More information will be available at

CLRS – 2012

Insureware's Hospitality Suite

Sheraton Denver Downtown Hotel, Denver, CO 7:00pm-10:30pm Wednesday September 5th

Thursday September 6th

(Also learn about the Bootstrap <u>technique</u> for testing validity of a model or method)

🗙 Insureware 💿

Introduction and Summary / 1

- We provide our solution to the Solvency II one-year risk horizon, SCR, Technical Provisions (TP) (Fair Value Liabilities), Market Value Margins (Risk Margins) for the aggregate of long tail LOBs
- The solution is non-recursive, non-circular, tractable and satisfies all the directives (requirements)
- · IFRS4 requirements in respect of fungibility and ring-fencing is discussed
- Three types of correlations between LOBs
- · How do we know if two LOBs have the same economic drivers?
- Is the economic inflation a principal driver of long tail liability calendar year trends?

🗙 Insureware 💶

Introduction and Summary / 2

- Which probability distributions are required to compute the various risk measures for the aggregate of multiple LOBs?
- VaRs and T-VaRs
- · Process Variance versus Parameter Uncertainty
- · Reserve risk, underwriting risk and the combined risk
- · Risk Capital allocation by LOB and calendar year
- · The ultimate year risk horizon- conceptually much simpler
- Calendar year Payment stream probability distributions - what are the drivers?

Solvency II one-year risk horizon

- Solvency Capital Requirement (SCR)
- Market Value Margins (Risk Margins)
- Technical Provisions (Fair Value of Liabilities)
 Under what (three) conditions is it necessary to compute these metrics?
 What is the cornerstone of Solvency II?
- Consistency of metrics from year to year on updating? What are the 'causes' of distress in the first year such that losses reach 99.5 percentile of the loss distribution?

Which are the LOBs that most contribute to distress?

Most solutions to SII and IFRS4 metrics for long tail liabilities are like the Ptolemaic system

🗙 Insureware 💶

If you look at things in the right way everything becomes simpler

Copernican Solution

🗙 Insureware 🗉

Example of risk diversification of SCR and Risk Margins

- SII metrics for the aggregate of real life six LOBs compared with SII metrics for the most volatile LOB to illustrate amongst other things risk diversification of SCR and (MVM (Risk Margin) component) of TP (Fair Value of Liabilities).
 Undiscounted reserves for the aggregate of six LOBs
- (approx) Technical Provisions +Solvency Capital Requirement (SCR)
 = total in Economic Balance Sheet,
- using a risk free rate of 4% and a spread of 6%.
- No need for additional capital in this example due to risk diversification SCR and MVM.
- Conditions for consistent estimates of prior accident year ultimates and SII risk measures on updating?
- · We will explain how to avoid model error "distress".

🗙 Insureware 📧

Solvency II – Economic Balance Sheet

Actual payments are made by calendar year

Summing future losses along the calendar year axis produces projections of the cash-flow, and the actual calls on the reserves. This is the dimension in which solvency issues arise.

Using cell distributions and correlations we can compute the distributions for each future year's cash flow.

Solvency II one-year risk horizon: satisfies three conditions - Summary of decomposing the directives- What are the basic elements?

- Risk Capital is raised at the beginning of each year and any unused capital is released at the end of the year;
- The analyses are conditional on the first (next) calendar year being in distress (99.5%);
- At the end of the first year in distress, the balance sheet can be "restored" in such away that the company has sufficient technical provisions (fair value of liabilities) to continue business or to transfer the liabilities to another risk bearing entity.

An important consideration is that <u>fungibility</u> by calendar year is only in the forward direction

One-Year Risk Horizon

- The cost of raising the risk capital, the Market Value Margin (MVM) or premium on the risk capital, also known as the Risk Margin is paid to the capital providers at the end of each year along with any unused risk capital.
- The Best Estimate of Liability (BEL) is the mean (suitably discounted)
- The Technical Provision or Fair Value = BEL +MVM.
- For calendar year k we have BEL(k) and MVM(k).

BELs and MVMs are additive.

🗙 Insureware 📧

The Concept of Risk - The SCR

As detailed in the Insurance ERM analysis of Solvency II: GREAT WEB SITE- decomposes the directives.

"The fair value balance sheet is one of the cornerstones of Solvency II, and its impact is not restricted only to the calculation of fair value assets and liabilities. The concept of market value margin (MVM), and the related one-year risk approach in the calculation of the solvency capital requirement (SCR), find their origin in this fair value driven approach: re/insurance companies should have enough capital on their balance sheet to cover the risks that can emerge over a 12-month timeframe, and allow for a (theoretical) transfer of all (contractual) liabilities at the end of this balance-sheet period. This means that companies have to be able to calculate the impact of such shocks on their end-of-year balance sheets, and value these in such a way that they can be transferred to a third party."

🗙 Insureware 💵

The One-Year Risk Horizon

To satisfy Solvency II one-year risk horizon the Economic Balance Sheet at inception must have sufficient SCR and Fair Value to withstand a first (next) calendar year in distress at 99.5%, and be able to be restored to its Fair Value at the beginning of the second year.

Fair Value= BEL + Market Value Margin (Risk Margin)

It is also assumed that Risk Capital is raised from the capital providers at the beginning of each year and released if not fully used at the end of the year.

🗙 Insureware 🛛 20

Definition of SCR

The above extracts lead to the following definition: the SCR for the one-year risk horizon is the Value-at-Risk for the first year plus the change (increase) in technical provisions (TP), equivalently, fair value, in the subsequent years (suitably discounted), **conditional** on the first year being in distress.

SCR = VaR99.5%(1) + Δ TP(2) + Δ TP(3) + ... + Δ TP(n),

where n is the limit of run-off.

🗙 Insureware 💵

The Concept of Risk Horizon Perspective

Quantification Requirements- What do we need to compute SII metrics?

- For the calculation of the Technical Provisions, Market Value Margins and SCR for both the One-year Risk Horizon (and Ultimate Year Risk Horizon) for the aggregate of all long-tail LOBs and each LOB separately the following critical information is required:
 - Probability distributions of paid losses (liability stream) by calendar year (k =1,.,n) and their correlations, for each LOB and the aggregate of all LOB's
 - Probability distributions of total reserves for each LOB and the aggregate of all LOB's.
 - Probability distributions of the aggregate paid losses from calendar year k to calendar year n for each LOB and the aggregate of all LOBs. This is required for each k ranging from 1 to n, where complete run-off sachiveved at the ultimate calendar year n
 Conditional Probability distributions, conditional on the first (next) calendar year being in
 - "distress".
- Armed with these distributions any risk measure can be computed, including VaR(k) for the paid losses (total loss) in calendar year k; and Market Value Margins, Technical Provisions and VaRs conditional on the first year in distress, for each LOB and the aggregate of all LOB's.

Insureware 22

Risk Capital – One Year risk Horizon

Simplest Case: Only One Year Runoff

BEL(1)

	$L_{\rm 1}=$ projected losses for the year. This is a random variable.
	$BEL(1) = \frac{E(L_1)}{(1+d)^{o.s}}$ Where $d = \text{interest rate. Losses are paid}$
	uniformly through year, so we discount for half a year.
	$SCR(1) = VaR_{99.5\%}(L_1)$, i.e. $Pr(L_1 \le E(L_1) + SCR(1)) = 0.995$
	MVM(l) is the cost incurred in having risk fund of $SCR(l)$ available for the
TP(1)	year. It is paid to capital provider at end of year and so is discounted by a full
	year.
	$MVM(1) = \frac{SCR(1)-s}{(1+d)}$, if the interest on the risk fund is paid directly to capital

provider, or $MVM(1) = \frac{SCR(1) \cdot (s+d)}{(1+d)}$, otherwise.

TP(1) = BEL(1) + MVM(1). This is the Technical Provision and must be held in company own funds. We will also let, $PV(\underline{k};\underline{d})$, or PV(k) be used to abbreviate the Present Value factor $\frac{1}{(1 + d)^k}$

e 23

Risk Capital - One Year risk Horizon

 $BEL(1) = E(L_1) * PV(0.5)$ $MVM(1) = VaR_{99.5\%}(1) * s * PV(1)$ $MVM(2) = VaR_{99.5\%}(2) * s * PV(2)$

Minisure Ware 24

Risk Capital – One Year risk Horizon Uncorrelated future calendar years

Two-year picture of accounts: In year 1 we require reserves to meet paid loss liabilities for years 1 and 2 and we also need to able to fund the cost of access to the risk capital funds for years 1 and 2, however we only need access to the year 1 risk fund. When year 2 begins our accounts reset, since any cost over-runs from year 1 were paid out of the risk fund and do not degrade our prepared reserves for year 2. *Provided the loss over-run is below* RC(1) = VaR_{ges}(L₁).

Risk Capital – One Year Horizon

- This is fine, except for one thing: What if the distribution for the losses in year 2 has changed conditional on the losses in year one?
- Simply put, the previous picture assumes there is no correlation between the distributions for years 1 and 2. In other words, whatever the outcome observed after year 1 we are going to remain fixed on our previous course, full steam ahead
 Typically calendar year distributions are positively correlated.

The correlations are driven by parameter uncertainty.

Minsureware 27

Risk Capital – One Year Horizon

If year 1 is in distress at the 99.5th percentile, then our risk fund carries us over into year 2, but the conditional distributions are now different. Year 2 now must be re-evaluated in the light of conditional distributions and these increase the size of the BEL and the MVM, the cost of holding the risk fund. We need to include these adjustments in the year 1 risk fund.

Minsureware 28

Two-year runoff with first year in distress

N-year run-off (Correlated)

Two-year runoff with first year in distress

- There is sufficient risk capital SCR and Fair Value to withstand a distressed first year at 99.5% confidence and restore Fair Value at beginning of the second year.
- An important consideration is that <u>fungibility</u> by calendar year is only in the forward direction.
- Consistent metrics on updating from year to year- under what conditions?
- See also E&Y GNAIE paper (2007)
- "Market Value Margins for Insurance Liabilities in Financial Reporting and Solvency Applications , October 1, 2007"

Full solution - see last slide.

🗙 Insureware 📴

What Causes Distress in the first year?

- 1. "Inflation parameters" going forward. For example under the assumption 10%+_3%, a 60% trend is distress.
- 2. Process volatility- large values from the tail of lognormal distributions.
- 3. Combinations of 1. and 2.
- 4. Which LOBs contribute more to distress than others?
- Process volatility
- Parameter uncertainty
- "Size" of LOB

🗙 Insureware 🔢

Conditional Statistics from Simulations

Begin with a large number of simulations of the entire forecast table. This provides an equal number of sample paths through all future calendar years.

Minsureware 34

Conditional Statistics from Simulations

Determine the sample paths corresponding to the distress scenario. If this is "next year at 99.5th percentile", then these paths belong in the [99.5, 99.6) order interval.

Conditional Statistics from Simulations

Restricting attention to only these sample paths we can then calculate any conditional statistic, such as $BEL(k)|\xi$, MVM(k)| ξ , VaR(k)| ξ etc.

Minsureware 36

Multiple distress years

- · In the previous solution, only the first year in distress is considered.
- · What if receiver also subscribes to Solvency II?
- · Fair value should include allowance for subsequent years also being in distress.
- One way to allow for this is to analyse subsequent years being in distress irrespective of the losses observed in previous years.

🗙 Insureware 📴

		Three years in	run-off with One-Year Ris	sk Horizon
		$\Delta_t MVM(3) = s^* \Delta_t VaR_{S0.5\%}(3)^* PV(2)$		
		$\Delta_1 \text{MVM}(2) = \text{s} * \Delta_1 \text{VaR}_{80.5\%}(2) * \text{PV}(1)$	$\Delta_1 \text{VaR}_{80.5}(2)$	
R C	ΔIP	$\Delta_1 BEL(3) = (E[L(3) \xi_1] - E[L(3)]) * PV(1.5)$	$\Delta_2 MVM(3) = s * \Delta_2 VaR_{93.5\%}(3 \xi_2) * PV(1)$	$\Delta_2 VaR_{99.5}(3)$
		$\Delta_1 BEL(2) = (E[L(2) \xi_1] \cdot E[L(2)]) * PV(0.5)$	$\Delta_3 BEL(3) = (E[L(3)]\xi_2] \cdot E[L(3)]) * PV(0.5)$	$\Delta_1 VaR_{00.5}(3)$
	VaR	VaR _{99.5} (1)	VaR _{98.5} (2)	VaR _{98.5} (3)
		$MVM(3) = s * VaR_{92.5}(3) * PV(3)$		$\label{eq:main_state} \Delta_{2} MVM(3) = s^{*} \Delta_{2} VaR_{\rm S0.5\%}(3)^{*} PV(1)$
	м∨м	MVM(2) = s * RC(2) * PV(2)	$\Delta_1 \text{MVM}(2) = \text{s} * \Delta_1 \text{VaR}_{92.5\%}(2) * \text{PV}(1)$	$\Delta_1 MVM(3) = s^* \Delta_1 VaR_{20.0\%}(3)^* PV(1)$
т		MVM(1) = s * RC(1) * PV(1)	MVM(2) = s * RC(2) * PV(1)	MVM(3) = s * VaR _{66.5} (3) * PV(1)
Р		BEL(3) = E[L(3)]*PV(2.5)		$\Delta_2 BEL(3) = (E[L(3) \xi_2] - E[L(3)]) * PV(0.5)$
	BEL	$BEL(2) = E[L(2)]^*PV(1.5)$	$\Delta_1 BEL(2) = (E[L(2)]\xi_1] \cdot E[L(2)]) * PV(0.5)$	$\Delta_1 BEL(3) = (E[L(3) \xi_1] - E[L(3)]) * PV(0.5)$
		BEL(1) = E[L(1)]*PV(0.5)	BEL(2) = E[L(2)] * PV(0.5)	BEL(3) = E[L(3)] * PV(0.5)
		Inception	Year 2 ξ1	Year 3 ξ_1 . ξ_2

Four Year Run-off with One-Year Risk Horizon All-Inclusive, risk-free rate is 0.

A single composite model for two long tail LOBs

- Two LOBs written by the same company rarely have the same trend structure (including in the calendar year direction) and often process (volatility) correlation is either zero or very low. Reserve distribution correlation is often zero and if significant quite low.
- No two companies are the same in respect of trend structure, and process (volatility) correlation is often zero (for the 'same' LOB).
- No company is the same as the industry, unless it is a very large proportion of the industry.
- · All the above are demonstrated with real life data.

A single composite model for all long tail LOBs

- For each LOB the corresponding model measures the volatility in the LOB with easily interpretable parameters.
- The model has descriptors that describe the risk characteristics of the data.
- Simulated triangles (including Bootstrap triangles) are indistinguishable from the real data in respect of statistical features.
- · Forecast assumptions going forward are explicit and auditable.
- A single composite model also measures the correlations between the LOBs.
- There are three types of correlations between LOBs leading to reserve distribution correlation.

\chi Insureware 4

SII metrics for the aggregate of six LOBs compared with SII metrics for the most volatile LOB- risk diversification of SCR and TP

Trends and volatility are unique to each LOB

LOB4 is the most volatile of the LOBs
 Losnal (conta) (conta)

SII metrics for the aggregate of six LOBs compared with SII metrics for the most volatile LOB- risk diversification of SCR and TP

· Model for LOB 4

SII metrics for the aggregate of six LOBs compared with SII metrics for the most volatile LOB- risk diversification of SCR and TP

 Diagnostics for LOB4 illustrating normality satisfied. But process variance (volatility) is high

 Forecast table for LOB4- Note there is no analytical closed form for the sum of lognormals

SII metrics for the aggregate of six LOBs compared with SII metrics for the most volatile LOB- risk diversification of SCR and TP

• Forecast table for the aggregate of the six LOBs

			A	ccident	Period v	B Develo	pment P	eriod			
Black:		Cal. Per. Total	0	1	2	3	4	5	6	7	8
DIACK.	2004	287,031	95,735	101,359	36,115	17,279	9,935	7,361	6,040	4,984	4,194
	2004	271,241	94,027	112,007	39,137	17,635	12,810	6,816	741	621	536
– Filled mean	2005	280,482	97,461	115,058	41,050	19,640	11,298	8,438	6,946	5,758	4,298
	2005	277,690	77,596	127,377	39,731	22,406	10,942	1,059	871	738	548
Blue:	2006	306,715	104,752	124,282	44,450	21,295	12,301	9,192	7,628	5,619	4,226
Bido.	2000	362,204	142,541	128,978	46,573	17,422	1,592	1,175	985	718	541
Oheemued	2007	319,815	100,485	118,963	42,746	20,666	12,018	9,023	6,662	4,955	3,780
- Observed	2007	323,149	100,455	116,901	38,555	2,638	1,597	1,176	852	638	502
	2008	329,853	107,790	127,831	45,668	22,003	12,790	8,556	6,289	4,675	3,590
Red [.]	1000	348,822	122,154	114,366	5,190	2,822	1,754	1,138	812	612	496
	2000	344,119	109,831	130,910	47,000	22,729	11,857	7,994	5,912	4,426	3,430
Chandard	2008	311,387	100,708	14,562	5,455	2,950	1,642	1,078	780	603	506
- Standard		Total Fitted/Paid		2010	2011	2012	2013	2014	2015	2016	2017
	Cal. Per.	4,601,940	I	243,927	118,931	76,350	51,163	37,784	28,882	22,533	18,015
Deviation	Total	4,613,404		17,216	7,745	5,060	3,320	2,527	2,128	1,941	1,880
Domation	×				1 Un	t - \$1,000					

SII metrics for the aggregate of six LOBs compared with SII metrics for the most volatile LOB- risk diversification of SCR and TP

- LOB4 is the most volatile of the six LOBs (CV=49%)
- CV of Aggregate is 7.14%
- Substantially more Solvency II risk capital required if LOB4 was written on its own. It has a CV of 49%

0bser	nmary by D ved vs He (%) Diffe Cluster	atasets an Estimate rences s		Acc. Yn oss Ratio	s 💄 I Summary IB Compa	Cal. Yi nourred Lo Graphs risons	sses
	CV (%)	of Rese	rve D	listribu	tion by	LOB	
45 40							
30 25					_		
20 15							
10 6 0							1
	LOB1	LOB2 CV of ag	LÓB3 progatila rea	LOB4	LÓB5	LÓB6	

Appregate L0B1:PL(I) L0B2:PL(I) L0B3:PL(I) L0B4:PL(I) L0B5:F + +

🗙 Insureware 🌆

Liability stream by calendar year and calendar year correlations for the Aggregate of the six LOBs

52% of reserves paid within two years (2011). Calendar year correlations low and reduce quickly

Comparisons	Tis 2	nate X Clusters Acc. 1	s Mean Esti Losses hs 📄 Jatasets	Observed v Incurred unmary Grap unmary by D	1 s	Coss Ratios Differences LOB Comparisons Cal. Yrs	Ae × _X (2 usters <u>></u> Acc. Yrs	ean Estima ses 🔲 Ck sets	bserved vs M Incurred Los mary Graphs mary by Data	L Sum
relations (+ >	ions Correla	on Correlati	pital Allocati	ny Risk Ca	Summa	Correlations (4	Correlations	Allocation	Risk Capital	Summary
n Periods	Between	elations	cast Corr	rve Fore	Rese		Summary	ndar Yr	Cale	
	ears)	e - Cal. Ye	Aggregat	(/		Cum. Payment	CV	Standard	Mean	Calendar
2014 ^	2013	2012	2011	2010		34.98	0.07	17,216	243.927	2010
0 0.2723	0.296910	0.318196	0.320725	1	2010	52.04	0.07	7.745	118,931	2011
2 0.3785	0.407322	0.427020	1	0.320725	2011	62.04	0.07	5,050	76 350	2012
6 0.4560	0.481196	1	0.427020	0.318196	2012	70.32	0.07	3,000	61 163	2012
0.5027	1	0.481195	0.407322	0.296910	2013	70.32	0.08	3,320	97,704	2044
8 1	0.502708	0.456023	0.378531	0.272319	2014	75.74	0.07	2,521	37,704	2014
5 0.5449	0.479875	0.411348	0.333324	0.236240	2015	79.88	0.07	2,128	28,882	2015
0 0.5254	0.436870	0.352047	0.277063	0.193064	2016	83.11	0.09	1,941	22,533	2016
Contraction of the local data and the local data an	0.389858	0.294180	0.223763	0.153067	2017	85.70	0.10	1,880	18,015	2017
8 0.4954		0.243946	0.178258	0.118873	2018	87.81	0.13	1,905	14,751	2018
8 0.4954 2 0.4615	0.345492					89.59	0.16	1.978	12,378	2019
8 0.4954 2 0.4615 7 0.4313	0.345492	0.205347	0.143331	0.092231	2019					

Liability stream by calendar year and calendar year correlations for LOB4- long tail with high correlations

50% of reserves not paid before 2019 (10 years hence). Calendar year correlations high and do not dampen.

2	Loss Ratios		L Inc	surred Losses]		🤠 Loss Ra	tios	L 1	Incurred Lor	ises
🍾 (%) D	ifferences Yrs 🔀	Sunna Cal. Yrs	ry Graphs []] Observe	🍒 Forecast Sel Id vs Mean Estin	tings nate	× (2	Differences	🛛 👖 Sum 🔁 Cal. Yn	nary Graphs	Foreca	n Estinate
Summary	Risk Capita	Allocation	Correlation	Correlations	(logs)	Summ	ary Risk Ca	pital Allocati	on Correlat	ions Correla	tions (logs
	Cale	endar Yı	Summary			Res	erve Fore	cast Cor	relations	Between	Periods
Calendar	Mean	Standard	CV	Cum. Payment	ĥ		(1	.OB4:PL(I) - Cal. Y	ears)	
	outstanding	Dev.	outstanding	as % of total			2010	2011	2012	2013	2014
2010	3,849	594	0.16	4.66		2010	1	0.494236	0.525858	0.545366	0.5563
2011	3,974	732	0.18	9.74		2011	0.494236	1	0.601325	0.626761	0.6417
2012	4,100	861	0.21	14.98		2012	0.525858	0.601325	1	0.678266	0.6966
2013	4,182	996	0.24	20.32		2013	0.545366	0.626761	0.678266	1	0.7333
2014	4,198	1,128	0.27	25.69		2014	0.556340	0.641704	0.696699	0.733333	4
2015	4,136	1,246	0.30	30.97		2015	0.661101	0.649094	0.706393	0.745040	0.7703
2016	3,969	1,334	0.34	36.04		2013	0.001101	0.040304	0.700302	0.740048	0.7704
2017	3,823	1,429	0.37	40.93	1	2010	0.561237	0.050213	0.709177	0.749337	0.7701
2018	3,701	1.538	0.42	45.66	1	2017	0.357348	0.040722	0.700016	0.747765	0.1151
2019	3,595	1.651	0.46	50.25		2018	0.548954	0.637882	0.098039	0.739714	0.7683
2020	2 500	4 775	0.64	E4 72		2019	0.539896	0.628170	0.688370	0.730362	0.7595
2020	3,300	# 11pit -	51 000	04.75		2020	0.520035	0.616781	0.676204	0.719256	0 7478

One-year risk horizon - one year in distress Aggregate of six LOBs

•	Addredate Solvency II	Summary Solvency I	ll Grid Sol	vency II Cl	sarts Settings	-	
	riggrogate contently in	Metrics S	Summary		MVM, SCR and TP as		
	capital required (Technical		Value	- 5		% of E	EL
	1 1 X	BEL	609,492	98.03		5 of BEL	5 of Undisc. BEL
	Provisions + SCR) is the	MVM	12,223	1.97	SCR	10.98	9.60
		Technical Provision	621,715	100.00	MVM	2.01	1.75
	same as undiscounted REI	-		_	TP	102.01	89.16
	Same as unuscounted DEL	VaR(2010)	49,160	73.46	MVM + SCR	12.99	11.35
		Delta TP	17,761	26.54	TP + SCR	112.99	98.75
		SCR	66,922	100.00			
•	Bulk of SCR is the VaR for	Technical Provision	621,715	90.28			
		SCR	66,922	9.72			
	next vear (2010)	TP + SCR	688,637	100.00			
	nokt your (2010)	1 Unit -	\$1,000				

• All calculations assume: risk free = 4% and spread = 6%

🗙 Insureware 🗉

One-year risk horizon – all years in distress Aggregate of six LOBs

ncy II Grid | Solv

62,616

49.571

743,347

Metrics Summary

cy II Charts Settings

MVM, SCR and TP as % of BEL

% of BEL % of 1 11.69 10.27

 Aggregate Solvency II capital required (Technical Provisions + SCR) is 6.6% higher than undiscounted BEL.

Main difference MVM	
---------------------	--

- Bulk of SCR is the VaR for next year (2010)
- All calculations assume: risk free = 4% and spread = 6%

TP + SCR

🗙 Insureware 🎫

One-year risk horizon LOB4

· Bulk of SCR is Delta TP -

 Solvency II capital required ary Selve ncy II Grid Sol (Technical Provisions + SCR) for LOB4 is substantially higher than for undiscounted BEL

Metrics S	ummary		MVM, SCR and TP as				
	Value	- 5	% of BEL				
BEL	52,713	85.28		% of BEL	% of lindisc. BEL		
MVM	9,101	14.72	SCR	96.99	65.33		
Technical Provision	61,814	100.00	MVM	17.27	11.63		
			TP	117.27	78,98		
VaR(2010)	1,862	3.64	MVM + SCR	114.25	76.96		
Delta TP	49,263	96.36	TP + SCR	214.25	144.31		
SCR	51,125	100.00					
Technical Provision	61,814	54.73					
SCR	51,125	45.27					
TP + SCR	112,939	100.00					
1 Unit -	\$1,000						

ncy II Charts | Set 0.01

capital required to restore the balance sheet should the next year be in distress

🗙 Insureware 🎫

One-year risk horizon Comparing the aggregate of six LOBs with LOB4

For the aggregate Delta TP is small, but large for LOB4 as a % of BEL

One-year risk horizon Comparing the aggregate of six LOBs with LOB4

🗙 Insureware 🎫

One-Year risk horizon Aggregate of six LOBs

Which LOB is in distress if the aggregate is in distress?

- LOB3 and LOB1 are in distress if the aggregate is in distress
- Why? LOB3 and LOB1 have the bulk of the payments in the distress year (inset).

Ultimate-year risk horizon Aggregate of six LOBs

- MVM is calculated based on the VaR 'to run-off' for each calendar year
- MVM is around 10x the one-year risk horizon's MVM

Metrics S	ummary	'	MVM, SCR and TP as % of BEL				
	Value	%					
BEL	609,492	83.50		5 of BEI	5 of Undisc. BEI		
MVM	120,447	16.50	SCR	29.43	25.73		
Technical Provision	729,939	100.00	MVM	19.76	17.27		
		_	TP	119,76	104.68		
Technical Provision	729,939	80.27	MVM + SCR	49 20	43.00		
SCR	179,393	19.73	TD + SCR	149.20	130.40		
TP + SCR	909,332	100.00	11.000		100141		
1 Unit -	\$1,000						
400,000 300,000 250,000 150,000 50,000 6 10 12	14 16	18 20 Z	2 24 26 28	30 32	1000		
		100	1+91,000				
			- 🐋 İr	nsure	eware 🖣		

Summary Ult, Risk Horizon Grid | Ult, Risk Horizon Charts | Settings |

Fungibility and Ring-fencing by example – drawing on the risk fund

In the case of fungibility the risk fund is smaller since it is expected to be supplemented by surpluses from other LOBs/portfolios.

Consistent estimates of prior year ultimates and Solvency II Risk Measures on updating

- Total reserve increases from year to year (with same accident (underwriting) exposure as previous year)
- What does a calendar year trend (inflation) of 5% imply in terms of estimates of prior year ultimates, loss reserves and premiums (per unit risk)?
- AXIOM

Calendar year trends (inflation) project (impact) both the prior and future accident (underwriting) years

Here is a simple example that illustrates the main ideas that reserve increases do not represent under-reserving. Indeed, they are necessary in order to maintain consistent estimates of prior year ultimates as the company writes new underwriting (accident) years).

🗙 Insureware 👳

Consistent estimates of prior accident year ultimates and reserve increases on updating

- On a logarithmic scale the data were generated as follows
- Y(w,d) = 10 -0.3*d +0.05 (w+d-1) where w is the accident year 1,...,7 and d is the development year 0,..., 5.
- The numbers down each column increase by 0.05 on a log scale (approximately 5% annual). The numbers along each row decrease by 0.25 (=-0.3+0.05) on a log scale We have assumed that the paid losses run-off after five years. Even if this is the case for 1999, this may not be the case for subsequent accident years especially if inflation is 'high'

🗙 Insureware 🗉

Consistent estimates of prior year ultimates and SII metrics updating

Reserves and ultimates as at year end 2004

2		Ac	cident l	Period v	rs Develo	pment	Period	2	
Cal. Per.	Total	0	1	2	3	4	5	Reserve	Ultimate
1999	22,026	22,026	17,154	13,360	10,405	8,103	6,311	0	77,359
2000	40,310	23,156	18,034	14,045	10,938	8,519	6,634	6,634	81,325
2001	55,736	24,343	18,958	14,765	11,499	8,955	6,974	15,930	85,494
2002	68,999	25,591	19,930	15,522	12,088	9,414	7,332	28,835	89,878
2003	80,639	26,903	20,952	16,318	12,708	9,897	7,708	46,631	94,486
2004	91,085	28,283	22.026	17,154	13,360	10,405	8,103	71,048	99,331
Total Fitte	d/Paid		2006	2005	2007	2008	2009	Total Reserve	Total Ultimate
Cal. Per. Total	358,796		66,022	46,251	30,599	18,112	8,103	169,078	527,873
				1	Unit = \$1				

Reserves and ultimates as at year end 2005

		Ac	cidenti	Period V	/s Develo	opment	riod		
Cal. Per. T	otal	0	1	2	3	4	8	Reserve	Ultimate
1999	22,026	22,026	17,164	13,360	10,405	8,103	6,311	0	77,359
2000	40,310	23,156	18,034	14,045	10,938	8,519	6,634	0	81,325
2001	66,736	24,343	18,958	14,765	11,499	8,955	6,974	6,974	85,495
2002	68,999	25,591	19,930	15,522	12,088	9,414	7,332	16,746	89,878
2003	80,639	26,903	20,952	16,318	12,708	9,897	7,708	30,313	94,486
2004	91,085	28,283	22,026	17,154	13,360	10,405	8,103	49,022	99,331
2005	95,755	29,733	23,156	18,034	14,045	10,938	8,519	74,691	104,424
Total Fitted	Paid		2005	2007	2008	2009	2010	Total Reserve	Total Ultimate
Cal, Per. Total	454,550	-	69,487	48,623	32,157	19,041	8,519	177,746	632,298

🗙 Insureware 🧧

Consistent estimates of prior year ultimates on and SII metrics updating

Reserve and Ultimate as at year end 2004 Reserve and Ultimate as at year end 2005

	Accident	меал	Ontimate	ACCI
	Year	Reserve		Ye
	1999	0	77,359	19
	2000	6,634	81,325	20
	2001	15,930	85,494	20
	2002	28,835	89,878	20
	2003	46,631	94,486	20
	2004	71,048	99,331	20
		1		20
ſ	Total	169 079	527 973	

Year	Reserve	Unimate	year t ultin
1999	0	77,359	to year t
2000	0	81,325	5
2001	6,974	85,495	1.051
2002	16,746	89,878	1.051
2003	30,313	94,486	1.061
2004	49,022	99,331	1.061
2005	74,691	104,424	1.051
			1.051
Total	177,746	632,298	
			1.051
			Ratio of Res

N.B.

Estimites of ultimate losses by accident year (1999- 2004) remain the same on update at end of 2005
 The ratio of ultimate for year to year t-1 is 1.05
 S. Increase in total reserves from 2004 to 2005
 is 1.05

🗙 Insureware 🔤

Ratio of t ultimate year t-1 1.051267467 1.051267467 1.051266166 1.051269499 1.051277438 1.051273016

Consistent estimates of prior year ultimates on and SII metrics updating

- Each year the company needs to increase its total reserves by at least 5%.
- The ultimates for prior accident years will remain consistent with each increase in total reserves.
- Each year the company needs to increase its premium (price) by at least 5%.
- Ultimates increase by at least 5% from one accident year to the next.
- These are not reserve upgrades

🗙 Insureware 🌆

Consistent estimates of prior year ultimates on and SII metrics updating

- Mack and related methods give inconsistent estimates of prior year ultimates (on updating) and inaccurate liability streams by calendar year.
- Bootstrapping the wrong model does not improve the model.

This was all explained on Wednesday!

Conditional Statistics on next calendar period- volatility in ultimates on updating.

Inc. Use Outside Over Const. the C4 Div. 1991 64,55 5,506,27 5,208 6,108 4,802,47 10,208 6,108 4,802,47 10,208 6,108 4,802,47 10,208 6,108 4,802,47 10,208 6,108 6,108,47 10,208,47 10,208 6,10 6,108 10,408 10,208 10,108 10,208 10,10 10,208 10,10 10,208 10,10 10,208 10,10 10,208 10,10 10,208 10,10 10,208 10,10 10,208 10,10 10,208 10,10 10,208 10,10 10,208 10,10 10,208 10,10 10,208 10,10 10,208		Accident Yr Summary									
Action Destinating Utimate Desc. Patcheniko Utimate Stature () Itilización 1996 46.856 -5.872/21 2.5873 0.68 0.00 0.00 10.00 1998 48.867 5.943/21 2.5873 0.68 0.00 14.66 2.248 1999 48.064 5.011182 2.4243 0.0 0.00 1.669 2.328 1999 49.0641 5.94243 0.0 0.01 4.669 5.239 1999 49.0613 5.94234 0.01 0.01 4.669 5.239 1999 49.0614 5.96234 1.052 0.11 0.01 4.669 5.539 1999 49.0724 2.75234 2.0849 0.01 0.01 2.158 3.239 1001 3.27529 2.75234 2.708.97 0.01 0.01 2.158 2.234 2001 1.778.049 5.962841 1.0272 0.0 0.02 1.66444 1.6802		Me	an	Standard	0	<i>(</i>	Cond. on Next Cal. Per.				
1996 64.05 63.97 12,200 0.0 0.0 0.2 1996 51.07.6 5.904.27 2.523 0.6 0.00 14.00 2.444 1996 51.07.6 5.904.27 2.523 0.6 0.00 14.00 2.446 1996 51.07.6 5.904.27 2.523 0.6 0.00 14.00 2.742 2.01 1999 51.07.16 5.904.27 2.523 0.6 0.00 14.00 7.759 2.775.90 0.6 0.60 15.00 7.759 2.775.90 2.759.20 0.61 0.61 0.61 2.759.20 2.779.20 0.00 2.759.20 2.759.20 2.779.20 0.00 2.749.20 2.779.20 0.00 2.749.20 2.	Acc. Yr	Outstanding	Ultimate	Dev.	Outstanding	Ultimate	Std.Dev.Data	+-UIt(Data			
1996 180,478 590,477 2,5833 0.14 0.00 14,469 2,441 1997 348,045 54,115,182 2,423 0.12 0.01 27,242 2,021 0.01 12,742,12 3,021 0,035 1,043 2,023 0,01 0,01 2,742,12 3,021 0,035 1,020 0,01 0,01 2,742,01 0,02 0,01 0,01 0,020 1,01 0,01 1,020,01 1,010,01 0,010,01 1,010,01 1,010,01 1,010,01 1,010,01 1,010,01 1,010,01 1,010,01 1,010,01 1,010,01 1,010,01 1,010,01 1,010,01 1,010,01 1	1994	64,105	4,367,021	12,008	0.19	0.00	0	12,008			
999 348,09 641,118 242,83 0.22 0.81 27,52 22,241 999 041,01 5,946,33 0.55 0.11 0.61 64,509 55,23 999 041,01 9,946,31 9,946,31 9,945,31 10,269 0.11 0.01 15,509 52,273 999 042,219 9,964,91 9,964,214 10,852 0.11 0.01 15,564 14,968 909 042,219 5,962,91 10,757,82 0.01 0.01 15,554 13,968 10,978 0.00 121,559 23,159 <t< td=""><td>1995</td><td>183,476</td><td>5,904,973</td><td>25,953</td><td>0.14</td><td>0.00</td><td>14,660</td><td>21,416</td></t<>	1995	183,476	5,904,973	25,953	0.14	0.00	14,660	21,416			
1997 -0404173 -9.346.332 -06.25 0.11 0.01 -46.09 55.232 1998 94.19.19 9.346.532 -0.220 0.11 0.01 7.5524 7.4598 1999 1.272.018 9.046.532 -0.2308 0.11 0.01 7.5524 7.4599 1990 1.272.018 9.047.532 -0.01 0.01 2.5544 168.00 1990 2.472.512 0.01 0.01 2.5544 168.00 2.213.01 1990 2.778.32 -3.469869 7.753.21 0.80 0.02 54.178 54.00 1990 9.479.19 5.928400 1.055.871 0.80 0.02 1.244.85 1.234.85 1990 9.223.271.8 6.933400 0.80 0.80 1.244.85 1.234.95 1990 9.232.07.14 6.973.300 4.074400 0.80 0.206.62 2.224.91 1990 9.473.00 5.973.81 0.80 0.80 2.365.20 2.375.97 1990	1996	348,961	6,811,182	42,843	0.12	0.01	27,542	32,818			
999 041,191 00,451,20 02,200 0.11 0.01 75,204 999 12,2149 5465,214 328,879 0.11 0.01 155,444 160,85 3000 3,223,295 3,247,324 328,419 0.10 0.01 155,444 160,865 3001 4,374,847 5,370,317 6,375,76 0.10 0.01 354,544 354,085 3001 1,7746,325 4,466,666 770,323 0.40 0.42 164,447 40,000 3001 1,7746,315 4,964,906 1,555,571 0.40 0.42 164,447 10,001 3001 1,7746,417 9,490,801 1,555,571 0.40 0.40 1,444,451 12,244,95 12,244,95 12,244,95 12,244,95 12,244,95 12,244,95 12,244,95 12,244,95 12,324,97 1,40 1,40,97 1,40,97 1,40,97 1,40,97 1,40,97 1,40,97 1,40,97 1,40,97 1,40,97 1,40,97 1,40,97 1,40,97 1,40,97 1,40,9	1997	610,813	9,346,343	69,325	0.11	0.01	46,598	51,328			
1999 UZ2319 5962.91 195.782 0.11 0.01 155.844 168.89 2003 322.952 327.5534 23.858 0.00 23.558 23.55 2004 4.070.201 32.07534 23.088 0.00 23.558 23.558 2004 4.070.201 32.07534 0.00 0.00 23.556 23.558 2004 4.070.201 32.07371 69.70 0.00 0.00 23.556 20.00 2005 12.757.00 9.090.105 12.757.20 0.00 0.00 12.84.85 12.80.455 </td <td>1998</td> <td>941,181</td> <td>10,645,342</td> <td>102,898</td> <td>0.11</td> <td>0.01</td> <td>70,502</td> <td>74,950</td>	1998	941,181	10,645,342	102,898	0.11	0.01	70,502	74,950			
J000 3.225298 2.475391 208.41 0.10 0.11 215.09 221.09 <th21.09< th=""> 221.09<td>1999</td><td>1,723,018</td><td>16,662,194</td><td>195,782</td><td>0.11</td><td>0.01</td><td>135,844</td><td>140,985</td></th21.09<>	1999	1,723,018	16,662,194	195,782	0.11	0.01	135,844	140,985			
2001 4,070,070 298,726 0.00 0.01 390,944 355,004 2002 2,782,52 3,465,685 770,221 0.00 0.02 51,792,94 94,910 94,910 94,910 94,910 94,910 94,910 94,910 94,910 94,910 94,910 94,910 94,910 94,910 94,910 94,910 94,910 95,910 0.00 12,944,910 94,910 95,910 0.00 12,945,910 12,955,910 0.00 0.02 54,916,955 12,805,910 0.00 12,955,910 0.00 12,955,910 12,955,910 0.00 12,955,910 12,955,910 0.00 12,955,910 12,955,910 12,955,910 12,955,910 12,955,912 12,956,921 12,956,921 12,956,921 12,956,921 12,956,921 12,956,921 12,956,921 12,956,921 12,956,921 12,956,921 12,956,921 12,956,921 12,956,921 12,956,921 12,956,921 12,956,921 12,956,921 12,956,921 12,956,922 12,956,922 12,956,922 12,956,922 <	2000	3,225,295	24,725,342	328,618	0.10	0.01	231,598	233,135			
J000 2.7/80.25 4.06.000 770.221 0.10 0.02 547.000 547.000 0.02 0.02.01 0.0401.055 1.227.02 0.10 0.02 0.06.01 0.02 0.06.01 0.02 0.06.01 0.02 0.06.01 0.02 0.06.01 0.02 0.06.01 0.02 0.06.01 0.03 0.02 0.06.01 0.03	2001	4,978,876	35,703,717	495,726	0.10	0.01	349,564	351,496			
0000 12,229,109 40,010.50 12,37,027 0.10 0.02 26,946.12 960,027 0201 17,296,019 90,228,00 0.055.91 0.00 0.24 12,956.51 0.00 0.24 12,956.51 0.00 0.24 12,956.51 0.00 0.03 12,945.95 12,855.71 0.01 0.01 12,945.95 12,956.71 0.01 0.01 12,956.71 0.01 0.01 12,956.71 0.01 0.01 12,956.71 0.01 0.01 12,956.71 0.01 0.01 0.01 0.01 0.01 22,920 0.01	2002	7,758,325	43,405,885	770,323	0.10	0.02	541,788	547,597			
2004 0.7760/01 902/2000 U/05/5271 0.10 0.00 1/24/405 1/23/405 2005 19/25/406 5/20/800 0.05/8271 0.00 0.01 1/65/211 0.01 1/65/211 0.01 1/65/211 0.01 0.00 1/65/201 0.01 1/65/211 0.01 0.00 1/65/201 0.01 <td>2003</td> <td>12,257,189</td> <td>49,681,835</td> <td>1,237,122</td> <td>0.10</td> <td>0.02</td> <td>866,642</td> <td>882,837</td>	2003	12,257,189	49,681,835	1,237,122	0.10	0.02	866,642	882,837			
2005 0.8,274,403 54,284,000 1.593,201 0.10 0.04 1.564,203 2006 292,277,10 0.416,914 0.426,297 0.055 0.266,252 222,094 2007 0.446,246 0.973,2366 6.574,499 0.11 0.07 3.087,766 3.275,677 2007 0.446,246 0.973,2366 6.574,899 0.11 0.09 3.087,766 3.275,677 2007 0.446,246 0.953,2366 6.574,899 0.11 0.09 3.012,252 4.322,616 1004 19.624,4302 516,728,371 1.5663,031 0.08 0.01 19.015,116 19.015	2004	17,798,981	58,028,983	1,855,971	0.10	0.03	1,294,855	1,329,654			
2006 29,237/14 62,418,911 3,04,247 0.19 0.19 2,066,529 22,23,09 2007 3,462,568 97,753,268 5,754,869 0,11 0,07 3,097,766 3,375,716 2008 54,776,314 64,985,726 5,873,919 0,11 0,07 3,097,766 3,375,471 Total 196,264,382 516,726,122 15,666,381 0,08 0,03 10,765,161 12,048,822	2005	19,291,483	54,288,400	1,993,010	0.10	0.04	1,366,231	1,451,035			
2007 43,462,568 69,753,265 4,574,689 0.11 0.07 3,087,706 3,375,478 2008 54,370,314 64,005,706 5,020,019 0.11 0.09 3,912,252 4,322,161 Tetrai 196,244,302 516,720,121 15,669,391 0.09 0.03 10,016,181 12,048,822	2006	29,237,716	62,418,911	3,042,497	0.10	0.05	2,066,529	2,232,990			
2008 54,370,314 64,005,706 5,829,819 0.11 0.09 3,912,252 4,322,161 Tetral 196,244,302 516,729,121 15,669,391 0.08 0.03 10,016,101 12,048,029	2007	43,462,568	69,753,286	4,574,689	0.11	0.07	3,087,706	3,375,478			
Total 196,244.302 516,729,121 15,668,381 0.08 0.03 10,016,181 12,048,829	2008	54,370,314	64,985,706	5,829,819	0.11	0.09	3,912,252	4,322,161			
	Total	196,244.302	516,729,121	15,668,381	0.08	0.03	10,016,181	12,048,829			

Updating and monitoring

Consistent estimates of prior year ultimates on and SII metrics updating

Consistent estimates of prior year ultimates on and SII metrics updating

Consistent Estimates of prior year ultimates on updating

WCON	CALIFICATION INTERNAL	od-1j:reserve i	erecast summ	narnes	کا لکا لکا	14 secon	NUMPEROR (jood-1 j:Hosserve	Porecast Sum	maries		
X	() Differences	Summe	wy Graphs	K Feecas	t Settings	× (x) C	lifferences 1.	Comparisons .	Sunnary Gr	aphs 🛐 Fore	cast Setting	
/	NOC. THE	Cal. Yrs	0 оь	served vs Mean	Estimate	y <u>a</u> ,	LOC. TH	🔀 Cal. Yes	06	served vs Mean	Estimate	
unmar	Correlations					Summar	Correlations					
		Accident 1	r Summar	У				Accident '	Yr Summar	¥		
	Me	an	Standard	0		A	Mean Standard			0	CV A	
ACC. II	Outstanding	Uttimate	Dev.	Outstanding	Ultimate	ACC. 11	Outstanding	Ultimate	Dev.	Outstanding	Ultimate	
1994	64,105	4,367,021	12.062	0.19	0.00	1995	83,338	5,905,409	15,521	0.19	8.0	
1995	183,476	5,904,973	25,953	0.14	0.00	1996	211,165	6,808,407	29,287	0.14	1.0	
1996	348,961	6,811,182	42,843	0.12	0.01	1997	415,399	9,436,487	49,729	0.12	1.0	
1997	610,813	9,346,343	69,325	0.11	0.01	1998	681,956	10,762,754	75,457	0.11	1.0	
1998	941,181	10,645,342	102,898	0.11	0.01	1999	1,315,902	16,844,401	147,904	0.11	1.0	
1999	1,723,018	16,662,194	195,782	0.11	0.01	2000	2,519,633	24,934,072	252,179	0.10	1.0	
2000	3,225,295	24,725,342	328,618	0.10	0.01	2001	3,965,229	36,478,233	381,715	0.10	1.0	
2001	4,978,876	35,703,717	495,726	0.10	0.01	2002	6,268,274	44,060,917	593,020	0.09	1.0	
2002	7,758,325	43,405,885	770,323	0.10	0.02	2003	10,013,116	50,243,970	950,421	0.09	1.0	
2003	12,257,189	49,681,835	1,237,122	0.10	0.02	2004	14,660,719	58,644,300	1,422,278	0.10	0.0	
2004	17,790,981	58,828,983	1,855,971	0.10	0.03	2005	15,782,985	57,764,068	1,496,676	0.09	1.0	
2005	19,291,483	54,288,400	1,993,010	0.10	0.04	2006	23,687,823	65,898,831	2,257,667	0.10	1.0	
2006	29,237,716	62,418,911	3,042,497	0.10	0.05	2007	34,867,727	71,583,232	3,356,068	0.10	1.0	
2007	43,462,568	69,753,206	4,574,689	0.11	0.07	2008	43, 193, 079	66,251,218	4,223,309	0.10	1.0	
2008	54,370,314	64,905,706	5,829,819	8.11	0.09	2009	63,642,004	74,560,484	6,374,997	0.10	8.1	
Total	196,244,302	516,729,121	15,668,301	0.08	0.03	Total	221,308,346	601.532,647	15,827,063	0.07	04	
					2	4						

At end 2008, ultimate 2008=64.9+_5.8, at end 2009 66.2+_4.22

Consistent estimates of prior year ultimates on and SII metrics updating

Consistent SII metrics on updating

Solvency II calculations with no discounting: MVM for 2010 is almost the same as for 2009, and so is SCR.

Nureware 72

Consistent SII metrics on updating

Consistent SII metrics on updating

Two LOBs with common drivers- Example 1- same calendar year trend structure and high process correlation of 0.85

Process correlation adjusted for the average calendar year trend for each LOB = sum of trend correlation + process (volatility) correlation

Residual plots by calendar year LOB A (left) LOB B (right)

Blue line is trace (versus accident year) of (single) calendar year (2006) Process Correlation = 0.85

When do two LOBs (LOB A & LOB B) have common drivers?

•Two LOBs have "same" trend structure and high process correlation •Visible in trace of calendar year 2006 versus accident years. •Note high process correlation (of 0.85).

MInsureware

Three LOBs with common drivers- Example 2 Identical trend structure and high process correlation exceeding 0.9!

Process correlation, trend (parameter) correlation, same trend structure and reserve distribution correlation

- The above two examples are not different LOBs!
- · The first is E&O D&O gross and net of reinsurance
- The second example involves three layers of a medical malpractice LOB; Lim 1Million, Lim 2Million and 1Mxs1M. The triangles are additive.
- Two LOBs written by the same company rarely have the same calendar year trend structure and often process correlation is either zero or very low. Reserve distribution correlation is much lower.
- No two companies are the same and process correlation often zero (for the 'same' LOB)
- No company is the same as the industry

🗙 Insureware 🕫

Small company (exposure) versus industry auto BI New South Wales Australia

Calendar year trend for company is zero, whereas industry it is huge! (Company also has much higher process volatility) XIIII Insureware

There are four types of correlations between LOBs

Process (volatility) Correlation (that is, correlation between two sets of residuals)
 2. Parameter Correlations
 3. Same trend structure (especially along the calendar years)
 4. Reserve distribution correlations
 #1 induces #2. However, #3 is the 'worst' kind of relationship you can have between two
 LOBs as it results in very little, if any, risk diversification. It means that in terms of future
 calendar year trends the two LOBs move together, that is, a trend change in one LOB
 means a trend change in the other LOB, and is tantamount to the two LOBs having the
 same drivers. If two LOBs satisfy #3, then #1 and #2 are close to 1.

Fortunately, #3 we have only observed between layers of the same LOB, between segments of the same LOB, and between net or insurance and gross data (of the same LOB), #1, #2, #3 induce #4, #4 is typically much less than #1 in the absence of #3.

It is important to recognize that you cannot measure the relationship between two LOBs unless you first identify the trend structure and process variability in each LOB. It is only in the Probabilistic Trend Family (PTF) modeling framework that you can identify a parsimonious model that separates the trend structure in the three directions from the process variability.

Minsureware 🔤

Two LOBs: LOB1 and LOB3 Actually same LOB different territories

Both LOBs have a calendar year trend change in 2000

That should be regarded as a concern!

🗙 Insureware 🔤

Two LOBs: LOB1 and LOB3 Actually same LOB different territories

Note 98-00 slight negative trend, 00-02 slight positive trend and 02-03 $\,$ zero trend LOB1 and slight negative trend LOB3.

🗙 Insureware 📧

Two segments of WC

Each segment only adjusted for development year trends

Accident year parameter correlations equal 1 after modelling accident years- major implications also for future underwriting years, where correlation in distributions of ultimates exceed 0.99

🗙 Insureware 💵

Reserve distribution correlations between two distinct LOBs- a very different story

- Highest process correlation observed between two different LOBs is about 0.6 (in our experience)
- But Reserve distribution correlation is typically lower.
- · Trend structures for two LOBs typically different
- · Parameter correlations low or zero
- See Private Passenger Automobile (PPA) versus Commercial Auto Liability (CAL)for Berkshire Hathawy below, for example

🗙 Insureware 🔤

Risk Capital Allocation

MInsureware

Risk Capital Allocation: Diversification benefit

Benefit =

Sum of individual risk capital assessments – aggregate risk capital assessment from *joint distribution* of the two (correlated) lines.

MInsureware

Berkshire Hathaway Schedule P 2006

No LOBs have the "same" tend structure and most LOBs have zero process correlation. Consider Private Passenger Automobile and Commercial Auto Liability

Note LOBs have very different trend structure and process variance

Berkshire Hathaway Schedule P 2006

Note zero process correlation. Blue lines represent trace of calendar year 2006

Minsureware 93

Forecast lognormal distributions (and their correlations) for each future cell for each LOB based on an explicit forecast scenario

ALM.								_
Total	25,966,538		97,713	55,991	37,506	25,695	19,419	1
Cal. Per.	25,980,855		2,571,638	1,199,857	639,334	337,281	173,651	8
	Total Fitted/Paid		2007	2008	2009	2010	2011	_
2005 2006	4,008,908	2,020,277	79,001	38,777	23,877	14,966	15,494	_
	4,011,063	1,928,056	1,599,904	682,204	366,309	196,740	106,393	6
	3,734,136	1,840,895	1,207,194	26,731	16,318	10,359	11,954	
	3,714,166	1,783,347	1,294,820	552,022	296,359	159,145	86,048	4
2004	3,362,493	1,663,027	1,139,227	428,201	11,242	7,137	9,282	
2004	3,443,730	1,649,599	1,197,652	446,766	239,812	128,758	69,606	3
2003	3,225,785	1,514,680	1,022,987	418,588	200,477	4,986	7,268	
	3,202,436	1,525,975	1,107,844	413,244	194,092	104,193	56,317	2

Blue is observed, black is mean of lognormal and red is standard deviation of lognormal

Minsureware 94

Berkshire Hathaway Schedule P 2006	
One Year Time Horizon- "Change" in Ultimates conditional	
on next year's paid losses?	
Related Question:	

When do estimates of prior year ultimates stay consistent on updating (next valuation period) ? No need for simulations! Why?

			Accide	ent yr Sumi	mary		
	Me	an	Standard	C	1	Cond. on Ne	xt Cal. Per.
Acc. Yr	Outstanding	Ultimate	Dev.	Outstanding	Ultimate	Std.Dev. Data	+-Ult Data
1999	404,928	7,341,745	96,942	0.24	0.01	54,108	80,437
2000	694,421	7,694,760	138,848	0.20	0.02	81,066	112,725
2001	1,169,064	8,854,561	187,454	0.16	0.02	113,677	149,051
2002	1,726,108	8,062,073	239,837	0.14	0.03	180,697	157,704
2003	2,012,700	7,324,906	245,950	0.12	0.03	190,312	155,797
2004	2,967,607	8,370,560	311,555	0.10	0.04	240,509	198,045
2005	4,895,219	10,343,879	509,057	0.10	0.05	336,132	382,302
2006	9,616,003	11,863,381	1,374,676	0.14	0.12	711,682	1,176,113
Total	23,898,022	80,529,585	2,040,345	0.09	0.03	1,172,221	1,670,001

Which risk characteristics of the data do calendar year payment stream distributions depend on? 1. Base development period trends, and

- 2. Calendar year trend assumptions for the future D

BH HOF	DIPLOS DH PP	A:PL(I) BH CAL:	PL() BH WC	SPLUD DH CHIPS	PL(I) BH MMDeet	1.0				
Summary he	es 📉 🔨 l	3 Differences	Yu.	Gal Ym	Clusters	www				
in land free	and all contractions in	Constanting En			1 [] 000					
ny max cap	HEAT MENCANION	Collesations Co	menations (log	1						
	Calendar Yr Summary									
	Calendar	Mean	Standard	CV	Cum. Payment					
	Yr	Outstanding	Dev.	Outstanding	as % of total	9				
	2007	7,622,060	1,088,629	0.14	31.89					
	2008	5,017,532	615,907	0.12	62.89					
	2009	3,488,650	393,684	0.11	67.49					
	2010	2,466,501	292,625	0.12	77.81					
	2011	1,733,841	236,258	0.14	85.06					
	2012	1,202,056	192,478	0.16	90.09					
	2013	757,950	139,015	0.18	93.27					
	2014	505,861	107,567	0.21	95.38					
	2015	351,572	85,873	0.24	96.85					
	2016	250,232	67,960	0.27	97.90					
	2017	182,100	56,547	0.31	98.66					
	2018	127.726	43.378	0.34	99.20	v				

Minsureware 🕫

Distribution of Aggregate Reserves=Sum of all lognormals for each future cell for each LOB

Note skewness (even) of aggregate distribution. Mean=23.9B, VaR at 95%=3.6B and T-VaR at 95%=5B

🗙 Insureware 👳

Berkshire Hathaway – Diversification Effects

MInsureware

Berkshire Hathaway, Swiss Re and The Hartford, comparison by Line of Business

Higher Mean does not necessarily mean lower CV

For PPA, BH Mean>HF Mean, and CV BH> CV HF For OLOcc,Mean Hart> Mean Swiss Re > Mean BH & CV Hart>CV Swiss Re >CV BH

WC for BH versus SR reserve distributions by calendar ver

Calendar Yr Summary						Calendar Yr Summary					
alendar Yr	Mean Outstanding	Standard Dev.	CV Outstanding	Cum. Payment as % of total		Calendar Yr	Mean Outstanding	Standard Dev.	CV Outstanding	Cum. Payment as % of total	
2007	159,884	32,398	0.20	16.46		2007	276,458	77,839	0.28	21.92	
2008	118,214	30,173	0.26	28.64		2008	221,292	77,816	0.35	39.47	
2009	93,152	28,529	0.31	38.23		2009	177,917	75,607	0.42	63.58	
2010	80,409	31,904	0.40	46.51		2010	143,055	71,663	0.50	64.92	
2011	76,096	39,128	0.51	54.35		2011	115,136	67,018	0.58	74.05	
2012	78,181	49,850	0.64	62.40		2012	92,834	62,235	0.67	81.41	
2013	68,736	47,445	0.69	69.48		2013	74,857	57,561	0.77	87.35	
2014	64,214	50,166	0.78	76.09		2014	55,040	45,666	0.83	91.71	
2015	57,252	49,542	0.87	81.99		2015	39,108	35,277	0.90	94.81	
2016	46,566	43,194	0.93	86.78		2016	26,129	25,878	0.99	96.88	
2017	39,796	40,247	1.01	90.88		2017	17,101	18,737	1.10	98.24	
2018	29,327	30,856	1.05	93.90		2018	10,828	13,282	1.23	99.10	
2019	26,004	30,693	1.18	96.58	~	2019	6,479	9,085	1.40	99.61	
1 Unit = \$1,000						1 Unit = \$1.000					

Distributions of payment streams by calendar year are different

These depend on the base development period trends and the assumed forecast scenario calendar year trends.

```
Minsureware 105
```

Risk capital allocation (%) by calendar year for WC, BH versus SR

% allocation very different. It is based on a variance/covariance formula that is a function of three factors. 1. The future calendar year trend (mean and standard deviation thereof) assumption, 2. Development period trends and 3. process variance.

Minsureware 106

Summary

•All companies are different and no company is the same as the industry.

Consistent estimates of prior year ultimates on updating can only be maintained within a sound modelling framework that incorporates calendar year parameters and assumptions about the future are explicit and auditable. The assumptions can easily be monitored on updating.

Reserve distribution correlation is usually considerably less than process correlation.

Segments of the same LOB such as 1. net of reinsurance and gross, 2. indemnity versus medical,
 3. layers, for example, limited to 500K and limited to 1M; have common drivers and are highly correlated.

•Different LOBs very often do not have common drivers. That is, the trend structure (especially along calendar years) is not the same and process correlation is zero.

A sound measurement of volatility and correlations (from the data) is essential to calculate risk capital allocation by LOB and calendar year, irrespective of capital risk measure.

Summary

- Combined reserve and underwriting risk charge < reserve risk charge + underwriting risk
- Mack and related methods can give answers that are wildly too low or too high and cannot capture the volatility in the data.
- The identified Probabilistic Trend Family (PTF) model measures the trends in the three directions and the distributions about the trend structure.
- In order to measure the process (volatility) correlation between two LOBs you need to first identify the PTF model for each LOB.

Minsureware 108

More information will be available at

CLRS - 2012

Insureware's Hospitality Suite

Sheraton Denver Downtown Hotel, Denver, CO 7:00pm-10:30pm Wednesday September 5th Thursday September 6th

(Also learn about the Bootstrap <u>technique</u> for testing validity of a model or method)