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CAS Antitrust Notice 

 The Casualty Actuarial Society is committed to adhering strictly to the 
letter and spirit of the antitrust laws.  Seminars conducted under the 
auspices of the CAS are designed solely to provide a forum for the 
expression of various points of view on topics described in the 
programs or agendas for such meetings.   
 

 Under no circumstances shall CAS seminars be used as a means for 
competing companies or firms to reach any understanding – expressed 
or implied – that restricts competition or in any way impairs the ability 
of members to exercise independent business judgment regarding 
matters affecting competition.   
 

 It is the responsibility of all seminar participants to be aware of antitrust 
regulations, to prevent any written or verbal discussions that appear to 
violate these laws, and to adhere in every respect to the CAS antitrust 
compliance policy. 
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Reserves in a Stochastic World 

 At a point in time (valuation date) there is a range of possible 
outcomes for a book of (insurance) liabilities.  Some possible 
outcomes may be more likely than others 
 Range of possible outcomes along with their corresponding 

probabilities are the distribution of outcomes for the book of 
liabilities – i.e. reserves are a distribution 
 The distribution of outcomes may be complex and not 

completely understood 
 Uncertainty in predicting outcomes comes from 

– Process (pure randomness) 
– Parameters (model parameters uncertain) 
– Model (selected model is not perfectly correct) 
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Stochastic Models 

 In the actuarial context a stochastic model could be considered 
as a mathematical simplification of an underlying loss process 
with an explicit statement of underlying probabilities 
 Two main features 

– Simplified Statement 
– Explicit probabilistic statement 

 In terms of sources of uncertainty two of three sources may be 
addressed 
– Process 
– Parameter 

 Within a single model, the third source (model uncertainty) 
usually not explicitly addressed 
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Basic Traditional Actuarial Methods 

 Traditional actuarial methods are simplifications of reality 
– Chain ladder 
– Bornhuetter-Ferguson or it’s close relative Cape Cod 
– Berquist-Sherman Incremental Average 
– Others 

 Usually quite simple thereby “easy” to explain 
 Traditional reserve approaches rely on a number of methods 
 Practitioner “selects” an “estimate” based on results of several 

traditional methods 
 No explicit probabilistic component 



6 August 27, 2012 

Traditional Chain Ladder 

 If Cij denotes incremental amount (payment) for exposure year i 
at development age j 
 Deterministic chain ladder  

+
=

= ∑1
1

j

ij j ik
k

C f C

 Parameters fj usually estimated from historical data, looking at 
link ratios (cumulative paid at one age divided by amount at 
prior age)  
 Forecast for an exposure year completely dependent on amount 

to date for that year so notoriously volatile for least mature 
exposure period 
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Traditional Bornhuetter-Ferguson 

 Attempts to overcome volatility by considering an additive model 
 Deterministic Bornhuetter-Ferguson  

=ij j iC f e

 Parameters fj usually estimated from historical data, looking at 
link ratios 
 Parameters ei, expected losses, usually determined externally 

from development data but “Cape Cod” (Stanard/Buhlmann) 
variant estimates these from data 
 Exposure year amount not completely dependent on to-date 

number 
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Traditional Berquist-Sherman Incremental 

 Attempts to overcome volatility by considering an additive model 
 Deterministic Berquist-Sherman incremental severity  

α τ= i
ij i j jC E

 Parameters Ei exposure measure, often forecast ultimate claims 
or earned exposures 
 Parameters αj and τj usually estimated from historical data, 

looking at incremental averages  
 Berquist & Sherman has several means to derive those 

estimates 
 Often simplified to have all τj equal 
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Curve Extrapolation 

 All models previously discussed have 
– A relatively large number of parameters 
– Are confined solely to data observed 

 Extrapolation curves have been used to overcome these 
problems 
 Consider a surface based on a curve fit discussed by Tom 

Wright 
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( )( )2
1 2 3 4exp lnijC j j j iα α α α τ= + + + +

 The α parameters define a flexible curve in the development 
direction that is either unimodal or monotonic. 
 The τ parameter provides for a uniform accident year trend 
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A Stochastic Framework 

 Instead of incremental paid, consider incremental average Aij = 
Cij/Eij 

 The amounts are averages of a (large?) sample, assumed from 
the same population 
 Law of large numbers would imply, if variance is finite, that 

distribution of the average is asymptotically normal 
 Thus assume the averages have Gaussian distributions (next 

step in stochastic framework) 
 Note here we have not specified which of the above traditional 

methods we are considering 
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A Stochastic Incremental Model – Cont. 

 Now that we have an assumption about the distribution 
(Gaussian) and expected value all needed to specify the model 
is the variance in each cell 
 In stochastic chain ladder frameworks the variance is assumed 

to be a fixed (known) power of the mean  

( ) ( )σ=Var E
k

ij ijC C

 We will follow this general structure, however allowing the 
averages to be negative and the power to be a parameter fit 
from the data, reflecting the sample size for the various sums 

( ) ( )( )κ−=
2

Var Ei

p
e

ij ijA e A
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An Observation on the Methods 

 Each of the four traditional methods can be expressed as a 
function of a number of parameters 

August 27, 2012 

 Here θ represents a vector of the parameters with different 
lengths for different models 
 Instead of specifying a particular method now we will talk in 

terms of a general method where the incremental amounts can 
be expressed as a function of a vector of parameters 
 For the stochastic version we assume 

( )ij ijC g= θ

( ) ( )E ij ijA g= θ
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Parameter Estimation 

 Number of approaches possible 
 If we have an a-priori estimate of the distribution of the 

parameters we could use Bayes Theorem to refine those 
estimates given the data 
 Maximum likelihood is another approach 
 In this case the negative log likelihood function of the 

observations given a set of parameters is given by 
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Distribution of Outcomes Under Model 

 Since we assume incremental averages are independent once 
we have the parameter estimates we have estimate of the 
distribution of future outcomes given the parameters 

 This is the estimate for the average future forecast payment per 
unit of exposure, multiplying by exposures 
 This assumes parameter estimates are correct – does not 

account for parameter uncertainty 
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Parameter Uncertainty 

 Some properties of maximum likelihood estimators 
– Asymptotically unbiased 
– Asymptotically efficient 
– Asymptotically normal 

 We implicitly used the first property in the distribution of future 
payments under the model 
 Define the Fisher information matrix as the expected value of 

the Hessian matrix (matrix of second partial derivatives) of the 
negative log-likelihood function 
 The variance-covariance matrix of the limiting Gaussian 

distribution is the inverse of the Fisher information matrix 
typically evaluated at the parameter estimates 
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The Information Matrix 

 Key to calculating the variance-covariance matrix for the 
parameter estimates is calculating the Fisher Information Matrix 
 Recall the negative log likelihood function is a function of the 

parameters θ, κ, and p.  
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 So the Hessian and hence its expected value is a function of the 

parameters κ and p, as well as the partial derivatives of gij with 
respect to the θ parameters otherwise independent of gij 
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Incorporating Parameter Uncertainty 

 If we assume  
– The parameters have a multi-variate Gaussian distribution with 

mean equal to the maximum likelihood estimators and variance-
covariance matrix equal to the inverse of the Fisher information 
matrix 

– For fixed parameters the losses have a Gaussian distribution with 
the mean and variance the given functions of the parameters 

 The posterior distribution of outcomes is rather complex 
 Can be easily simulated: 

– First randomly select parameters from a multi-variate Gaussian 
Distribution 

– For these parameters simulate losses from the appropriate 
Gaussian distributions 
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Parameterization – Cape Cod 

 Simple parameterization for the Cape Cod above overspecifies the 
model 

 We use the following (similar to England & Verall) 
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 θ1 is the upper left corner incremental 
 θi  for i = 2, …, n is change in incremental from accident year i-1 to age i 
 θi  for i = n+1, …, m+n-1is change from age i – n to accident year i – n +1  
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Parameterization – Berquist-Sherman & 
Surface Models 
 Actually a special case of the Cape Cod 
 Replace the accident year change parameters by trend 
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( ) 1ni
ij jg e θθ +=θ

 θj  for j = 1, …, n is the accident year 0 average incremental cost 
at age j 
 θn+1  is the natural log of the annual trend in the data 
 Parameterization of surface model is unchanged from above 

( ) ( )( )2
1 2 3 4 5exp lnijg j j j iθ θ θ θ θ= + + + +θ
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Parameterization – Chain Ladder 

 Basic requirements for expected values 
– Ratio of cumulative averages from one age to the next same for all 

accident years 
– The expected amount to date (on the diagonal) is observed amount 

to date  

 In our parameterization we label the amount to date for accident 
year i as Pi and the age of accident year i to date as ni 

 Also in our parameterization we can think of the parameters θj 
as the portion of the total amounts emerging at age j 
 The incremental percentages can be negative or larger than 1 
 We force the percentage for the last age to be the complement 

of the remainder resulting in n – 1 parameters. 
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Parameterization – Chain Ladder (Continued) 
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Example Commercial Auto Liab. Paid Data  

Cumulative Average Paid Loss & Defense & Cost Containment Expenses per Estimated Ultimate Claim 

Accident Months of Development Count 

Year 12 24 36 48 60 72 84 96 108 120 Forecast 

2001 670 1,480 1,939 2,466 2,838 3,004 3,055 3,133 3,141 3,160 39,161 

2002 768 1,593 2,464 3,020 3,375 3,554 3,602 3,627 3,646 38,672 

2003 741 1,616 2,346 2,911 3,202 3,418 3,507 3,529 41,801 

2004 862 1,755 2,535 3,271 3,740 4,003 4,125 42,263 

2005 841 1,859 2,805 3,445 3,950 4,186 41,481 

2006 848 2,053 3,076 3,861 4,352 40,214 

2007 902 1,928 3,004 3,881 43,599 

2008 935 2,104 3,182 42,118 

2009 759 1,585 43,479 

2010 723 49,492 



23 

Results 

Model Expected Reserves (000,000) 
Berquist Incremental Severity $480 
Cape Cod  391 
Generalized Hoerl Curve  474 
Chain Ladder  393 

August 27, 2012 

 Some difference in expected reserves 
 Is the difference random? 
 Is the difference significant? 
 How do you know? 
 Stochastic models help answer these questions 
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Process vs. Parameter Uncertainty 

 
Model 

Total Reserve Process 
Std. Dev. (000) 

Total Reserve Total 
Std. Dev. (000) 

Berquist Incremental 
Severity 

 
$15,997 

 
$29,405 

Cape Cod    9,435   20,101 
Generalized Hoerl Curve  16,115  29,454 
Chain Ladder    9,447  15,557 

August 27, 2012 
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Reserve Forecasts by Model 
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300 350 400 450 500 550 600 
Millions 

Aggregate Reserves 

Berquist CapeCod Hoerl Chain 
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What Happened? 
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Standardized Residuals 

Berquist                                    Cape Cod 

Hoerl                                        Chain Ladder 
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Some Observations 

 The data imply that the variance for payments in a cell are 
roughly proportional to the mean to the 0.85 power for both 
Cape Cod and Chain Ladder, roughly to the mean for the Hoerl 
model and to the mean to the 1.30 power for the Berquist 
model.   
 Total standard deviation well above process, often more than 

double, meaning parameter uncertainty is significant 
 Comparison of forecasts among models underlines the 

importance of model uncertainty 
 Still more work to be done to get a handle on model uncertainty 

– possibly greater than the other two sources 
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More Observations 

 We chose a relatively simple models for the expected value 
 Nothing in this approach makes special use of the structure of 

the models 
 Models do not need to be linear nor do they need to be 

transformed to linear by a function with particular properties 
 Variance structure is selected to parallel stochastic chain ladder 

approaches (overdispersed Poisson, etc.) and allow the data to 
select the power 
 The general approach is also applicable to a wide range of 

models 
 This allows us to consider a richer collection of models than 

simply those that are linear or linearizable 
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Some Cautions 

 MODEL UNCERATINTY STILL NEEDS TO BE CONSIDERED 
thus distributions are distributions of outcomes under a specific 
models and must not be confused with the actual distribution of 
outcomes for the loss process 
 An evolutionary Bayesian approach can help address model 

uncertainty 
– Apply a collection of models and judgmentally weight (a subjective 

prior) 
– Observe results for next year and reweight using Bayes Theorem 

 We are using asymptotic properties, no guarantee we are far 
enough in the limit to assure these are close enough 
 Actuarial “experiments” not repeatable so frequentist approach 

(MLE) may not be appropriate 
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