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Expected vs Actual Distribution

* Test distributions of:
e Number of claims (frequency)
e Size of ultimate loss (severity)

® Sources of significant difference between actual and
expected amounts:

e Programming or communication errors

e Not understanding how statistical language
(e.g. “R”) works.

e Errors or misleading results in “R”.
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Display Raw Simulator Output

® Claims file

Simulation | Occurrence | Claim Accident
No No No Date Report Date | Line Type
1 1 1| 20000104 20000227 1 1
1 2 1| 20000105 20000818 1 1
® Transactions file
Simulation | Occurrence | Claim Trans- Case
No No No Date action Reserve | Payment
1 1 1| 20000227 | REP 2000 0
1 1 1| 20000413 | RES 89412 0
1 1 1| 20000417 | CLS -91412 141531
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Another use for Testing information

® Create Ultimate Loss File for Analysis — Layout

Si[[r;:)l:]la Oﬂ:;:g Claim | Accident. | Report. Line | Tvoe Case. Pay-
No. No No Date Date YP Reserve | ment

* |dea: Another use for this section of paper

e If an insurer can summarize its own claim data to this format,
then it can use the tests we will discuss to parameterize the
Simulator using its data.

e We have included in this paper all the “R” code used in testing.
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Emphasis in the Paper

®* Document the “R” code used in performing various tests.

® Provide references for those who want to explore the
modeling more deeply.

® Provide visual as well as formal tests
e QQPlots, histograms, densities, etc.
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Test 1 — Frequency, Zero-Modification, Trend

* Model parameters:
e # Occurrences ~ Poisson (mean = 120 per year)
e 1,000 simulations
e One claim per occurrence
e Frequency Trend 2% per year, three accident years
e Pr[Claim is Type 1] = 75%; Pr[Type 2] =25%
e Pr[CNP(“Closed No payment”)] = 40%
e “Type” and “Status” independent.

e Status is a category variable for whether a claim is closed with
payment.

* Test output to see if its distribution is consistent with
assumptions.
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Test 1 — Classical Chi-square

Contingency Table

Actual Counts Expected Counts

Type 1 Type 2 Margin Type 1 Type 2 Margin
CNP 111,066 | 37,007 0.398906 cNp | 111,029.0 |37,044.0 |0.398906
CWP 167,268 | 55,857 0.601094 cwp | 167,305.0 |55,820.0 |0.601094

0.749826 | 0.250174 | 371,198 0.749826 | 0.250174 | 371,198
Margin

Actual. — Expected. )’

XZ = ZZ( J J =0.0819

]

Expected;

Pr [X?>0.0819 ] = 0.775. The independence of Type and

Status is supported.
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Test 1 — Regression approach

® Previous result can be obtained using xtabs command in “R”

® Result can also be obtained using Poisson GLM

e Full model:

model6x<- glm(count ~ Type + Status + Type*Status,
data = temp.datacc.stack, family = poisson, x=T)

e Reduced model:

model5x<- glm(count ~ Type + Status ,
data = temp.datacc.stack, family = poisson, x=T)

* Independence obtains if the interactive variable Type*Status is
not significant.
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Test 1 — Analysis of variance

* anova( model5x, model6x, test="Chi'™)
Analysis of Deviance Table
Response: count
Terms Resid. DFf Resid. Dev
1 + Type + Status 143997
2 Type + Status + Type * Status 143996

Deviance Pr(Chr)

1
2 0.0819088429 0.774727081

* Result matches the previous X Test.

Test DF
160969 .366
160969.284 +Type:Status 1

* We did not show here the model coefficients, which will produce the
expected frequency for each combination of Type and Status.
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Test 2 — Univariate size of loss

®* Model parameters:
e Three lines — no correlation in frequency by line
e # Claims for each line ~ Poisson (mean = 600 per year)
e Two accident years, 100 simulations
e Size of loss distributions
e Line1l-lognormal
e Line 2 —Pareto
e Line 3 -- Weibull
e Zero trend in frequency and size of loss.

* Expected count = 600 (freq) x 100 (# sims) x 3 (lines) x 2 (years) = 360,000.
® Actual # claims: 359,819.
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Size of loss — testing strategy

® Person doing testing # Person running simulation.
® Test all three distributions on each line’s output.

® Produce plots to “get a feel” for distributions.

® Fit using maximum likelihood estimation.

* Produce QQ (quantile-quantile) plots

® Run formal goodness-of-fit tests.

J. Marker, LSMWP, CLRS 11



Size of loss — Histograms and p.d.f.
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Size of loss — Histograms and p.d.f.
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Size of loss

® The plots above compare:
e Histogram of empirical distribution

e Density of the theoretical distribution with m.l.e.
parameters

® The plots show that both Weibull and Pareto fit Lines 2 and 3
well.

* QQ plots offer another perspective.
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Size of loss — QQ Plots

* Example of “R” code to produce a QQ Plot

thqua.w2 <-
rweibull(n2,shape=fit.w2%estimate[1],scale=fit.w2%estimate[2])

generate a random sample same size n2 as empirical data
qgplot(ultloss2, thqua.w2,xlab="Sample Quantiles",
ylab=""Theoretical Quantiles', main="Line 2, Weibull')

ultloss2 is empirical data, thqua.w2 is the generated sample
abline(0,1,col="red*)

® One can also replace the sample with the quantiles of the
theoretical Weibull c.d.f.
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Size of Loss — QQ Plot, Line 1

Line 1, Lognormal
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Size of Loss — QQ Plot,

Line 2, Pareto
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Size of Loss — QQ Plot, Line 3.

Line 3, Pareto
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Size of Loss — Fitted distributions

®* From QQ Plots, it appears that lognormal fits Line 1, Pareto fits
Line 2, and Weibull fits Line 3.

® Chi-square is a formal goodness-of-fit test. Section 6 discusses
setting up the test for Pareto on Line 2. Appendix B contains
“R” code for all the chi-square tests.

* Komogorov-Smirnov test was applied also, but too late to
include results in this presentation.
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- Size of Loss — Chi-square g.o.f. test

Setting up bins and the expected and actual # claims by bin is not easy in R.

Define break points and bins:

s = sqrt(var(ultloss2))
ult2.cut <- cut(ultloss2.0, ##binning data
breaks = c¢(0,m-s/2,m,m+s/4,m+s/2,m+s,m+2*s ,2*max(ultloss2)))
Note: ultloss?.0 is vector of loss sizes, m = mean

The table of expected and observed values by bin:

1 E.2 2 X.sq-2

#[1,] 43993.890 44087 0.19705959 Notes:

#[2,] 35651.989 35680 0.02200752 E.2 expected number
#[3,] 10493.758 10323 2.77864169 0.2 actual number

#[4,] 7240.583 7269 0.11152721 Xx.s8q.2 Chi-sq statistic

#[5,] 9277.383 9164 1.38570182
#[6,] 8063.576 8176 1.56743997
#[7,] 5289.820 5312 0.09299630
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Size of Loss — Chi-square g.o0.f. test

* Execute the Chi-Square test

df=length(E.2)-1-2 ## degrees of freedom Result= 4
chi.sq.2 <- sum(x.sq-2) ## test statistic Result = 6.155374
qchisq(.95,d¥f) ## critical value Result = 9.487729
1-pchisq(chi.sqg.2,df) ## p-value Result = 0.1878414

* Important — degrees of freedom = 4, not 6, because the two
parameters for expected distribution were determined from
m.l.e. on the data rather than from a predetermined
distribution.

® Using the chi-squared test in R directly would produce a wrong

p-value:
chisg.-test(0.2,p=E-.2/n2.0)

This test uses degrees of freedom =6
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Correlation

* Model allows correlated variables in two ways:
e Frequencies among lines.
e Report lag and size of loss.

* We tested the correlation feature for frequency by line.

e To do this, first specify the parameters for Poisson or negative binomial
frequency by line.

e Then specify correlation matrix and the copula that links the univariate
frequency distributions to the multivariate distribution.

* The correlation testing helped the programmer determine how the
copula statements from “R” actually work in the model.

J. Marker, LSMWP, CLRS
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Correlation — simulation parameters

® Simulator was run 7/20/2010 with parameters:
e Three lines
e Annual frequency by line is Poisson with mean 96.
e One accident year.
e 1,000 simulations
e Gaussian (normal) copula
e Frequency correlation matrix:

Line 1 0.99
Line 2 0 1 -0.01
Line 3 0.99 -0.01 1
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Correlation — data used

® The annual number of claims were summarized by simulation
and line to a file “D:/LSMWP/byyear.csv”.

® Visualize this data:

(simeJ(I);\tlion)
1 114 95 117

2 89 85 90
99 103 78 101
100 96 106 99
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Correlation — Fitting data

* Detail of statistical testing for correlation is in section 6.2.3 and
Appendix B of the paper.

* Data was fit to normal copula using both m.l.e. and inversion
of Kendall’s tau, using all 1,000 observations, and then
goodness of fit tests were applied to each pair of lines.

® Scatter-plot of

Line.3

Line 1 and
Line 3 data

00 02 04 06 08 1.0

0.0 0.2 04 0.6 0.8 1.0

Line.1
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Correlation — estimated correlation from data

® Details of maximum likelihood estimate of correlations

Estimate Std. Error z value Pr(|z])
Rho(line 1 & 2) -0.002112605 0.031977597 -0.06606516 0.9473259
Rho(line 1 & 3) 0.979258746 0.000921392 1062.80366235 0.0000000
Rho(line 2 & 3) -0.010486832 0.031974114 -0.32797880 0.7429277

* Example of statements used for first “rho” above:

normal2.cop <- normalCopula(c(0),dim=2,dispstr="un"")
gofCopula(normal2.cop, x12, N=100, method = "mpl')
Note: Xx12 Is a dataset without Iline 3 observations.
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Correlation — goodness of fit

®* The empirical copula and hypothesized copula are compared
under the null hypothesis that they are from the same copula.
Cramér-von-Mises (“CvM”) statistic S, is used.

® Goodness of fit test runs very slowly, so each pair of lines were
compared using only the first 100 simulations.

* The two-sample Kolmogorov-Smirnov test was performed.
This compared the empirical distribution with a random
sample from the hypothesized distribution.
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Correlation — g.o.f. results

® Line 1&2
e Parameter estimate(s): -0.002100962
e Cramer-von Mises statistic: 0.0203318 with p-value 0.4009901

o
® Line 1&3
e Parameter estimate(s): 0.97926
e Cramer-von Mises statistic: 0.007494245 with p-value 0.3811881
o
® Line 2&3

e Parameter estimate(s): -0.01049841
e Cramer-von Mises statistic: 0.01614539 with p-value 0.5891089
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Final Thoughts on Testing

* Initial tests were simple because we were also checking
the mechanics of the model.

* There are many more features of the model to explore
and to test.

* The testing statements can also be applied to
parameterize the model using an insurer’s data.

* The tests described only test ultimate distributions,
not the loss development patterns.
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