How to estimate Risk Margins under IFRS

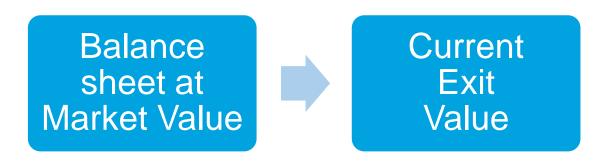
Jessica Leong, FIAA, FCAS, MAAA Lead Casualty Specialty Actuary Jessica.Leong@guycarp.com

1. Overview

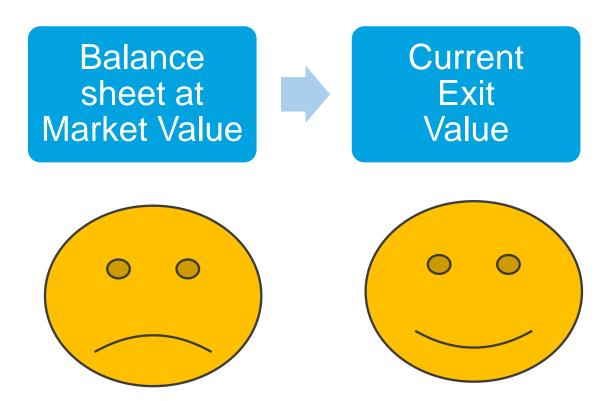
- 2. Three methods to estimate Risk Margins
- 3. IFRS and Solvency II
- 4. Etc

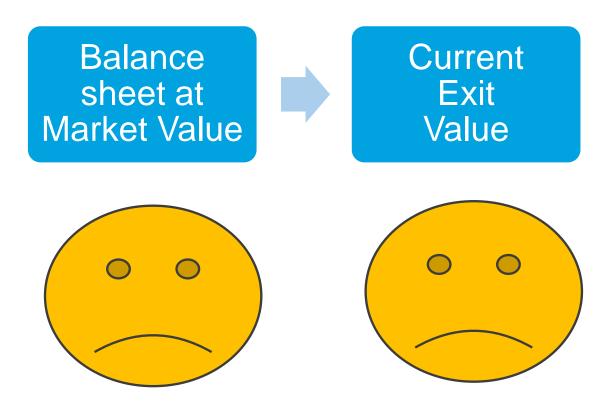
1. Overview

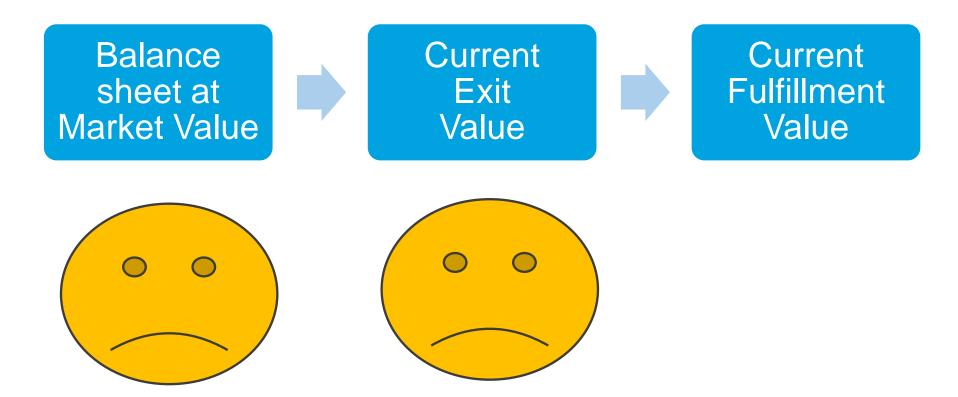
- 2. Three methods to estimate Risk Margins
- 3. IFRS and Solvency II
- 4. Etc

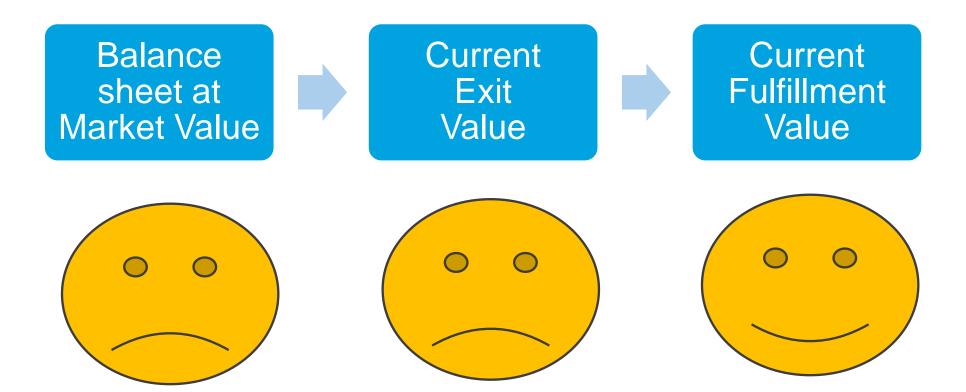

Balance sheet at Market Value

Balance sheet at Market Value




Balance sheet at Market Value





Central Estimates of Liabilities

Discount

Central Estimates of Liabilities

1.	Overview
2.	Three methods to estimate Risk Margins
3.	IFRS and Solvency II
4.	Etc

Three methods to estimate Risk Margins

- 1. Cost of Capital
- 2. Confidence Level
- 3. Conditional Tail Expectation

Three methods to estimate Risk Margins

- 1. Cost of Capital
- 2. Confidence Level
- 3. Conditional Tail Expectation

Cost of Capital method

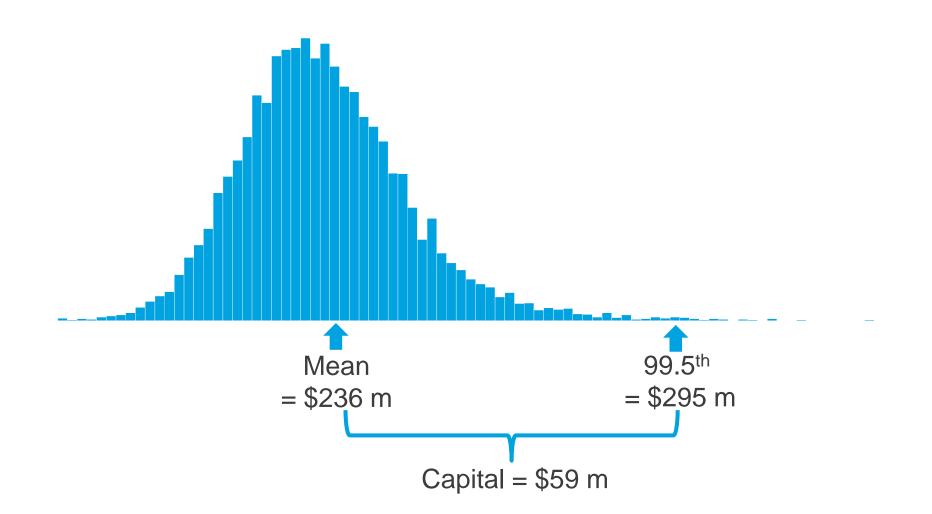
Market value of liabilities?

Cost of Capital method

- Market value of liabilities?
- Market value of an asset

Discounted reserves = \$236 million

1st offer: \$236 million


Discounted reserves = \$236 million

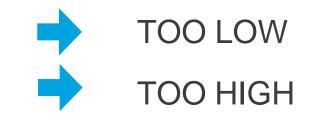
1st offer: \$236 million

TOO LOW

How much capital?

Discounted reserves = \$236 million

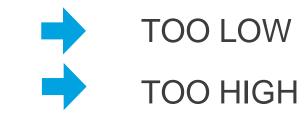
1st offer: \$236 m



2nd offer: \$236 m + \$59 m

Discounted reserves = \$236 million

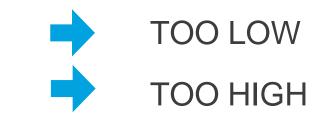
1st offer: \$236 m


2nd offer: \$236 m + \$59 m

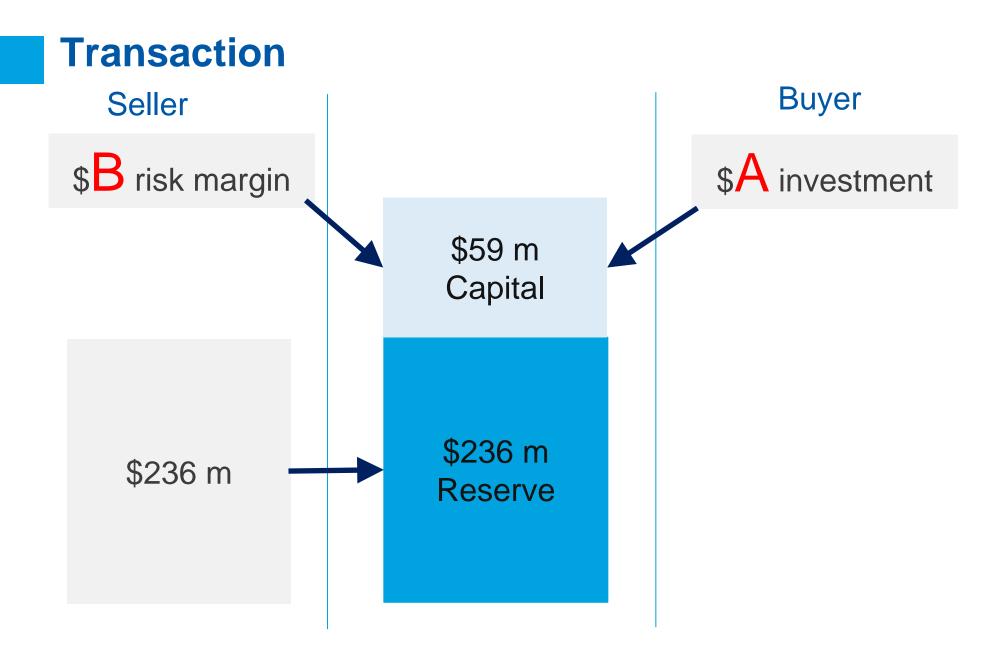
Discounted reserves = \$236 million

1st offer: \$236 m

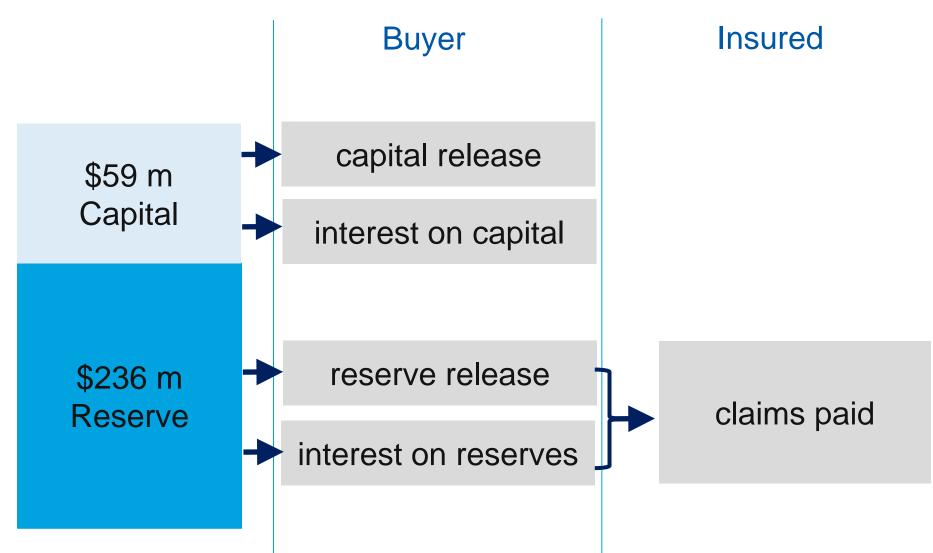
2nd offer: \$236 m + \$59 m

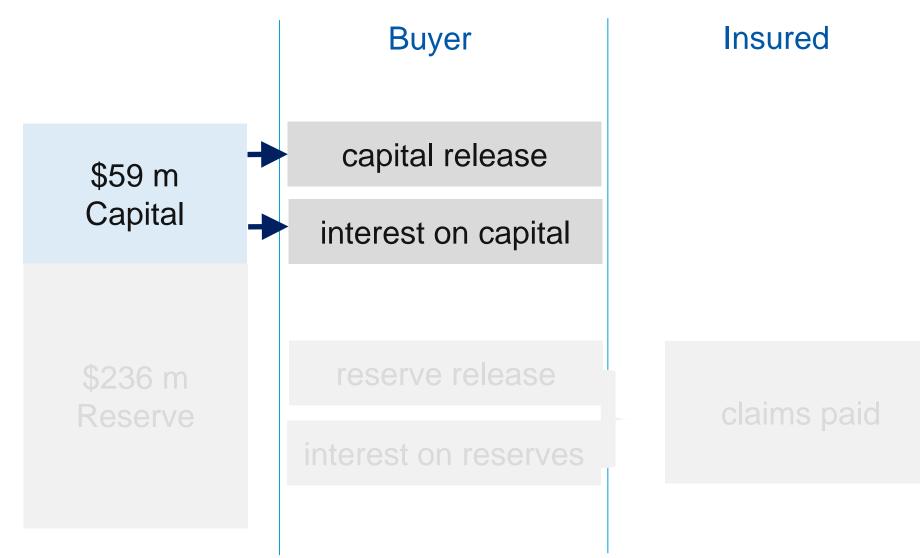


\$236 m + ? = Market Value


Discounted reserves = \$236 million

1st offer: \$236 m


2nd offer: \$236 m + \$59 m


\$236 m + Risk Margin = Market Value

Future Cash Flows

Future Cash Flows

Yr	Capital Release	Interest on Capital	Net Cash Flow	
	(1)	(2)	(3) = (1) + (2)	
1				
_ 2				
34				
35				

Yr	Capital Release	Interest on Capital	Net Cash Flow	
	(1)	(2)	(3) = (1) + (2)	
1	=Capital (0) – Capital ((1)	
2				
34				
35				

Yr	Capital Release	Interest on Capital	Net Cash Flow	
	(1)	(2)	(3) = (1) + (2)	
1	= \$59.0	– Capital	(1)	
2				
34				
35				

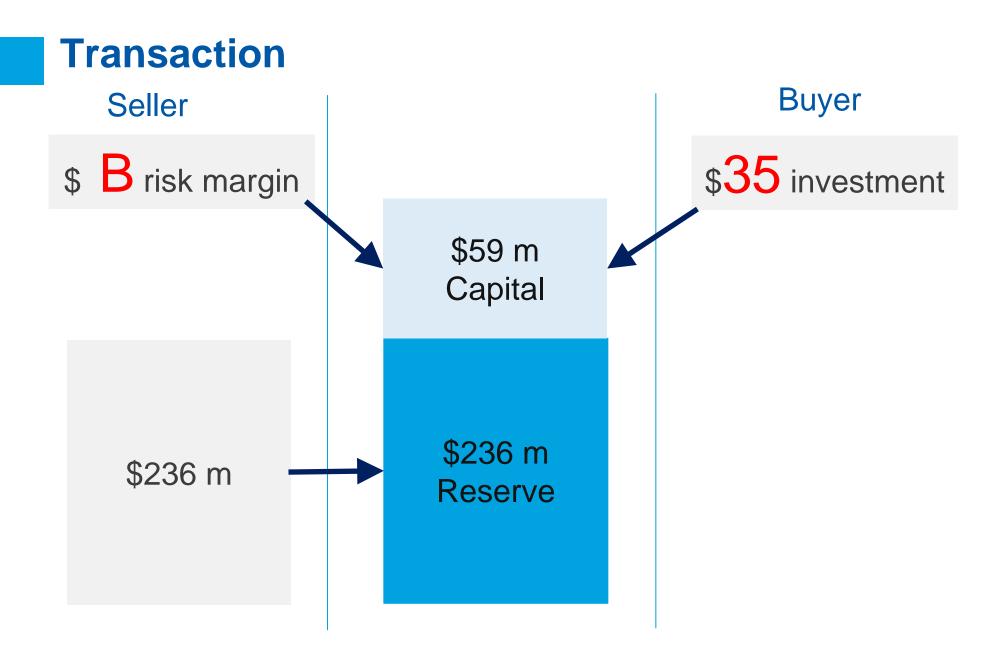
Yr	Capita Releas	l Interest or e Capital	n Net Cash Flow	
	(1)	(2)	(3) = (1) + (2)	
1	= \$59	.0 – \$52.3	3	
2				
34				
35				

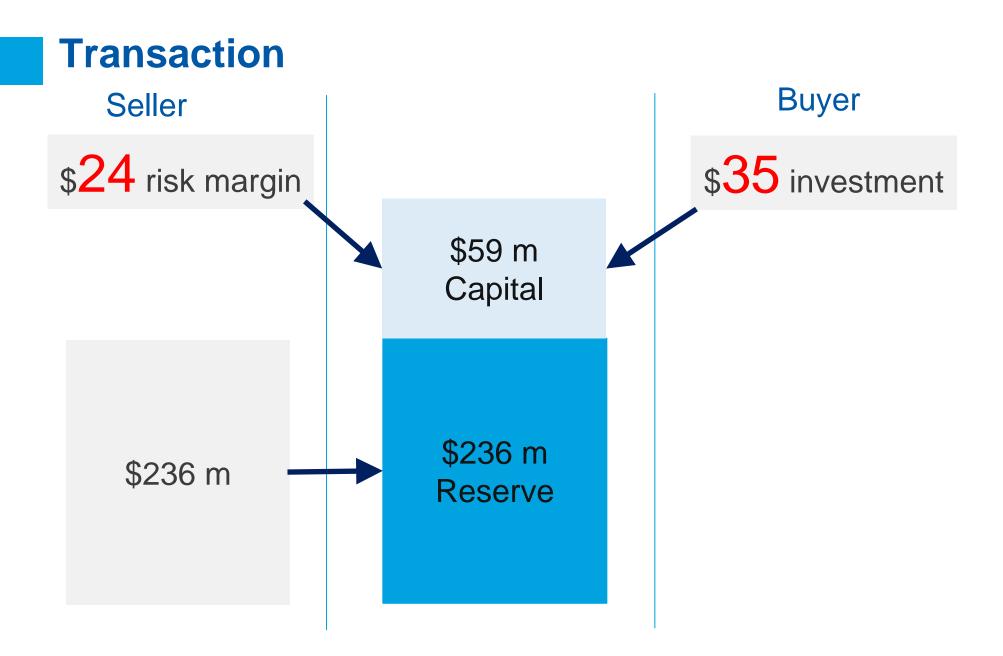
Yr	Capital Release	Interest on Capital	Net Cash Flow	
	(1)	(2)	(3) = (1) + (2)	
1	\$6.7			
2				
34				
35				

Yr	Capital Release	Interest on Capital	Net Cash Flow	
	(1)	(2)	(3) = (1) + (2)	
1	\$6.7	=Capital (0)	* rf	
2				
34				
35				

Yr	Capital Release	Interest on Capital	Net Cash Flow	
	(1)	(2)	(3) = (1) + (2)	
1	\$6.7	= \$59 * 4%		
2				
<u> </u>				
34				
35				

Yr		Interest on Capital	Net Cash Flow	
	(1)	(2)	(3) = (1) + (2)	
1	\$6.7	\$2.3		
2				
<u> </u>				
34				
35				


Yr	Capital Release	Interest on Capital	Net Cash Flow	
	(1)	(2)	(3) = (1) + (2)	
1	\$6.7	\$2.3	\$9.0	
2				
34				
35				


Yr	Capital Release	Interest on Capital	Net Cash Flow	
	(1)	(2)	(3) = (1) + (2)	
1	\$6.7	\$2.3	\$9.0	
2	\$5.9	\$2.1	\$8.0	
34			\$0.3	
35			\$0.3	

Yr		Interest on Capital	Net Cash Flow	
	(1)	(2)	(3) = (1) + (2)	
1	\$6.7	\$2.3	\$9.0	
2	\$5.9	\$2.1	\$8.0	
34			\$0.3	
35			\$0.3	

Yr	-	Interest on Capital	Net Cash Flow	Discounted Net Cash Flow
	(1)	(2)	(3) = (1) + (2)	(4)
1	\$6.7	\$2.3	\$9.0	=\$9.0 * 1.10^-1
2	\$5.9	\$2.1	\$8.0	=\$8.0 * 1.10^-2
34			\$0.3	=\$0.3 * 1.10^-34
35			\$0.3	=\$0.3 * 1.10^-35

Yr	Capital Release	Interest on Capital	Net Cash Flow	Discounted Net Cash Flow
	(1)	(2)	(3) = (1) + (2)	(4)
1	\$6.7	\$2.3	\$9.0	=\$9.0 * 1.10^-1
2	\$5.9	\$2.1	\$8.0	=\$8.0 * 1.10^-2
34			\$0.3	=\$0.3 * 1.10^-34
35			\$0.3	=\$0.3 * 1.10^-35
				= \$35.0 m

Selling you my General Liability book

Discounted reserves = \$236 million

1st offer: \$236 m

TOO LOW TOO HIGH

3rd offer: \$236 m + \$24 m

2nd offer: \$236 m + \$59 m

Selling you my General Liability book

Discounted reserves = \$236 million

1st offer: \$236 m

2nd offer: \$236 m + \$59 m

3rd offer: \$236 m + \$24 m

TOO LOW
TOO HIGH
JUST RIGHT

 $Risk Margin = Capital_0 - What you will invest$

Equation

 $Risk Margin = Capital_0 - What you will invest$

$$Risk Margin = Capital_0 - \sum \frac{What \ you \ get}{(1 + CoC)}$$

Equation

 $Risk Margin = Capital_0 - What you will invest$

$$Risk Margin = Capital_0 - \sum \frac{What \ you \ get}{(1 + CoC)}$$

$$Risk Margin = Capital_0 - \sum_{t=0}^{n} \frac{(Capital_t - Capital_{t-1}) + Capital_t \times r_f}{(1 + CoC)^t}$$

Cost of Capital:

$$Risk Margin = Capital_0 - \sum_{t=0}^{n} \frac{(Capital_t - Capital_{t-1}) + Capital_t \times r_f}{(1 + CoC)^t}$$

$$Risk Margin = Capital_0 - \sum_{t=0}^{n} \frac{(Capital_t - Capital_{t-1}) + Capital_t \times r_f}{(1 + CoC)^t}$$

$$Risk Margin = Capital_0 - \sum_{t=0}^{n} \frac{(Capital_t - Capital_{t-1}) + Capital_t \times r_f}{(1 + CoC)^t}$$

$$Risk Margin = \$100 - \frac{(\$100 - \$0) + \$100 \times 4\%}{(1 + 10\%)}$$

n = 1, Capital(0) = \$100, Capital(1) = \$0, rf = 4%, CoC = 10%

$$Risk Margin = Capital_0 - \sum_{t=0}^{n} \frac{(Capital_t - Capital_{t-1}) + Capital_t \times r_f}{(1 + CoC)^t}$$

$$Risk Margin = \$100 - \frac{(\$100 - \$0) + \$100 \times 4\%}{(1 + 10\%)}$$

Risk Margin = $$100 - \frac{$104}{1.10}$

n = 1, Capital(0) = \$100, Capital(1) = \$0, rf = 4%, CoC = 10%

$$Risk Margin = Capital_0 - \sum_{t=0}^{n} \frac{(Capital_t - Capital_{t-1}) + Capital_t \times r_f}{(1 + CoC)^t}$$

$$Risk Margin = \$100 - \frac{(\$100 - \$0) + \$100 \times 4\%}{(1 + 10\%)}$$

Risk Margin = $$100 - \frac{$104}{1.10}$

Risk Margin = \$100 - \$94.54

n = 1, Capital(0) = \$100, Capital(1) = \$0, rf = 4%, CoC = 10%

$$Risk Margin = Capital_0 - \sum_{t=0}^{n} \frac{(Capital_t - Capital_{t-1}) + Capital_t \times r_f}{(1 + CoC)^t}$$

$$Risk Margin = \$100 - \frac{(\$100 - \$0) + \$100 \times 4\%}{(1 + 10\%)}$$

Risk Margin = $$100 - \frac{$104}{1.10}$

Risk Margin = \$100 - \$94.54

Risk Margin = \$5.45

Another Cost of Capital Method

- 1. Calculate capital required at each year-end
- 2. Multiply by the cost of capital less the risk-free rate
- 3. Discount at the cost of capital and sum

Another Cost of Capital Method

- 1. Calculate capital required at each year-end
- 2. Multiply by the cost of capital less the risk-free rate
- 3. Discount at the cost of capital and sum

$$Risk Margin = \sum_{t=0}^{n} \frac{Capital_t (CoC - r_f)}{(1 + CoC)^t}$$

Risk Margin Methods:

Cost of Capital:

$$Risk Margin = Capital_0 - \sum_{t=0}^{n} \frac{(Capital_t - Capital_{t-1}) + Capital_t \times r_f}{(1 + CoC)^t}$$

Another Cost of Capital:

$$Risk Margin = \sum_{t=0}^{n} \frac{Capital_{t}(CoC - r_{f})}{(1 + CoC)^{t}}$$

Simple Example – Another Cost of Capital Method

$$Risk Margin = \sum_{t=0}^{n} \frac{Capital_t (CoC - r_f)}{(1 + CoC)^t}$$

Simple Example – Another Cost of Capital Method

$$Risk Margin = \sum_{t=0}^{n} \frac{Capital_t (CoC - r_f)}{(1 + CoC)^t}$$

Simple Example – Another Cost of Capital Method

$$Risk Margin = \sum_{t=0}^{n} \frac{Capital_{t}(CoC - r_{f})}{(1 + CoC)^{t}}$$
$$= \frac{\$100 \times (10\% - 4\%)}{1.10}$$
$$= \$5.45$$

Risk Margin Methods:

Cost of Capital:

$$Risk Margin = Capital_0 - \sum_{t=0}^{n} \frac{(Capital_t - Capital_{t-1}) + Capital_t \times r_f}{(1 + CoC)^t}$$

Another Cost of Capital:

$$Risk Margin = \sum_{t=0}^{n} \frac{Capital_t (CoC - r_f)}{(1 + CoC)^t}$$

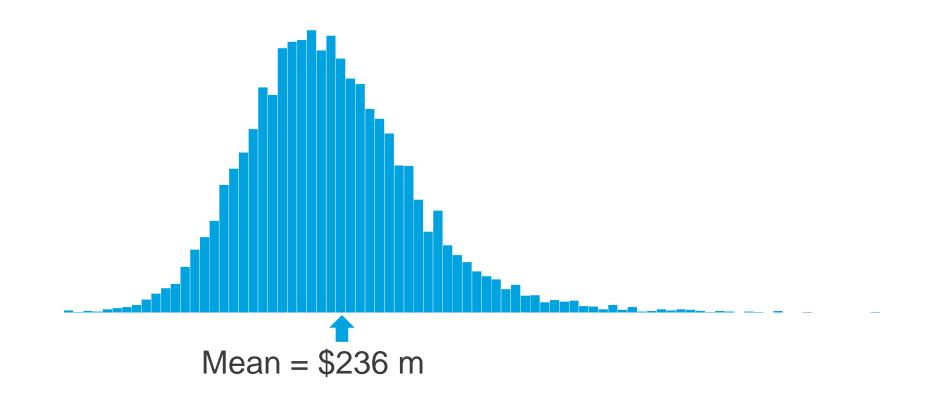
Risk Margin Methods:

Cost of Capital:

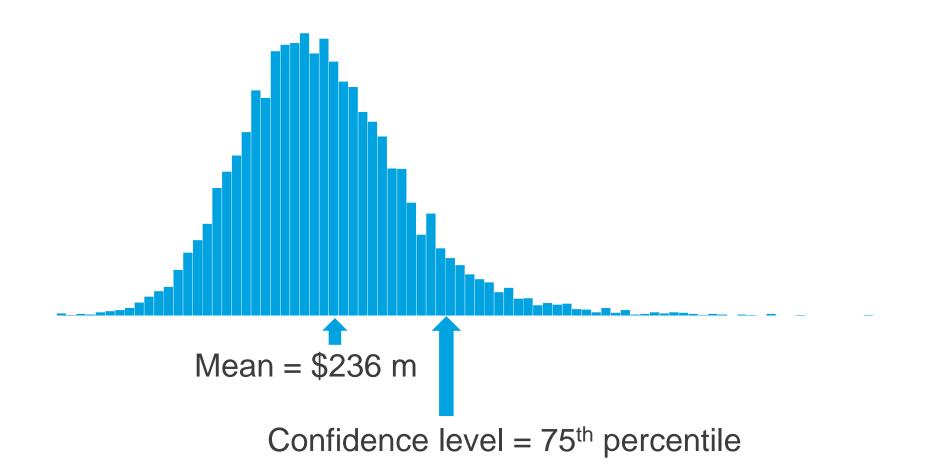
$$Risk Margin = Capital_{0} - \sum_{t=0}^{n} \frac{(Capital_{t} - Capital_{t-1}) + Capital_{t} \times r_{f}}{(1 + CoC)^{t}}$$

Another Cost of Capital:

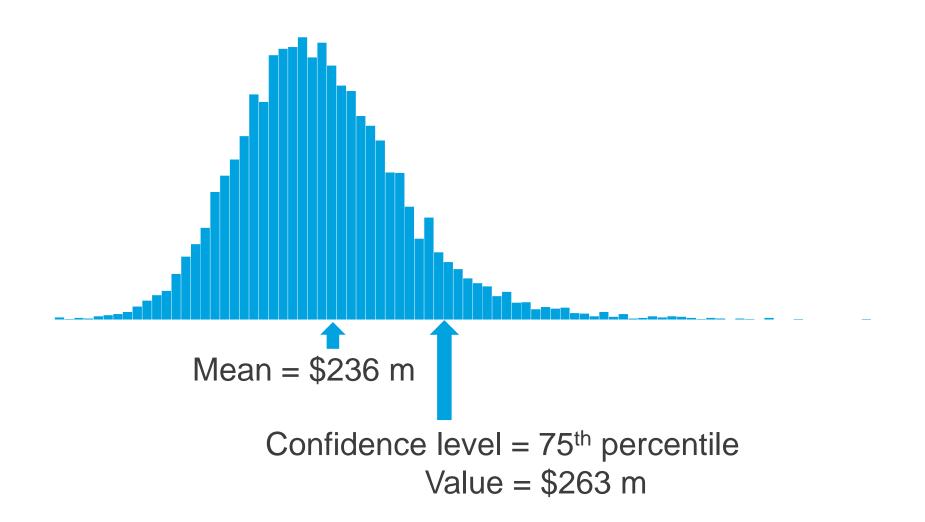
$$Risk Margin = \sum_{t=0}^{n} \frac{Capital_t (CoC - r_f)}{(1 + CoC)^t}$$

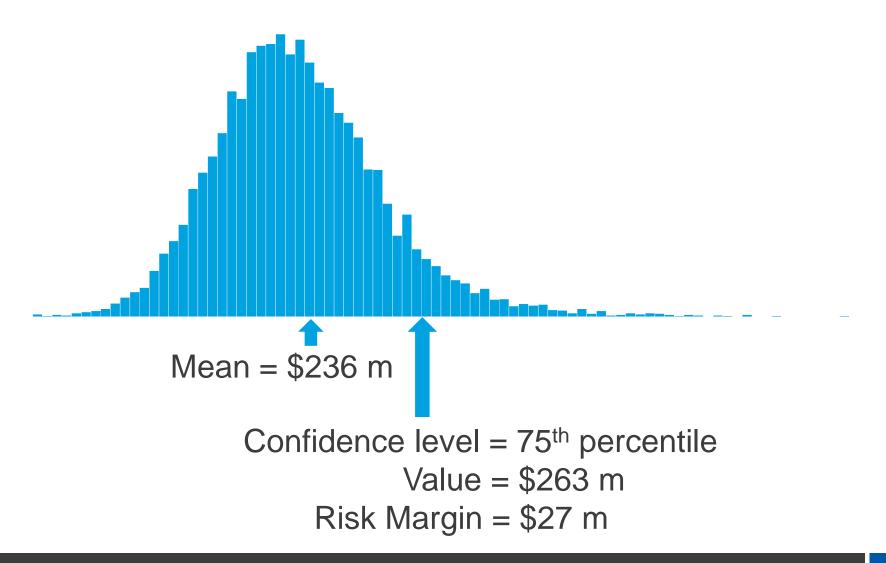

Three methods to estimate Risk Margins

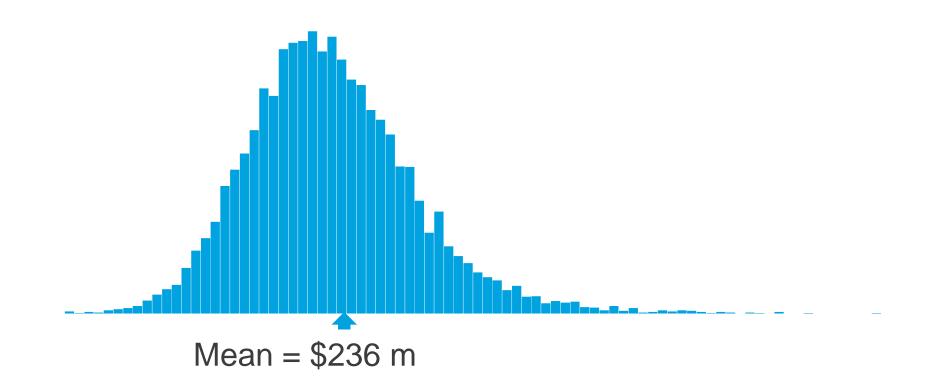
- 1. Cost of Capital
- 2. Confidence Level
- 3. Conditional Tail Expectation

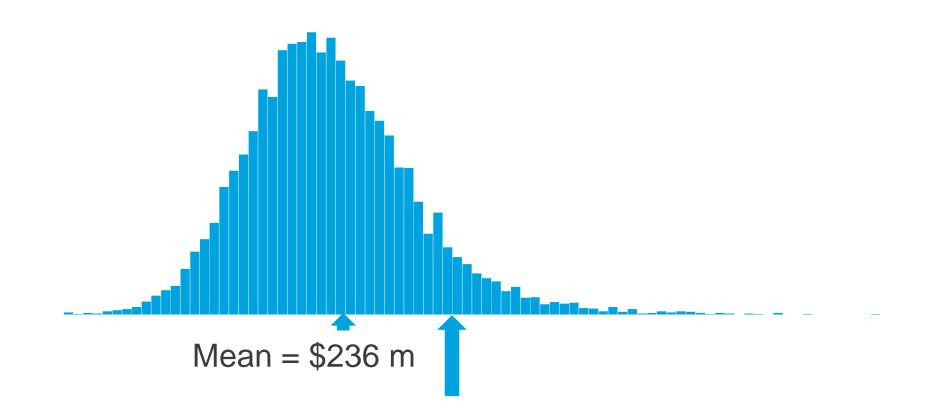

Three methods to estimate Risk Margins

- 1. Cost of Capital
- 2. Confidence Level
- 3. Conditional Tail Expectation

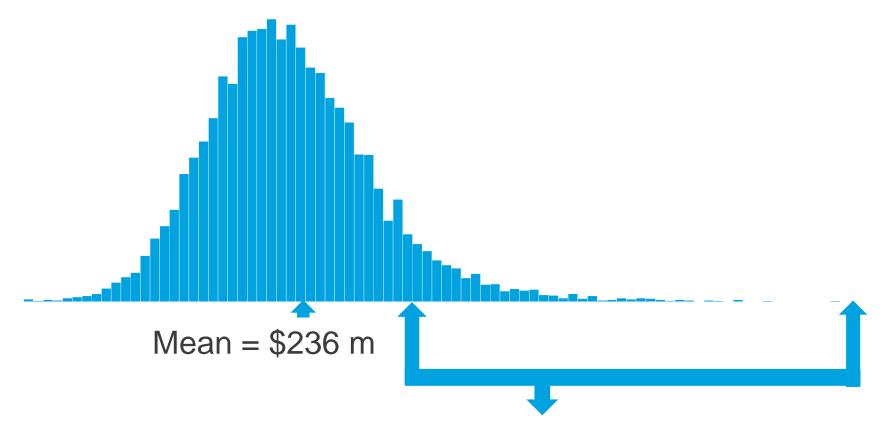

2. Confidence Level



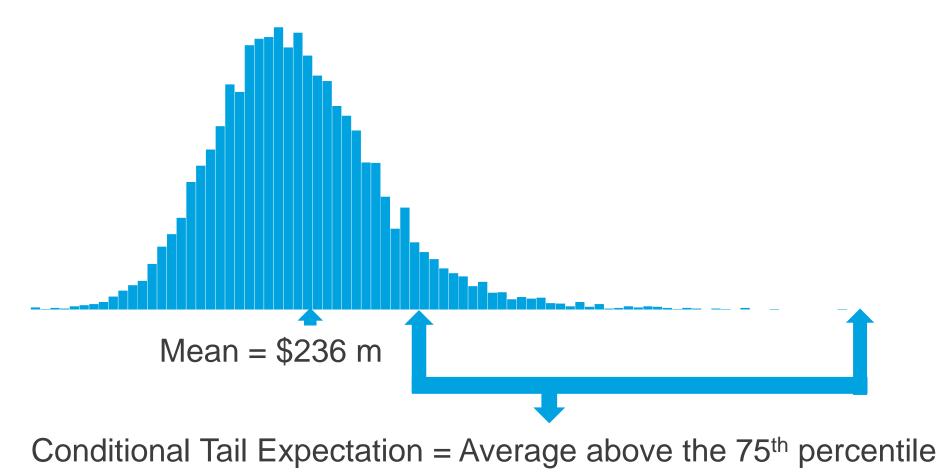


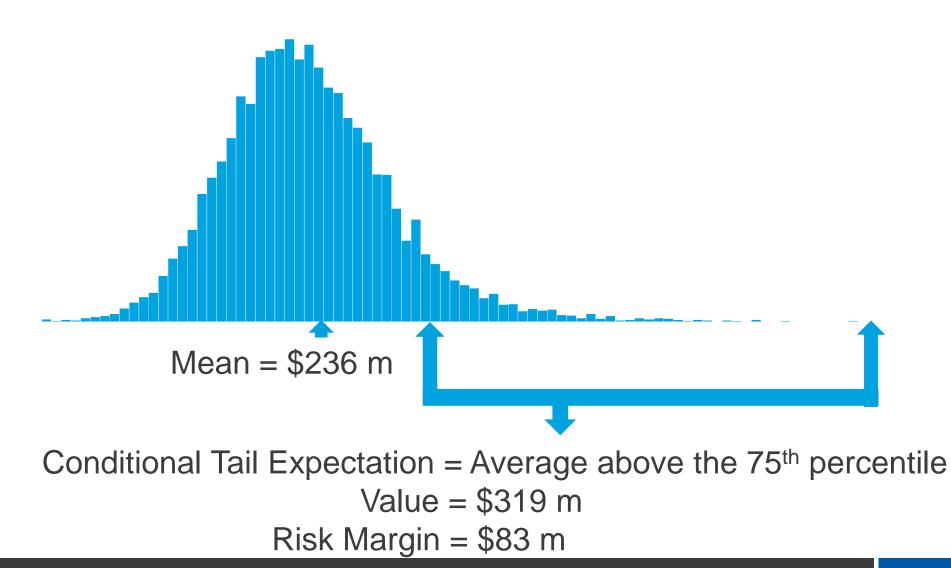

Three methods to estimate Risk Margins

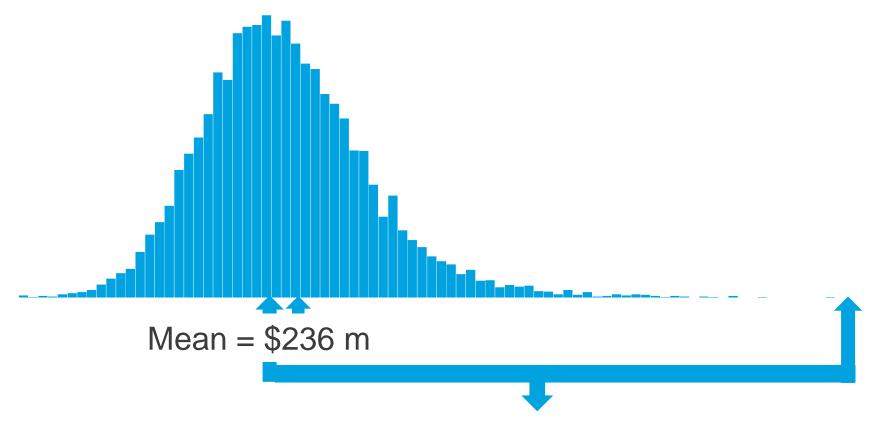
- 1. Cost of Capital
- 2. Confidence Level
- 3. Conditional Tail Expectation


Three methods to estimate Risk Margins

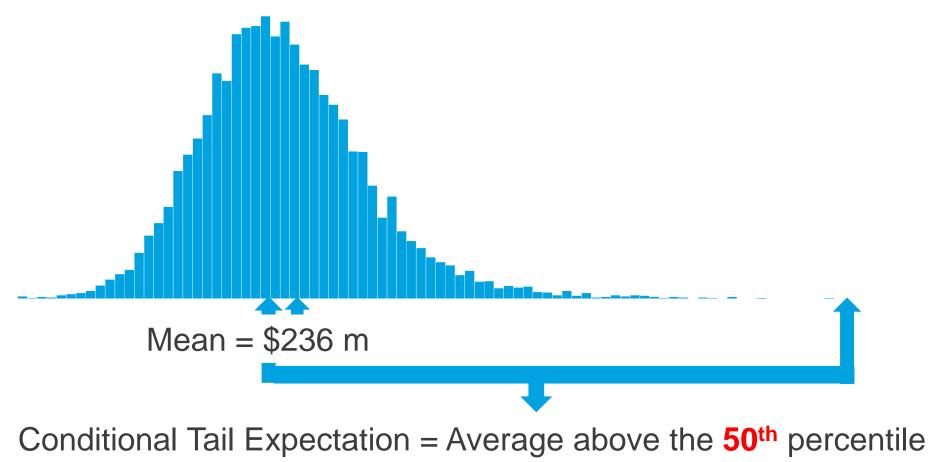
- 1. Cost of Capital
- 2. Confidence Level
- 3. Conditional Tail Expectation



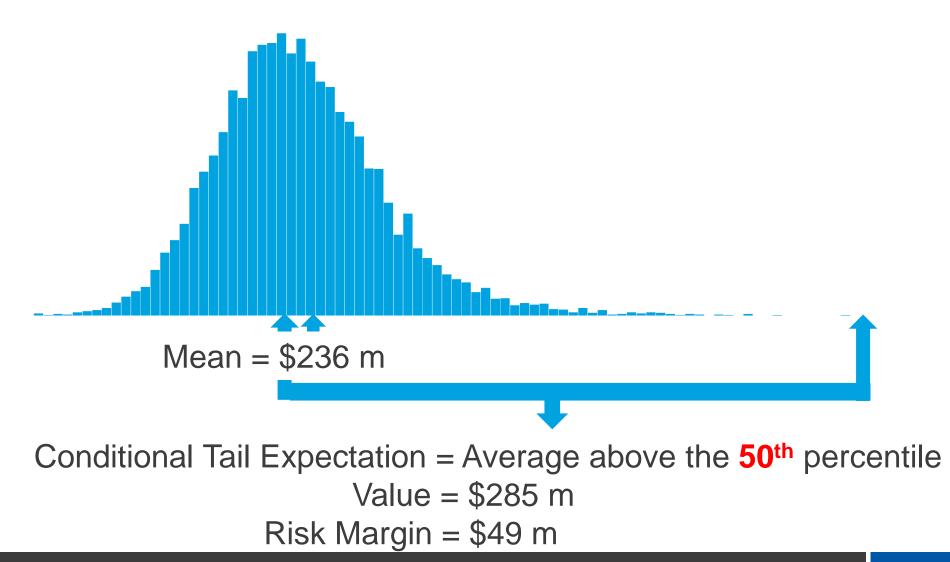

Confidence Level = 75th percentile



Conditional Tail Expectation = Average above the 75th percentile



Value = \$319 m



Conditional Tail Expectation = Average above the **50th** percentile

Value = \$285 m

Methods			
Cost of Capital			
Confidence Level			
Conditional Tail Expectation			

Methods	Risk Margin			
Cost of Capital	\$24			
Confidence Level	\$27			
Conditional Tail Expectation	\$49			

Methods	Risk Margin	Hard?		
Cost of Capital	\$24	Hard		
Confidence Level	\$27	Easy		
Conditional Tail Expectation	\$49	Med		

Methods	Risk Margin	Hard?	Market value?		
Cost of Capital	\$24	Hard	Yes		
Confidence Level	\$27	Easy	No		
Conditional Tail Expectation	\$49	Med	No		

Methods	Risk Margin	Hard?	Market value?	Skew?	
Cost of Capital	\$24	Hard	Yes	Yes	
Confidence Level	\$27	Easy	No	No	
Conditional Tail Expectation	\$49	Med	No	Yes	

Methods	Risk Margin	Hard?	Market value?	Skew?	Time?	
Cost of Capital	\$24	Hard	Yes	Yes	Yes	
Confidence Level	\$27	Easy	No	No	No	
Conditional Tail Expectation	\$49	Med	No	Yes	No	

Methods	Risk Margin	Hard?	Market value?	Skew?	Time?	Compare btwn?
Cost of Capital	\$24	Hard	Yes	Yes	Yes	Hard
Confidence Level	\$27	Easy	No	No	No	Hard
Conditional Tail Expectation	\$49	Med	No	Yes	No	Hard

Inputs

Method	Reserve Distribution	Discount Rate	Cost of Capital	Capital Level	Percentile
Cost of Capital					
Confidence Level					
Conditional Tail Expectation					

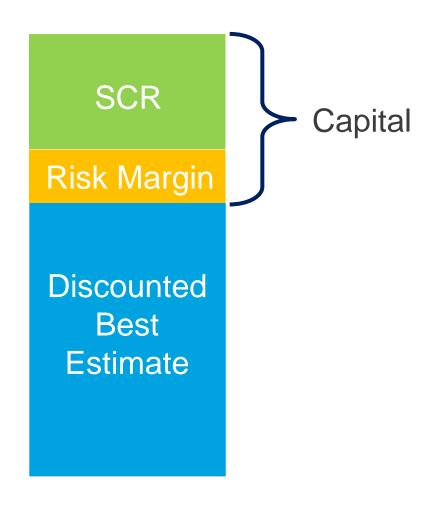
GUY CARPENTER

1. Overview

- 2. Three methods to estimate Risk Margins
- 3. IFRS and Solvency II
- 4. Etc

GUY CARPENTER

1. Overview


- 2. Three methods to estimate Risk Margins
- 3. IFRS and Solvency II
- 4. Etc

Solvency II:

- 1. Calculate SCR at each year-end
- 2. Multiply by the Cost of Capital less the riskfree rate
- 3. Discount at the riskfree rate and sum

Solvency II:

- 1. Calculate SCR at each year-end
- 2. Multiply by the Cost of Capital less the riskfree rate
- 3. Discount at the riskfree rate and sum

Solvency II:

- 1. Calculate SCR at each year-end
- 2. Multiply by the Cost of Capital less the riskfree rate
- 3. Discount at the **risk**-**free** rate and sum

Cost of Capital:

- 1. Calculate **capital** at each year-end
- Multiply by the Cost of Capital less the riskfree rate
- 3. Discount at the **cost** of capital and sum

Solvency II:

Cost of Capital:

$$Risk Margin = \sum_{t=0}^{n} \frac{SCR_t (CoC - r_f)}{(1 + r_f)^t}$$

$$Risk Margin = \sum_{t=0}^{n} \frac{Capital_t (CoC - r_f)}{(1 + CoC)^t}$$

n = 1, Capital(0) = \$100, Capital(1) = \$0, rf = 4%, CoC = 10%

$$Risk Margin = \sum_{t=0}^{n} \frac{SCR_t (CoC - r_f)}{(1 + r_f)^t}$$

n = 1, Capital(0) = \$100, Capital(1) = \$0, rf = 4%, CoC = 10%

$$Risk Margin = \sum_{t=0}^{n} \frac{SCR_t (CoC - r_f)}{(1 + r_f)^t}$$

$$RM = (\$100 - RM) \times (10\% - 4\%)$$

1.04

n = 1, Capital(0) = \$100, Capital(1) = \$0, rf = 4%, CoC = 10%

$$Risk Margin = \sum_{t=0}^{n} \frac{SCR_t (CoC - r_f)}{(1 + r_f)^t}$$

 $RM \times 1.04 + RM = 100 0.06

n = 1, Capital(0) = \$100, Capital(1) = \$0, rf = 4%, CoC = 10%

$$Risk Margin = \sum_{t=0}^{n} \frac{SCR_t (CoC - r_f)}{(1 + r_f)^t}$$

 $RM \times 1.04 + RM = 100 0.06

RM = \$5.45

Solvency II:

Cost of Capital:

$$Risk Margin = \sum_{t=0}^{n} \frac{SCR_t (CoC - r_f)}{(1 + r_f)^t}$$

$$Risk Margin = \sum_{t=0}^{n} \frac{Capital_t (CoC - r_f)}{(1 + CoC)^t}$$

Solvency II:

Cost of Capital:

$$Risk Margin = \sum_{t=0}^{n} \frac{SCR_t(CoC - r_f)}{(1 + r_f)^t} \implies Risk Margin = \sum_{t=0}^{n} \frac{Capital_t(CoC - r_f)}{(1 + CoC)^t}$$

- SCR measures risk over a one-year time horizon
- IFRS is over an ultimate time horizon

EXCEPT!!!!

- SCR measures risk over a one-year time horizon
- IFRS is over an ultimate time horizon

GUY CARPENTER

1. Overview

- 2. Three methods to estimate Risk Margins
- 3. IFRS and Solvency II
- 4. Etc

GUY CARPENTER

1. Overview

- 2. Three methods to estimate Risk Margins
- 3. IFRS and Solvency II
- 4. Etc

Things you might not know

- No benefit from diversification between "portfolios"
- Pre-claims liabilities

GUY CARPENTER

1. Overview

- 2. Three methods to estimate Risk Margins
- 3. IFRS and Solvency II
- 4. Etc

Re-exposure draft in 2012

Timeline

 "Proposed convergence of FASB and IASB in Fair Value Accounting"

Re-exposure draft in 2012

Timeline

 "Proposed convergence of FASB and IASB in Fair Value Accounting"

Top Ten Casualty Actuarial Stories in 2003

Re-exposure draft in 2012

Timeline

 "Proposed convergence of FASB and IASB in Fair Value Accounting"

Top Ten Casualty Actuarial Stories in 2003

Re-exposure Release of draft in IFRS 2012 ?????