Calculation of Risk Adjusted Loss Reserves based on Cost of Capital

Bouke Posthuma Eric Cator

Posthuma Partners, The Hague

Cator and van Zwet Consulting, Leiden

CLRS Denver - September 7, 2012

Introduction	Risk Adjusted Loss	Risk Adjusted Loss in IFM	Examples 00000000000	Conclusions
Outline				
Introd	uction			
Risk A	Adjusted Loss			
Risk A	Adjusted Loss in IF	Μ		
Exam	ples			
Concl	usions			

Introduction

Introduction Risk Adjusted Loss Risk Adjusted Loss in IFM ○●○○ ○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○○	Examples 00000000000	Conclusions
---	-------------------------	-------------

Two leading starting points:

- IFRS/IAS (International Financial Reporting Standards/International Accounting Standards): all valuation standards are principle based, using market value.
- Solvency II rules by EU legislation: the European Insurance and Occupational Pension Authority (EIOPA).

IFRS/IAS:

 Market value loss reserve on a Cost of Capital approach: taking into account the remuneration of the resilient capital amount.

Solvency II:

Amount of resilient capital is based on Value at Risk on a 99.5% probability. In formula:

1 − *a* = 99.5%; *a* = 0.5%

 $VaR_a(X) = sup(x : P(X \le x) \ge 1 - a)$

 $VaR_a(X)$ is de .5-percentile-amount

Introduction	Risk Adjusted Loss	Risk Adjusted Loss in IFM	Examples	Conclusions
000●	000000000000000000000000000000000000000	000000	00000000000	000

Solvency II:

- Until recently: prudence margin as a surcharge on undiscounted best estimate, based on a percentile amount (60-80%).
- In future: Risk Adjusted Loss also based on a minimum Cost of Capital (this will be discussed in the presentation).

Risk Adjusted Loss

|--|

IAS Board: state of the art on Risk Adjustment

The proposals in the exposure draft

IAS Board: state of the art on Risk Adjustment

	ED proposal	Tentative decisions	
Residual margin	Objective		
Risk adjustment Time value of money	"The maximum amount the insurer would rationally pay to be relieved of the risk that the ultimate cash flows exceed those expected."	 "The compensation the insurer requires to bear the risk that the ultimate cash flows could exceed those expected" 	
	Risk adjustment vs composite margin		
Cash flows	 Include explicit estimate of the effects of uncertainty about future cash flows 	✓measurement of liability should include explicit risk adjustment	

|--|

Calculation of Risk Adjusted Loss Reserves based on a Cost of Capital

We integrated a calculation method of Risk Adjusted Loss Reserves based on Cost of Capital in our stochastic loss reserving application IFM (Integral Financial Modelling, CLRS Chicago 2009, Posthuma a.o.).

Introduction	Risk Adjusted Loss	Risk Adjusted Loss in IFM	Examples	Conclusions
0000	000000000000000000000000000000000000000	000000	00000000000	000

The idea:

- True liability is the amount a third party (e.g. a reinsurer) has to receive in order to be able to take over all insurance liabilities of a portfolio.
- Besides reserves for the regular loss payments an amount for resilient capital must be put aside in order to meet solvency regulations (e.g. Solvency II).
- Third party's equity involved in such a transaction has a target return on top of the risk free yield rate of x%.

Under these conditions the question is at which (minimum) price such a third party is willing to take over the portfolio.

Introduction Risk Adjusted Loss	Risk Adjusted Loss in IFM	Examples	Conclusions
---------------------------------	---------------------------	----------	-------------

This can all be put into a simple differential equation to be calculated using a continuous stochastic reserving model (e.g. our IFM model).

Introduction	Risk Adjusted Loss	Risk Adjusted Loss in IFM	Examples	Conclusions
0000	000000000000000	000000	00000000000	000

Let $B(t_1, t_2)$ denote the future loss payments in $[t_1, t_2]$ and suppose we have

• a function b(t) such that

$$\mathbb{E}B(t_1,t_2)=\int_{t_1}^{t_2}b(s)\,ds$$

• a function V(t) such that

$$\mathbb{P}(B(t,\infty) \geq V(t)) = 0.005.$$

Note At time t the insurer must have a minimal resilient capital of V(t). This part of his capital cannot be used to yield more than the risk-free rate.

Introduction	Risk Adjusted Loss ○○○○○○●○○○○○○○	Risk Adjusted Loss in IFM 000000 00000	Examples	Conclusions

Now suppose the liability is tranferred to a third party. Denote

- ► *R_f* risk free rate
- R_t total rate = $R_{coc} + R_f$

We will regard the third party's minimum price E(t) as a fund which is (partly) available for investment, and from which the future losses are paid. This fund changes in a short time period Δt in the following way:

- ► The Resilient Capital V(t) generates a risk-free interest $R_f \cdot \Delta t$.
- The rest E(t) V(t) generates the total interest $R_t \cdot \Delta t$.
- The loss payment $-b(t) \cdot \Delta t$.

Introduction	Risk Adjusted Loss	Risk Adjusted Loss in IFM	Examples	Conclusions
0000	000000000000000	000000	0000000000	000

This leads to the following differential equation for E(t):

$$\frac{dE}{dt} = (E(t) - V(t))R_t(t) + V(t)R_f(t) - b(t).$$

In the end all liabilities have been winded down; no further loss payments are foreseen and no further resilient capital is needed. To determine a "fair price" we therefore take the boundary condition $E(\infty) = 0$.

Introduction	Risk Adjusted Loss	Risk Adjusted Loss in IFM 000000 00000	Examples	Conclusions

Solving this differential equation, we find

$$E(t) = \int_t^\infty \left(V(s)(R_t(s) - R_f(s)) + b(s) \right) \exp\left(-\int_t^s R_t(u) \, du\right) \, ds.$$

and in particular, we find the Risk Adjusted Loss E(0).

Introduction	Risk Adjusted Loss	Risk Adjusted Loss in IFM	Examples	Conclusions
0000	000000000000000000000000000000000000000	000000	00000000000	000

Interpretation

For the third party the following relation applies:

$$E(t) = DFL(t) + DMR(t)$$

The fund E(t) consists of imbursements for:

- DFL(t): future loss payments discounted at R_t (total rate)
- DMR(t): missed remuneration on Resilient Capital also discounted at R_t (total rate).

Introduction	Risk Adjusted Loss	Risk Adjusted Loss in IFM 000000 00000	Examples	Conclusions

Interpretation

$$E(t) = \int_t^\infty \left(V(s) R_{coc} + b(s) \right) \exp\left(- \int_t^s R_t(u) \, du \right) \, ds$$

Since the third party invests its capital at the total rate $R_t(t)$, a payment made at time $s \ge t$ (so in our setup this would be b(s) ds), should be discounted using the rate R_t . This leads to a Discounted Future Loss payment (DFL) at time *t* of

$$DFL(t) = \int_t^\infty b(s) \exp\left(-\int_t^s R_t(u) \, du\right) \, ds.$$

Introduction	Risk Adjusted Loss	Risk Adjusted Loss in IFM	Examples	Conclusions
0000	000000000000000000000000000000000000000	000000	00000000000	000

Interpretation

$$E(t) = \int_t^\infty \left(V(s) R_{coc} + b(s) \right) \exp\left(- \int_t^s R_t(u) \, du \right) \, ds$$

Reserving V(s) means that the third party can invest this capital only at the risk-free rate. This corresponds to a *loss* in the time interval *ds* equal to $V(s)R_{coc} ds$. This loss is then discounted at the total rate, Discounted Margin on resilient capital (DMR) just like the payments:

$$DMR(t) = \int_t^\infty V(s) R_{coc} \exp\left(-\int_t^s R_t(u) \, du\right) \, ds$$

Introduction	Risk Adjusted Loss ○○○○○○○○○○○○○●○	Risk Adjusted Loss in IFM oooooo ooooo	Examples 00000000000	Conclusions

Implementation

How to estimate the continuous functions b(t) and V(t)?

Let

- $[t_{i-1}, t_i)$ be period *i*, with $t_n = T$.
- B_i expected payments in i
- ▶ V_i 99.5 % quantile of total payments after t_i with $V_n = 0$.

Introduction	Risk Adjusted Loss	Risk Adjusted Loss in IFM	Examples	Conclusions
0000	000000000000000	000000	00000000000	000

Implementation

b(t) and V(t) can be estimated as the following piecewise continuous functions whose accuracy increases when $[t_{i-1}, t_i)$ is shorter.

$$b(t) = \sum_{i=1}^{n} \frac{B_i}{t_i - t_{i-1}} \mathbf{1}_{[t_{i-1}, t_i)}(t)$$
, and

$$V(t) = \sum_{i=1}^{n} V_{i-1} \mathbf{1}_{[t_{i-1}, t_i)}(t)$$

Introduction Risk Adjusted Loss Risk Adjusted Loss in	IFM Examples Conclusions
---	--------------------------

Risk Adjusted Loss in IFM

Introduction Risk Adjusted Loss Risk Adjusted Loss in IFM Examples Conclusion

Before dealing with the integration of Risk Adjusted Loss Reserves based on Cost of Capital we will briefly recapitulate the IFM application.

Introduction	Risk Adjusted Loss	Risk Adjusted Loss in IFM	Examples	Conclusions
0000	000000000000000000000000000000000000000	000000	00000000000	000

Initial definitions

We will use the following notation to define our model for the paid and the incurred run-off tables.

/ indicates the loss period.

k indicates the development period.

 $Y_{lk}^{(1)}$ indicates the incremental incurred.

 $Y_{lk}^{(2)}$ indicates the incremental paid.

Our goal is to model the vector $(Y^{(1)}, Y^{(2)})$, including all future values.

	Introduction	Risk Adjusted Loss	Risk Adjusted Loss in IFM ○○○○●○ ○○○○○	Examples	Conclusions
--	--------------	--------------------	--	----------	-------------

Auxiliary variables

We start with auxiliary independent Gaussian random variables:

$$egin{split} Z_{lk}^{(1)} &\sim \textit{N}\left(\mu_{lk}^{(1)},\textit{V}_{lk}^{(1)}
ight) \ Z_{lk}^{(2)} &\sim \textit{N}\left(\mu_{lk}^{(2)},\textit{V}_{lk}^{(2)}
ight) \end{split}$$

Now, define the event

$$R = \left\{ \sum_{k} Z_{lk}^{(1)} = \sum_{k} Z_{lk}^{(2)} \quad (\forall l) \right\}.$$

This says that for each loss period, the total amount incurred equals the total amount paid.

Introduction	Risk Adjusted Loss	Risk Adjusted Loss in IFM	Examples	Conclusions
0000	000000000000000000000000000000000000000	00000	00000000000	000

Final step

Finally we define the incremental losses by

$$Y^{(1)} \sim Z^{(1)} | R$$

 $Y^{(2)} \sim Z^{(2)} | R$

This means that $(Y^{(1)}, Y^{(2)})$ is normally distributed, and that the row sums of the two tables are always equal.

Means and covariances of $(Y^{(1)}, Y^{(2)})$ are functions of $\mu_{lk}^{(i)}$ and $V_{lk}^{(i)}$.

The parameters in this model are given by $\mu_{lk}^{(i)}$ and $V_{lk}^{(i)}$ for i = 1, 2. We should reduce the number of parameters.

Introduction	Risk Adjusted Loss	Risk Adjusted Loss in IFM ○○○○○○ ●○○○○	Examples 00000000000	Conclusions

Product structure of parameters

We choose the following product structure for our parameters:

$$\mu_{lk}^{(i)} = W_l e^{(X_{\alpha})_l} \Pi_k^{(i)} \quad (i = 1, 2)$$
$$V_{lk}^{(i)} = \sigma^{(i)} W_l e^{(X_{\alpha})_l} \tilde{\Pi}_k^{(i)} \quad (i = 1, 2)$$

- W₁ is the exposure measure for loss period *I*. (Note: *I* can be extended to future periods).
- Xα is a linear model for the loss ratios, with design matrix
 X and parameter vector α.
- Π⁽ⁱ⁾ and Π⁽ⁱ⁾ distribute the total expectation, respectively variation, over all development periods:

$$\sum_{k} \Pi_{k}^{(i)} = \sum_{k} \tilde{\Pi}_{k}^{(i)} = 1 \quad (i = 1, 2).$$

σ⁽ⁱ⁾ (i = 1, 2) are parameters used to tune the total variation.

Introduction	Risk Adjusted Loss	Risk Adjusted Loss in IFM	Examples	Conclusions
0000	000000000000000000000000000000000000000	00000	00000000000	000

Example of parametric development curves

Introduction Risk Adjusted Loss Risk Adjusted Loss in IFM Examples	
00000 00000000000 000000 0000000000000	Conclusions

Data and estimation

The data usually consist of aggregated cells of the two run-off tables. We allow for any kind of aggregation given by some zero-one selection matrix *S*. So if $Y = (Y^{(1)}, Y^{(2)})$, our data is given by *SY*.

Note that SY is still normally distributed, with a known distribution, given the parameters. Therefore we can use Maximum Likelihood to estimate all the parameters.

Also prediction is relatively easy, since Y | SY is again normally distributed. This structure makes our model very flexible. For a more detailed description, see "Combined analysis of Paid and Incurred Losses", CAS e-forum, Fall 2008.

Introduction	Risk Adjusted Loss	Risk Adjusted Loss in IFM	Examples	Conclusions
0000	000000000000000000000000000000000000000	00000	00000000000	000

Example of aggregation

Introduction	Risk Adjusted Loss	Risk Adjusted Loss in IFM ○○○○○○ ○○○○●	Examples 00000000000	Conclusions
--------------	--------------------	--	-------------------------	-------------

We have demonstrated that our joint model for paid and incurred losses performs very well on actual data.

Moreover, our model has several important advantages in managing "difficult" data:

- 1. It is flexible in aggregating various data sets and in handling aggregation levels of the input data.
- 2. It handles loss triangles with missing cells with ease.
- 3. It incorporates in a proper way negative data coming from negative adjustments to losses.

and

4. Future premium risk is added by extending the exposure measure, which in an integrated way produces future loss in force (Solvency II requires the loss risk on one-year future premium).

Examples

Introduction Risk Adjusted Loss Risk Adjusted Loss in IFM Examples Conclusion 0000 000000000000000000000000000000000000	sions
---	-------

Two lines of business have been modeled in IFM to calculate the Risk Adjusted Loss Reserving based on Cost of Capital:

- 1. TPL Motor injuries (long tail)
- 2. Fire Real estate (short tail)

Excel sheet data available in:

www.posthuma-partners.nl (See downloads in Menu) Examples loss triangles CAS Denver CLRS2012.xls

Introduction	Risk Adjusted Loss	Risk Adjusted Loss in IFM oooooo ooooo	Examples ooeoooooooo	Conclusions
--------------	--------------------	--	-------------------------	-------------

TPL Motor portfolio

Data:

- Incurred (paid + case reserves)
- Paid triangles

Loss periods:

▶ 1998Q1 - 2011Q3

One-year future premium:

2011Q4 - 2012Q3 \$ 10,000

	Introduction 0000	Risk Adjusted Loss	Risk Adjusted Loss in IFM 000000 00000	Examples	Conclusions
--	----------------------	--------------------	--	----------	-------------

TPL Motor portfolio

Integral Financial Modelling summarizes Management Information as follows:

- current nominal loss as a % of earned premium = 53.9%
- ▶ 50% of payments occur within 10 months
- ▶ 90% of payments occur within 89 months
- ▶ 99% of payments occur within 166 months

Introduction	Risk Adjusted Loss	Risk Adjusted Loss in IFM	Examples	Conclusions
0000	000000000000000	000000	00000000000	000

TPL Motor portfolio

		los	s on earned premium	h	ncluding one-year future premium (\$ 10,000)	lo	oss on one-year f premium (€ 10,0	future 100)
			(a)		<i>(b)</i>		(b - a)	in %
LR: Loss reserve best estimate	1	\$	21,204	\$	26,593	\$	5,389	53.9
Time value of money	2	\$	(1,696)	\$	(2,061)	\$	(365)	-3.6
Risk margin based on CoC 7%	3	\$	5,713	\$	6,695	\$	982	9.8
E(0): Risk adjusted loss 4	4= 1+2+3	\$	25,221	\$	31,227	\$	6,006	60.1
DMR(0): Discounted Margin on resilient Capital	5	\$	6,649	\$	7,837	\$	1,187	11.9
DFL(0): Discounted Future Loss payments	6	\$	18,572	\$	23,390	\$	4,819	48.2
E(0)	7=5+6	\$	25,221	\$	31,227	\$	6,006	60.1
V(0): VaR .005%	8	\$	27,273	\$	32,970	\$	5,697	57.0
80% quantile Loss reserve	9	\$	22,873	\$	28,347	\$	5,474	54.7

table: TLP Motor, Loss reserving outcomes including future premium (\$ 10,000) time value of money based on zero-risk yield curve Dutch Supervisor

Introduction	Risk Adjusted Loss	Risk Adjusted Loss in IFM 000000 00000	Examples 00000000000	Conclusions
--------------	--------------------	--	-------------------------	-------------

TPL Motor portfolio

In this scheme Risk Adjusted Loss is presented in two manners:

- 1. The amounts in row 1-4 are in accordance to the statement in the IAS exposure draft as follows:
 - cash flow (best estimate)
 - time value of money
 - risk margin based on CoC 7%
 - (sums equals to) Risk Adjusted Loss on CoC
- 2. The components of the fund E(t) in row 5-7 as follows:
 - Discounted Margin on resilient capital
 - Discounted future loss payments on a total risk rate
 - (sums equals to) Risk Adjusted Loss on CoC

The resilient Capital based on future cash flow and the 80% quantile Loss Reserves are calculated in row 8 and 9.

Introduction	Risk Adjusted Loss	Risk Adjusted Loss in IFM 000000 00000	Examples ooooooooooo	Conclusions
--------------	--------------------	--	-------------------------	-------------

TPL Motor portfolio

Risk adjusted loss on future premium as a % of future premium = 60.1%, and is the basis for adequate pricing in case of a targeted Cost of Capital of 7%.

This is much higher than the 80% quantile Loss Reserve amount (54.7%), which was the old rule for Adjusted Loss Reserve in Solvency Regulation and lead to false pricing in case of a targeted Cost of Capital of 7%.

Note: Risk Adjusted Loss is calculated on a 7% CoC surcharge (other surcharges are possible, but for Solvency II a minimum of 6% applies).

	Introduction	Risk Adjusted Loss	Risk Adjusted Loss in IFM 000000 00000	Examples 0000000000000	Conclusions
--	--------------	--------------------	--	---------------------------	-------------

Fire (real estate) portfolio

Data:

- Incurred (paid + case reserves)
- Paid triangles

Loss periods:

2003Q1 - 2011Q3

One-year future premium:

2011Q4 - 2012Q3 \$ 10,000

Fire (real estate) portfolio

Integral Financial Modelling summarizes Management Information as follows:

- current nominal loss as a % of earned premium = 56%
- ► 50% of payments occur within 6 months
- 90% of payments occur within 16 months
- 99% of payments occur within 35 months

|--|

Fire (real estate) portfolio

		loss on earned includir premium future pr		including one-year uture premium (\$ 10,000)	luding one-year loss on one-year re premium (\$ premium (€ 10, 10,000)		r future (,000)	
			(a)		<i>(b)</i>		(b - a)	in %
LR: Loss reserve best estimate	1	\$	2,845	\$	8,446	\$	5,602	56.0
Time value of money	2	\$	(28)	\$	(133)	\$	(105)	-1.1
Risk margin based on CoC 7%	3	\$	217	\$	784	\$	566	5.7
E(0): Risk adjusted loss 4=	= 1+2+3	\$	3,034	\$	9,097	\$	6,063	60.6
DMR(0): Discounted Margin on resilient Capital	5	s	242	\$	902	\$	660	6.6
DFL(0): Discounted Future Loss payments	6	\$	2,792	\$	8,194	\$	5,403	54.0
E(0)	7=5+6	\$	3,034	\$	9,097	\$	6,063	60.6
V(0), VoB 005%			4.057	¢	10.000	¢	0.042	00.4
80% quantile Loss reserve	9	э \$	4,257	э \$	9,376	ф \$	8,043 6,191	61.9

table: Fire insurance (real estate), Loss reserving outcomes including future premium (\$ 10,000) time value of money based on zero-risk yield curve Dutch Supervisor

Introduction	Risk Adjusted Loss	Risk Adjusted Loss in IFM	Examples	Conclusions
0000	0000000000000000	000000	0000000000	000

Fire (real estate) portfolio

Risk adjusted loss on future premium is 60.6% and differs slightly from the conventional 80% quantile Adjusted Loss Reserve amount (61.9%).

For this short tail insurance business the conventional Adjusted Loss Reserve would not give such a false pricing signal as was the case for the longer tailed TPL.

	Introduction	Risk Adjusted Loss	Risk Adjusted Loss in IFM 000000 00000	Examples 00000000000	Conclusions ●○○
--	--------------	--------------------	--	-------------------------	--------------------

Conclusions

Given IFRS/IAS and European Solvency II developments Risk Adjusted Loss Reserves and Solvency will from now on be based on Cost of Capital. This will require a full stochastic model of future payments. More conventional modeling may not give the user enough information to determine the Risk Adjusted Loss based on Cost of Capital per line of business with satisfactory accuracy.

Introduction	Risk Adjusted Loss	Risk Adjusted Loss in IFM 000000 00000	Examples	Conclusions
--------------	--------------------	--	----------	-------------

We have proposed a new method of Risk Adjusted Loss based on Cost of Capital. The method is in compliance with Solvency II and appears to produce very acceptable results for realistic examples. This new method is incorporated in our IFM model which is very well suited for these types of subtle predictions. The flexibility in structure of the data, and versatility in determining all kinds of predictions with margins makes IFM in our opinion the ideal model for dealing with loss triangles. The model also produces the necessary information for steering profitability bottom up, thanks to the future risk approach. Portfolio optimization therefore becomes feasible.