Performance Testing

A Control Cycle Approach to Managing Reserve Risk

2010 CLRS Concurrent Session ST-7 Stephen Lowe and Yi Jing

September 21, 2010

© 2010 Towers Watson. All rights reserved.

Today's agenda

- Defining the problem
- Performance testing and the actuarial control cycle
- Case studies real-world results

This presentation is based on the paper

Claim Reserving: Performance Testing and the Control Cycle

- by Yi Jing, Joseph Lebens, and Stephen Lowe
- Published in Variance (2009 V3 I2), available at www.variancejournal.org

Questions for the reserving actuary

- How do you know that the methods you are currently using are the "best"?
 - What evidence supports your selection of methods?
 - What are the right weights for combining the results of the methods?
 - How do you decide when to change methods?
 - What is the confidence range around estimates from each method?
 - How do you evaluate the cost/benefit of developing new input data sources or implementing more complex methods?
- How do you measure and manage reserve risk?
 - How do you avoid overconfidence in the work of "unseasoned" actuaries?

The results of our research illustrate the prevalence of actuarial overconfidence

2004 Confidence Quiz in Emphasis

Note: Based on 374 respondents as of 4/5/04. Profile of respondents: 86% work in P/C industry; 73% are actuaries.

7

Reserves are forecasts!

- An actuarial method is used to produce a forecast of future claim payments
- An actuarial method consists of
 - An algorithm
 - A data set
 - A set of intervention points
- The actuary must
 - 1. Choose a finite set of methods $\{m_1, m_2, ..., m_n\}$ from the universe M
 - 2. Choose a set of weights $\{w_1, w_2, ..., w_n\}$ to combine the results of each method together
- Performance testing, via a formal control cycle, can help the actuary make these choices in a rigorous manner

$$\hat{L}_m^{(t)} = m(a, d, p)$$
$$L^{(t)} = m(a, d, p) + \varepsilon_m$$

Formally testing alternative methods yields some interesting and counterintuitive results

- Sometimes projecting case reserves is the best method
- Methods that use claim counts and averages outperform
- Methods that formally adjust for changing claim settlement rates or changing case reserve adequacy can produce better estimates
- The degree of correlation between methods is an important consideration in selecting methods, and weights used to combine them
- Hindsight errors are larger than those predicted by some stochastic methods

An aside: Case outstanding development

 Case reserve development factors inferred from selected paid and reported development factors

	12-24	24-36	36-48	48-60	60-72	72-84	84-96	96-108	108-120
Paid ATA Developmen Factors	4.000	2.000	1.650	1.350	1.180	1.080	1.030	1.010	1.000
Cumulative Development Factors	23.625	5.906	2.953	1.790	1.326	1.124	1.040	1.010	1.000
Percent Unpaid	95.8%	83.1%	66.1%	44.1%	24.6%	11.0%	3.9%	1.0%	0.0%
Reported ATA Developmen Factors	1.960	1.380	1.240	1.150	1.070	1.024	1.009	1.003	1.000
Cumulative Development Factors	4.277	2.182	1.581	1.275	1.109	1.036	1.012	1.003	1.000
Percent Unreported	76.6%	54.2%	36.8%	21.6%	9.8%	3.5%	1.2%	0.3%	0.0%
Percent in Case Reserves	19.1%	28.9%	29.4%	22.5%	14.8%	7.5%	2.7%	0.7%	0.0%
Case Reserve Development Factor	5.001	2.875	2.251	1.957	1.665	1.468	1.443	1.433	nm

Predicted Anomalv Prediction Error

Actual Anomaly

Performance testing yields a formal measure of skill

- The skill of a method is measured by: $Skill_m = 1 mse_m/msa$
 - mse = mean squared error
 - msa = mean squared anomaly
- Skill is the proportion of variance "explained" by the method

Performance testing of reserving methods can be part of an institutionalized control cycle

The Actuarial Control Cycle for the Reserving Process Embedding Reserve Risk Management

Formal Performance Testing

- Are the current methods appropriate? Would changes to methods improve estimation skill?
- Are the data and other input accurate and sufficient? Would improvements or expansion of data improve estimation skill?
- Are there opportunities to improve process flow?
- Are emerging estimation errors within tolerances?

Reserving Process Elements

- Data used
- Actuarial methods employed
- Operational input
- Judgments and intervention points
- Process flow and timeline
- Quality assurance process

12

Case Studies

- US Personal Auto Liability
 - 1. Skill of chain-ladder methods
 - 2. Selecting optimal weighting between methods
 - 3. Validating a stochastic reserving model
- Selecting development factors
 - 4. US Personal Auto Liability
 - 5. US Other Liability Occurrence

State Farm – Personal Auto Liability – Schedule P Data

Accident											
Year	1	2	3	4	5	6	7	8	9	10	11+
1983	1,240	978	424	220	110	61	32	20	11	7	15
1984	1,437	1,164	523	269	143	80	44	27	15	8	18
1985	1,647	1,384	618	355	184	92	54	27	13	8	13
1986					_					8	13
1987	His	torical	estimat	tes wer	re mad	e at nii	neteen	prior y	/ear-	9	13
1988	enc	ls and	compa	ared wit	th actu	al run-	off to n	neasur	e skill	7	9
1989	Che	is, and	compe					iicasai		10	17
1990	- Foi	ir moth	ode we	oro toot	od					12	19
1991	• Four methods were tested							10	24 10		
1992	Paid chain ladder (\$-weighted latest eight)							10	10 27		
1993								13	27 42		
1995	 Reported chain ladder (\$-weighted latest eight) 							15	33		
1996								14	35		
1997	 Case outstanding chain ladder (inferred case development 							16	41		
1998	derived from payment and reporting patterns)								17	36	
1999							, , , ,			22	
2000	• V	Veighted	d averag	ge of ab	ove three	ee meth	nods, us	sing indi	cated		
2001	0	ptimal v	veiahts				·	U			
2002	Ũ		ronginto								
2003											
2004	5,234	3,215	1,385	876	485						
2005	5,168	3,171	1,433	863							
2006	5,174	3,213	1,453								
2007	5,303 5,465	J,4∠T									

Paid Claim Development Data (in \$ millions)

Summary of performance test results over nineteen-year hindsight test period

Observed skill varies by method and maturity

• Note that skill can be negative (e.g., paid method at 36 months), implying that the method induces volatility rather than explaining it

Indicated optimal weights by maturity reflect variances and correlations of errors

@ 24 months	Paid	Reported	Case OS	Std Dev	Weights
Paid CL	100%	33%	-6%	1.84%	.321
Reported CL		100%	92%	1.44%	.679
Case OS CL			100%	2.65%	.000

@ 84 months	Paid	Reported	Case OS	Std Dev	Weights
Paid CL	100%	85%	28%	.23%	.000
Reported CL		100%	74%	.13%	.349
Case OS CL			100%	.12%	.651

Results can be used to validate stochastic reserving models

Methods for selecting age to age (ATA) loss development factors

Simple Average	$\overline{ATA} = \frac{\sum_{i=1}^{n} ATA_i}{n}$	
Maximum Likelihood	$MLE = e^{\hat{\mu} + \hat{\sigma}^2/2}$, assume lognor	nal distribution
	$\hat{\mu} = \frac{\sum_{i=1}^{n} \log(ATA_i)}{n}$	$\hat{\sigma}^2 = \frac{\sum_{i=1}^n (\log(ATA_i) - \hat{\mu})^2}{n}$
Volume- Weighted Average	$\overline{ATA} = \frac{\sum_{i=1}^{n} L_{2,i}}{\sum_{i=1}^{n} L_{1,i}}$	
Latest Observation	$\overline{ATA} = ATA_n$	Which method is best? — What is the best value of n?

US Personal Auto Liability

Actual paid ATA development factors from 12 to 24 months

Sample calculations of ATA factor predictive skill

Accident	12 to 2	24 ATA Fac	ctors	Anomalies			Errors		
Year	Actual	WA-7	MLE-7	Actual	WA-7	MLE-7	WA-7	MLE-7	
1990	1.856	1.876	1.864	0.164	0.184	0.172	0.020	0.008	
1991	1.841	1.879	1.874	0.149	0.187	0.182	0.038	0.033	
1992	1.818	1.878	1.879	0.126	0.186	0.187	0.060	0.061	
1993	1.804	1.870	1.875	0.112	0.178	0.183	0.066	0.071	
1994	1.756	1.858	1.866	0.064	0.166	0.174	0.102	0.110	
1995	1.707	1.834	1.844	0.015	0.142	0.152	0.127	0.137	
1996	1.685	1.802	1.811	(0.007)	0.110	0.119	0.117	0.126	
1997	1.682	1.773	1.781	(0.010)	0.081	0.089	0.091	0.099	
1998	1.658	1.749	1.756	(0.034)	0.057	0.064	0.091	0.098	
1999	1.669	1.726	1.730	(0.023)	0.034	0.038	0.057	0.061	
2000	1.689	1.707	1.708	(0.003)	0.015	0.016	0.018	0.019	
2001	1.656	1.692	1.692	(0.036)	(0.000)	(0.000)	0.036	0.036	
2002	1.607	1.677	1.678	(0.085)	(0.015)	(0.014)	0.070	0.071	
2003	1.603	1.661	1.664	(0.089)	(0.031)	(0.028)	0.058	0.061	
2004	1.614	1.649	1.652	(0.078)	(0.043)	(0.040)	0.035	0.038	
2005	1.614	1.640	1.642	(0.078)	(0.052)	(0.050)	0.026	0.028	
2006	1.621	1.634	1.636	(0.071)	(0.058)	(0.056)	0.013	0.015	
2007	1.638	1.628	1.629	(0.054)	(0.064)	(0.063)	(0.010)	(0.009)	
2008	1.636	1.622	1.622	(0.056)	(0.070)	(0.070)	(0.014)	(0.014)	
Average =	1.692	1.745	1.748						
_	Bias =	3.1%	3.3%						
			MSA =	0.006		MSE =	0.004	0.005	
						Skill =	33.5%	24.7%	

© 2010 Towers Watson. All rights reserved. Proprietary and Confidential. For Towers Watson and Towers Watson client use only. 21

Lack of volatility, coupled with trend in ATA factors, causes long-term averages to have low skill

- Simple average of latest 7 factors is slow to respond to trend in factors
 - Predictive skill of simple average of latest 7 is 24%; very poor fit to pattern of anomalies
 - Predictive skill of simply using latest 1 observation is 90%; most of variation is explained

US Personal Auto Liability

Actual reported ATA development factors from 12 to 24 months

Summary of measured skill for ATA selection methods

US Personal Auto Liability

12 to 24 months paid and reported development factors

ATA Selection Method	Paid Skill	Reported Skill	_
Simple Average – Latest 1	89.5%	33.4%	
Simple Average – Latest 2	79.8%	20.9%	
Simple Average – Latest 3	70.2%	12.5%	
Simple Average – Latest 7	24.4%	-25.8%	When using 7
Weighted Average – Latest 7	33.5%	-15.6%	<pre> Observations, weighted average head high parts hill </pre>
Maximum Likelihood – Latest 7	24.7%	-25.8%	better than MLE

US Other Liability Occurrence

Actual paid ATA development factors from 12 to 24 months

US Other Liability Occurrence

Actual reported ATA development factors from 12 to 24 months

Summary of measured skill for ATA selection methods

US Other Liability Occurrence

12 to 24 months paid and reported development factors

ATA Selection Method	Paid Skill	Reported Skill	
Simple Average – Latest 3	-63.7%	14.7%	
Simple Average – Latest 6	-37.7%	14.0%	When using 7
Simple Average – Latest 7	-29.9%	11.2%	observations,
Weighted Average – Latest 7	-35.2%	9.9%	has <i>lowest</i> skill, MI E about the
Maximum Likelihood – Latest 7	-28.8%	11.1%	same as simple

Good reasons to do performance testing

- 1. Opportunity to improve accuracy of estimates
- 2. Formal rationale for selected actuarial methods
- 3. Input to development of reserve ranges
- 4. Cost / benefit of enhancements to data and systems
- 5. Supports Solvency II / Economic Capital
 - Embeds reserve risk management
 - Empirical validation of stochastic reserve risk models
- 6. Manage actuarial overconfidence