD B-F

IL CL 0.001916 0.001993 0.000312 0.000537 1.000 0.996 0.320 0.521
IL B-F 0.001993 0.002090 0.000325 0.000499 0.996 1.000 0.319 0.464
PD CL 0.000312 0.000325 0.000497 0.000213 0.320 0.319 1.000 0.406
PD B-F 0.000537 0.000499 0.000213 0.000555 0.521 0.464 0.406 1.000
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4. Case Study

Variance, covariance, and correlation
Variances of incurred-loss projections at DY2 are 

much higher than those of paid-loss projections. 
Variances of projection errors decrease as age 

matures. 
The correlations between the chain-ladder and B-F 

methods increase with age. 
Study primarily focuses on relatively young accident 

years.
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4. Case Study
Practical considerations 

Ultimate loss projections from four models are very 
close for third prior year and before.

Coefficients of variation of four projections are all 
less than 1%. 

The weights before 3rd prior AY are not important.
Only calculate statistical weights for the latest 3 

accident years.
The bias and variance after DY5 are ignored 

because their impacts are not material.
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4. Case Study

Subjective factors
Subjective selections – “intervention points”
Determination of bias

Actuary’s judgment based on knowledge and 
statistical/actuarial analysis. 

Determination of variance-covariance matrix
Rationale based on historical claim practice 

Constraints
Therefore, statistical weights are not “purely 

statistical”.
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4. Case Study

Optimization setup
Two sets of weights

Zero biases: minimizing the variance of error 
distribution 

Sample averages are used as bias estimates.
Variance-covariance matrices 

No actuarial interventions
Directly calculated from sample data

Constraints
Force decreasing B-F weights with age for 

both paid and incurred triangles
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4. Case Study

Statistical weights for the latest AY only
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Method Paid C-L Paid B-F Incurred C-L Incurred B-F

Weight 31.6% 59.7% 0.0% 8.7%
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4. Case Study
Statistical weights assuming zero biases

The weights on B-F methods decrease as age 
matures (built-in feature of the optimization).

AY Paid Incurred

Chain-ladder B-F Chain-ladder B-F

14 31.7% 61.7% 0.0% 6.6%

13 0.0% 55.0% 38.4% 6.6%

12 42.6% 0.0% 57.4% 0.0%
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4. Case Study

Statistical weights with biases

AY Paid Incurred

Chain-ladder B-F Chain-ladder B-F

14 13.4% 86.6% 0.0% 0.0%

13 0.0% 62.9% 37.1% 0.0%

12 0.0% 0.0% 100.0% 0.0%
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4. Case Study

Findings for this specific case
B-F is given more weight than chain-ladder in the 

less mature accident years. 
The weights on incurred triangle are much smaller 

than those on paid triangle because of the changes in 
setting case reserve.

Weight on chain-ladder increases for relatively 
mature years. 

Biases may impact the weight calculation 
significantly: the weight on Paid B-F on the latest 
accident year increases --- paid B-F has the lowest 
biases.
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5. Discussion and Conclusions

A statistical method on the weights would 
complement and supplement reserve actuaries’
experience.

Weights (or method) selection in practice is an art 
and science. 

Our work extends previous research from two 
perspectives: introduction of a bias term and practical 
constraints. 

This study is not to replace the actuarial judgment on 
weights with statistical estimations, but to provide 
actuaries a statistical tool to make better decisions 
when assigning the weights. 
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