Mack Model

파씬man

Mack Model

Mack developed a distribution-free method for computing the variances of chain ladder age-to-age and age-to-ultimate factors

- The method is applied to weighted average development factors
(-6) While no distribution assumptions are required to estimate factor variances, they are needed to compute percentiles of ultimate loss and reserve distributions

Page II. 2 One Beacon.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Chain Ladder Assumptions

\qquad
$[1] E[c(w, d+1) \mid c(w, 1), \ldots, c(w, d)]=c(w, d) F(d)$
$[2]\{c(i, 1), \ldots, c(i, n)\} \&\{c(j, 1), \ldots, c(j, n)\}$
are independent for $\mathbf{i} \neq \mathrm{j}$
[3] $\operatorname{Var}[\mathrm{c}(\mathrm{w}, \mathrm{d}+1) \mid \mathrm{c}(\mathrm{w}, 1), \ldots, \mathrm{c}(\mathrm{w}, \mathrm{d})]=\alpha_{\mathrm{d}}{ }^{2} \sigma^{2}-$ or $\operatorname{Var}[\mathrm{c}(\mathrm{w}, \mathrm{d}+1) / \mathrm{c}(\mathrm{w}, \mathrm{d}) \mid$ Data $]=\alpha_{\mathrm{d}}{ }^{2} / \mathrm{c}(\mathrm{w}, \mathrm{d})$ for proportionality constants α
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Variance of a Development Age

- Since the mean is weighted, the variance is \qquad also weighted:
- Variance associated with one age-to-age factor or column of losses, σ_{d}^{2} :
\qquad
\qquad
\qquad
\qquad

Exercises using Mack Data

- Compute age-to-age factor triangle for the \qquad exercise data
- Compute the weighted average age-toaverage factors for each column
- Compute the weighted variances for age 1 for the factors in the exercise triangle \qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
- H miliman
Page 11.7 OneBeacon \qquad

Mack Age-to-Age Variance

- The estimated variance of the ultimate for \qquad accident year w is the M.S.E. of the ultimate for the accident year \qquad
- The estimate of the variance of the reserve for each year $w\left[R(w, n)=R_{w}=c(w, n)-c(w, d)\right]$ equals the estimated variance of the ultimate
- Note (w, d) (the diagonal losses) are constants and makes no contribution to the variance

Page II. 8
one Bearon
\qquad
\qquad
\qquad
\qquad
\qquad

Mack Variance of a Row (AY)

\qquad

- The Mack formula for the variance of the reserve estimate for accident year w is:

Process Variance (variance of the column of observed development factors)

Page II. 9
Parameter Variance (variance of the calculated weighted average development factor)

Onebeacon.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Exercise

\qquad
\qquad

- Compute the standard error for 1984
- Compute σ_{d}^{2} for ages 2 through 4 for the exercise data (use minimum of $2 \& 3$ for 4)
- Assume age 5 is the ultimate valuation. \qquad
\qquad
\qquad
Hy miliman
Page II. 11 OneBeacon
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mack Total Variance

- The total reserve is the sum of the reserve random variable for each accident year

$$
R_{t o}=R_{l}+R_{2}+\ldots+R_{w}+\ldots+R_{N}
$$

- The variance of a sum equals the sum of the variances plus twice the covariances

Page II. 13
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mack Total Variance

- The Mack formula for the variance of the \qquad total reserve estimate is:
\qquad
바씬man
Page II. 14 Oneseacon \qquad

Calculation Pointers

\qquad

- It is easiest to set up a set of triangles to perform the \qquad calculations
Create a triangle of weighted (by $d(w, d)$) squared deviations \qquad of development factors from their mean
- Create a row of column sums of cumulative losses \qquad (excluding the diagonal)
Create a projected runoff triangle that computes each estimate of cumulative losses, (w, d), for all future periods
- Create a triangle of inverses of projected runoff plus inverse of sum of cumulative losses
\qquad
\qquad
-rumbiman \qquad

Using Mack Parameters

- We have a mean and a variance for reserve amounts. \qquad Now what?
- Assumptions must be made to derive confidence \qquad intervals or probability distributions (Mack recommends lognormal, can use others) \qquad
- Use mean and variance of reserve amounts to derive method-of-moments parameters for a distribution \qquad
- Use this distribution to estimate percentiles and other statistics for reserve amounts \qquad
\qquad

Group Exercise

- Compute the variance of the total reserve amount using the Mack data
- Assume total reserve amount follows a \qquad lognormal distribution and compute the parameters $\mu \& \sigma$. Compute the $75^{\text {th }}$ percentile \qquad of the reserve (IBNR) amount.

Refer to Mack Model workbook for results
\qquad
\qquad

Page II. 17
\qquad
\qquad
\qquad

Open issues

\qquad

- Covariance term for the oldest year \qquad
- Multiply ultimate for year by

1. Sum of ultimates for all subsequent years \qquad
2. Times the factor variance $\left(\sigma_{d}^{2}\right)$ for last age-to-age factor 3. Divide by square of last age-to-age factor

- For Other years, need a sum of the ratio computed \qquad in 2 and 3
a Tail Factors? Recursion formula is useful
\qquad
- Assumption testing \qquad
mimiliman \qquad

Testing Assumption 1

${ }_{[1]} \mathrm{E}[\mathrm{c}(\mathrm{w}, \mathrm{d}+1) \mid \mathrm{c}(\mathrm{w}, 1), \ldots, \mathrm{c}(\mathrm{w}, \mathrm{d})]=\mathrm{c}(\mathrm{w}, \mathrm{d}) \mathrm{F}(\mathrm{d})$
\qquad

- Graph two consecutive cumulative \qquad development periods.
- Does it look like a linear relationship? \qquad
- Does it look like the intercept is zero?
- Fit a regression of the form

$$
\mathrm{c}(\mathrm{w}, \mathrm{~d}+1)=\alpha+\beta \mathrm{c}(\mathrm{w}, \mathrm{~d})
$$

Test α for statistical significance
\qquad
\qquad
\qquad

Testing Assumption 2

[2] $\{\mathrm{c}(\mathrm{i}, 1), \ldots, \mathrm{c}(\mathrm{i}, \mathrm{n})\} \&\{\mathrm{c}(\mathrm{j}, 1), \ldots, \mathrm{c}(\mathrm{j}, \mathrm{n})\}$ are independent for $\mathrm{i} \neq \mathrm{j}$

- Calculate correlation coefficients (matrix) between all accident years
- Test correlations for statistical significance:

$$
t(n-2)=\rho\left[\frac{(n-2)}{1-\rho^{2}}\right]^{1 / 2}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Testing Assumption 2 (cont) \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
Hyylliman
Page II. 23 One Beacon.
\qquad

Testing Assumption 3

${ }_{[3]} \operatorname{Var}[\mathrm{c}(\mathrm{w}, \mathrm{d}+1) \mid \mathrm{c}(\mathrm{w}, 1), \ldots, \mathrm{c}(\mathrm{w}, \mathrm{d})]=\alpha_{\mathrm{w}}{ }^{2} \sigma^{2}$ for unknown proportionality constants α
\qquad
\qquad
\qquad

- Graph weighted residuals v . cumulative losses $[\mathrm{c}(\mathrm{w}, \mathrm{d}+1)-\mathrm{c}(\mathrm{w}, \mathrm{d}) \mathrm{F}(\mathrm{d})] / \mathrm{c}(\mathrm{w}, \mathrm{d})^{1 / 2} \mathrm{v} . \mathrm{c}(\mathrm{w}, \mathrm{d})$
\qquad
\qquad
\qquad 파 Milliman Pasell24 onemearon \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

