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7.1. Introduction
The purpose of this chapter is to address dynamic risk modeling in a loss reserving context.  It is the goal of this chapter that the reader will come away with an understanding of what dynamic reserving is (and is not), when dynamic reserving might be useful, and what types of models are currently being used – with some specific examples. 
Reserving risk is generally concerned with the variability of the unpaid loss estimate.  As an editorial note, throughout this chapter, the phrase unpaid loss estimate will be used interchangeably with loss reserve or loss liability.  This is distinct from an estimate of ultimate loss.  An ultimate loss can be estimated on or before the start (inception) of a coverage period and, when estimated after the start of the coverage period, becomes an unpaid loss estimate by subtracting paid losses as of a given valuation date.  Unpaid loss estimates by definition relate to liabilities arising from risks and circumstances on or before the valuation date of the estimates.  Ultimate loss estimate variability will often possess similar characteristics to unpaid loss estimate variability particularly for very slow developing lines of business at early ages of development where actual loss activity may be non-existent.  Also, for simplicity, the chapter will often shorten “loss and loss adjustment expense” to simply be loss.  As a practical matter, an actuary may address these two items separately or together, but for the purposes of the generalized discussion here, it is a difference without a distinction.

In “Chapter 2 – Overview of DRM Process”, we learned the following about Dynamic Risk Modeling:
In many disciplines, mathematical models have become important tools in the study of the behavior of systems.  The systems are diverse, almost unlimited, ranging from the biology of the human body to the weather to insurance.  For any of these applications, the type of mathematical model employed will depend upon the nature of the system, how broadly the system is defined, and what needs to be learned about the system’s behavior.  Considerations for building a model include:

•
the extent to which the system is described by stochastic versus deterministic mathematical relationships;

•
the length of time horizons if predictions of future behavior are important;

•
the ability of the system to adapt to changing environments; and

•
the nature of the system’s interrelationships with external factors or other systems.

These considerations, and the extent to which a model must emulate all facets of the real system, will determine how simple or sophisticated a model must be.

In the context of property-casualty insurance, dynamic financial models will incorporate different features depending on the application and the types of risks that must be measured.  The extent that certain features are emphasized will determine what might be called the "type" of model: i.e., is it primarily stochastic or deterministic; does it include feedback loops, etc.  However, different models may include any or all of these features to different degrees.
In the context of dynamic reserving, the purpose of the work, the intended audience for the analysis, as well as the practical limitations of what is known (and not known) about the loss process itself, are also critical in determining the types of models to use as well as their complexity.  

What this chapter does not address are specific prescribed scenarios or stress tests that might be required in certain regulatory filings or that might be required by the management of the company.  These scenarios can best be characterized as asking what required reserve levels are needed to satisfy specific “what if” criteria.  An example would include asking what the required reserves at some particular probability level would be if some legislative change were to significantly increase the benefits and indemnification for some statutory coverage retroactively.  It would not include the hypothetical scenarios of what if a force five tornado were to occur next year in an area where a company has a high concentration of property insurance exposures. 
7.1.1 Purpose of the Analysis
The specific purpose for which the analysis and estimation of reserving risk is undertaken is necessary to understand the standard under which such an analysis is performed.  Normally the fundamental purpose is to address the financial strength of a company in some manner, but the form the analysis takes will be dictated by the specific audience and requirement at hand.

It is also true that many other actuarial analyses might start with a reserving exercise.  For example, standard pricing techniques require an estimate of ultimate loss underlying the rates, and that estimate would, at its core, be a reserving exercise.  Other examples might be the evaluation of the profitability by business unit or company; or the evaluation of individual performers, in a performance “scorecard”.  It is easy to imagine that most actuarial analyses, almost by definition, require estimates of ultimate loss and thus could loosely be considered a reserving exercise, at least in part.

Beyond a traditional statutory reserve analysis or pricing exercise, management may wish to know more about “probability of ruin” or be able to allocate capital more intelligently. In each case, the actuarial analysis required will be much more “dynamic” than required traditionally.  Also, an internal company capital allocation exercise or determination of economic capital requirements may require an estimation of reserve variability at a more refined basis than the company taken as a whole.  

As mentioned, solvency regulation is an important requirement that an insurance company must fulfill, but this requirement has not necessarily been addressed by a dynamic estimate.  However, at the time of issuing this handbook, Solvency II regulation is nearing implementation.  That regulation requires the analysis of the variability of the company’s best estimate of its unpaid loss and expense liabilities as recorded in its financial statement (loss and expense reserve) and which will often reflect an actuarial central estimate as defined by Actuarial Standard of Practice No. 43 promulgated by the Actuarial Standards Board in the United States.  Although Solvency II is a European regulation, it will impact multi-national companies while coincidentally the National Association of Insurance Commissioners (“NAIC”) has concurrently undertaken a review of its capital and solvency requirements.
It is clear, then, that the purpose of the analysis will not only tell the actuary whether or not the reserving exercise needs to be dynamic or static, but also the level of complexity and granularity required of the output.

What is common among any standard or requirement for which dynamic risk modeling is performed is the element of modeling itself.  There can never be a guarantee that any probability level is absolute.  All estimates are constrained by the assumptions used in the model itself.  Historical information has shown, for example, that estimates of some “one in one hundred year events,” events that have a 1% probability of occurring in a given year, have actually occurred more frequently in some cases.  Indeed, some standards require the estimation of an event whose likelihood is beyond corroboration based on empirical information.
7.1.2 Audience for the Analysis
Closely related to the purpose for the analysis is the intended audience for the analysis.  Take as an example a standard, year-end, internal actuarial estimate of reserves.  In order to sign a Statement of Actuarial Opinion, an actuary will likely not need to employ dynamic reserving, at least in most jurisdictions.  However, their CEO or Board of Directors may wish to know not only the point estimate of reserves, but also how confident (statistically, that is) the actuary is in that point estimate.  Same exercise, two different audiences, two different approaches.
The user of a model must also be considered, and this may not always technically be the same as the audience.  As an example, a consulting actuary may prepare a reserve analysis, be it static or dynamic, which might ultimately be used by a pricing actuary or state regulator in their work.  Indeed, with the adoption of the Risk Focused Financial Examination process by the National Association of Insurance Commissioners (NAIC), company Enterprise Risk Management (ERM) efforts are central to the evaluation process.  As a control audit, rather than a substantive one, the examiners focus on the company ERM framework and analyses throughout the year, in order to assess their adequacy and effectiveness.  As such, the ERM work of the actuary would have senior management as its audience, but the regulator as a user.
The results of a dynamic model of reserving risk can be presented in several ways.  The application of the results, the context in which the modeling was performed, is the essential criterion that is needed to understand the results.  One should not judge a model per se, but rather consider how the model serves its intended purpose.  It can very well be the case that a well researched and constructed model, even one well recognized, may be an inappropriate model when applied to some specific situation it was not intended for.

As a cautionary note, we point out that the user or audience of any estimate of reserving variability must exercise caution when using the results of any model and interpreting probability levels. It also seems fairly obvious that the actuary owes a duty to point out the limitations, especially when dealing with non-practitioners.

There are few if any circumstances where a model of aggregate losses from an insurance process can be verified as a true and accurate representation of the underlying circumstances it is meant to represent.  Whenever probability levels are specified, these must be recognized as estimates within the constraints and assumptions of the model.  Indeed, from a statistical sense, it is postulated that what is being measured or modeled is a random variable that may vary over time, hence the term stochastic.  As a point of fact the properties requisite for a random variable can never be established.  It is also the case that observation over time is subject to changing conditions rather than a repetitive process that can be used to test statistical hypotheses or make statistical inferences.  It may be sufficient to understand the underlying process and interaction of forces to lead one to determine the reasonability of a model, but never in absolute terms.  The estimation and parameterization of size of loss (claim) models may be based on the observation of perhaps thousands of claims while the corresponding analysis of claim frequency models are based on more limited time period observations.  The claim periods are not necessarily “alike” and samples from the same distribution, unlike the use of a large sample of claims assumed to be from the same distribution. 
For example, if models that have been used to measure damages from a specific catastrophe differed by significant factors from what the actual damages turned out to be, that would call into question how reliable these models could be in estimating or predicting damages of future infrequent events.  Emerging regulatory standards, and some standards already in place, are intended to estimate rare events on the order of “one in two hundred year” probabilities, while there have been actual events characterized in that manner that have occurred with much more regularity.  There are often several reasonable and sound methods of estimating liabilities that will exhibit drastically different levels of sensitivity in model parameters, with concomitant uncertainty in estimating such parameters.  Using such different models in estimating reserving risk can be expected to lead to potentially drastically difference estimates of the extreme probability levels of interest.  The actuary should be aware of the underlying assumptions of the alternative methods which may be used to estimate model parameters, and should avoid methods that require large samples to be assured of good statistical properties when a large data sample is not available.  These are just examples of circumstances that the actuary and practitioner must consider when developing a model and evaluating its results.
7.1.3 Limitations

Harry Callahan (Clint Eastwood) in Magnum Force, 1973, famously said “A man’s got to know his limitations.”  Truer words were never spoken for any actuary.  It may be tempting, for example, to take a loss process for which very little is known and for which static techniques fail, and attempt a dynamic model.  The sheer complexity of the model itself may convince the actuary or their audience that much is known – after all, there are very pretty graphs with percentiles to the tenth of a percent!  In fact, it is likely that the modeler has done nothing more than add precision without accuracy.
With that said, however, one can imagine that modeling the loss process in greater detail may indeed improve the analysis.  It is often the case that a single random variable may confound a modeler until they parse it into two or three “driver” components.  The point here is not to discourage complexity or discourage dynamic modeling, but rather to point out that one must know their limitations.  This extends beyond the models and into data quality, data volume (credibility), changes in the loss process
 over time, etc.  Consideration must be given not only to what comes out of a model, but also what goes in.
7.2. Conceptual Framework

Reserving risk measures the uncertainty associated with liability estimates for loss and loss adjustment expenses arising from insurance or reinsurance contracts.  It also addresses self-insured or captive liabilities that are potentially the subject of insurance contracts.  Reserving risk does not necessarily consider the specific methods used to estimate liabilities, or any other considerations used by companies to prepare financial statements and record a specific reserve against the subject liabilities.  The actual methods used to estimate liabilities will often be an integral part of the measurement of reserving risk or influence the approach used in the measurement of reserving risk.  The estimation methods themselves will also affect the resulting variability estimates that are made as mentioned earlier.  There can be circumstances where the measurement of reserving risk is based on methods that differ from those used to estimate reserves. Conceptually such circumstances assume that, given the expected value (mean) of liabilities, the shape of the liability distribution relative to the expected value can be measured and estimated.
The methods used in the measurement of reserving risk normally employ models of some type.  These models are depictions of how future payments can vary due to the uncertainties arising from those factors that affect the timing and amount of those payments.  These models may also include components of the claim settlement process that actually determines what payments are made in the future.

There may be a continuum of such factors and potentially unknown factors that are not identified or modeled.  That is to say, a model is necessarily finite in scope regardless of how many possible model outcomes of payments are created whereas the underlying loss settlement and payment process may be “infinite” in scope.

This implies that the estimates produced by a model are not absolute as there are factors that affect loss payments that are not captured by the model.  The reasonability or reliability of the estimates produced by a model can be judged by the users and independent reviewers.  Reasonable and reliable models can be created for some circumstances that will not produce exactly the same result.
There is also a time horizon, or risk horizon, over which measurements of reserving risk are made.  The variability of a reserve estimate will be significantly greater over a five year time horizon than a one year horizon.  The risk horizon reflects the time period over which unknown events and circumstances will affect the estimation and ultimate disposition or value of liabilities, and is essential to estimating risk.  A presentation at the Casualty Loss Reserve Seminar
 encapsulated the concept of risk horizon and its relationship to estimating risk:  “The time horizon (period of time over which adverse events can emerge) of the estimate and its corresponding range must be clearly understood”. 
The approach to constructing a dynamic risk model will normally consider the three major sources of risk or uncertainty associated with any model of insurance losses.  These will be referred to as parameter risk, process risk, and model risk.  Some references have included model risk as a specific form of parameter risk because model risk encompasses uncertainty of how parameters fit together in constructing an “accurate” model of the insurance process
.  These concepts are described more extensively later in this chapter.
7.2.1 What is the Random Variable?
Perhaps the first step in any actuarial analysis is to determine just exactly what you are modeling.  There are at least two distinct variables that are normally measured, and those are described here.  One is the measurement of reserve risk based on total liabilities, where the distribution and statistics of possible outcomes of total liabilities is the subject of interest.  The second is the measurement of reserve risk based on estimates of liabilities where the distribution and statistics of estimates of the mean (expected value) of total liabilities is the subject of interest.  In this Chapter an estimate of the mean will represent an Actuarial Central Estimate (“ACE”): “an estimate that represents an expected value over the range of reasonably possible outcomes”.
   Note that in this definition the total liability variable mentioned earlier is directly related to the “range ‘reasonably’ possible outcomes”.
Aggregate Liability Measurements

Some very early work in this area dates back to Pentikäinen
 which eventually led to the introduction and estimation of  an equalisation reserve for insurer solvency in Finland.  The equalisation reserve remains in use until replaced by Solvency II and International Financial Reporting Standards (“IFRS”).  What developed was the foundation of a collective risk model for aggregate losses and liabilities.  The goal of the collective risk model is to describe or measure the distribution of total losses from an insurance process composed of individual claims with individual claim amounts.  Some years later many collective risk models were compiled and published in “Insurance Risk Models”.
 
The technical difference between aggregate losses and aggregate liabilities is time dependent.  At time zero or earlier of an insurance process, the question of an aggregate loss distribution is of primary relevance.  After time zero, claims will actually have occurred and be in various stages of settlement, including setting individual claim or case reserves and partial or full and final settlement.  The primary relevant distribution is therefore a conditional distribution of the aggregate liabilities that recognizes the facts and characteristics of the insurance loss process at that time.  At the other extreme, near the terminal time of the insurance loss process, the only relevant interest is the distribution of that last claim to be settled and closed.

In all respects the interest is future loss payments from individual claims, regardless of whether or not they have occurred, been reported, or have had partial payments made against attaching insurance coverage.  The insurance process may also include loss adjustment expense, particularly the “defense and cost containment” (“DCC”) type or the old “allocated loss adjustment expense” type.  The other “adjusting” or “unallocated” loss adjustment expense is also relevant but normally estimated as an add-on or extension of the models used to estimate aggregate losses.
The concept of an aggregate liability distribution requires certain conditions as are always necessary when a random variable is involved
.  The essential requirement is a random process or a stochastic random variable associated with a process that is random over time.  The possible outcomes of an aggregate liability random variable are discrete as they are measured in monetary terms.  Many insurance models incorporate functional forms of continuous random variables that are continuous approximations of discrete random variables.
There are methods to describe this distribution the most familiar of which is a Monte Carlo simulation.  Other methods have been developed to provide models through alternative numerical methods.  The Proceedings of the Casualty Actuarial Society (“CAS”) contains the Heckman-Meyers approach
, while Fourier Transforms, and Fast-Fourier transforms were developed later.
In some situations where a large number of claims is encountered, a normal approximation can serve to describe the distribution of total losses in accordance with the Central Limit Theorem
.  One can observe this directly by reviewing the simulation results of a collective risk model as the number of claims is increased. 
Liability Estimation Measurements 

It is also possible to conceive of another distribution, that being a distribution of estimates or estimators of the expected value of the aggregate liability.  Note that the concept of an expected value presumes that the aggregate liability has a probability distribution.
The current focus of Solvency II
 is the distribution of that estimate of the expected value or mean that is used to record financial reserves for insurance liabilities, which is more properly viewed as a company’s best estimate or the ACE.  The distinguishing feature being made here is that there can be many valid and reliable ACEs of the aggregate liability.  Indeed, one can conceptualize a distribution of ACEs where, in actual practice, a finite number of specific estimations may be made and a single ACE emerges or is “selected.”

The uncertainty of the ACE can also be looked at as parameter risk or parameter uncertainty.  Here the parameter of the aggregate loss distribution is the mean or expected value.  Conceptually if one knew all estimators of the ACE one could construct the distribution of the ACEs and thereby come to the expected value of the ACEs.  This would theoretically eliminate parameter uncertainty as one would know exactly the expected value of all ACEs and therefore the expected value of the aggregate liability distribution.
But regulation focuses on the distribution of that mean, that ACE or best estimate, after the passage of time, typically one year.  This hypothesizes a distribution of the ACE one year later that recognizes the effects of new claim and loss information during that year as well as the interaction with how the ACE was determined to begin with.  For example, an ACE based on a triangulation of losses (chain ladder) would be recalculated using additional loss development factors related to each coverage period and maturity. 

7.2.2 Sources of Reserving Risk

Reserving risk is defined as the risk that the actual cost of losses for obligations incurred before the valuation date will differ from expectations or assumptions for reasons other than a change in interest rates.  Reserving risk is part of the liability risk of insurance companies, which also includes pricing risk, loss projection risk, catastrophe risk, reinsurance risk and customer behavior risk.  Considering the magnitude of the loss reserves in any property-casualty insurers’ book and the uncertainty involved in estimating the loss reserve, loss reserve risks can be prominent risks for insurance companies.  

Understanding the sources of reserving risk and the relationships among those sources of risk is a prerequisite to the successful application of a reserving model.   Property-casualty insurance risks can be grouped into different categories, such as asset risk, liability risk and asset liability management risk.  

Here we are going to focus on loss reserve risks.  The Foundations of Casualty Actuarial Science – Third Edition, listed three components of reserve risks:

Process risk: Process risk is the risk associated with the projection of future contingencies which are inherently variable.  Even if we properly evaluate the mean frequency and the mean severity, the actual observed results will generally vary from the underlying means.

Parameter risk: Parameter risk is simply the risk associated with the selection of the parameters underlying the applicable model of the process.  Selecting the wrong loss development factors, resulting in erroneous expected loss emergence, is an example of parameter risk.  It is challenging to determine whether the selected parameters accurately represent the true underlying distribution.

Model Risk:  This is the risk that the actual, but unknown, expected value of the liability deviates from the estimates of that expected value due to the use of the wrong models.  This is the “unknown unknown” that has been frequently discussed since the financial crises of recent years, for example.
Another possible source of reserving risk is the highly improbable and unpredictable events that have massive impact: the black swan
 event.  This source of risk is addressed by Solvency II as “extreme or exceptional events” and is a form of model risk prescribed by regulation that deals in part with the “unknown unknown” events that are not modeled regardless of whether the “right” or “wrong” model is used.  Insurance companies, large or small, are subject to large losses arising from infrequent events or catastrophes.   These events include natural catastrophes such as Hurricane Katrina and the 2011 Japanese earthquake, man-made catastrophes such as the World Trade Center terrorist event, and casualty catastrophes such as Asbestos and Environmental mass tort liabilities.  Due to the magnitude and uniqueness of these catastrophic events, modelers cannot easily predict them.  

Besides the above risk sources, reserving models should be developed with the consideration of many other important factors relating to the claim life cycle and settlement process.  These factors, such as inflation, reinsurance recoveries, changes in claim trend, legislative and economic factors, may pose significant challenges or risks for developing reserving models.   For example, a long tail line of business is particularly sensitive to inflation factors.   When developing reserving models for Workers’ Compensation, care should be taken to ensure no systematic underestimate of reserves after careful consideration of future inflation estimates among many other key factors.

7.2.3 Range of Reasonable Estimates versus Range of Reasonable Outcomes
Whatever the method chosen, or model employed, it is important to be clear about what is being estimated.  This will depend on the audience and purpose of the project, and should be clearly spelled out for the user of the work product.  

Let us define then, several key terms, and give them symbols.  First, assume we are talking about a single line insurer and we are referring to ultimate loss and DCC for a single year.  This avoids, for the moment at least, the issue of correlation, which is not necessarily pertinent to this discussion.

Let L represent actual ultimate loss and DCC for year X and line of business Y.  Let µL be the true, underlying expected value of L, and (L is the standard deviation.  Finally, let G() denote the functional form of the distribution of L.


L ~ G(µL, (L)

In this scenario, the difference between actual and expected outcomes is due to process variance only, as the model is fully known and fully described.  Given these facts, if an actuary is to show a range of possible outcomes, the practitioner needs to describe G().  If an actuary, for purposes of a reserve review, for example, wishes to show the range of reasonable estimates, he or she would need not only to understand G(), but further make a value judgment as to what is “reasonable” in terms of outcomes (e.g. the 40th to the 80th percentile).

As a practical matter, µL, (L and G() are rather theoretical constructs which cannot be known with certainty, except in trivial cases.  It is also true that the functional form of G() may not be a nice, closed form, two or three parameter distribution readily accessible and understood by actuaries.  The loss process is almost certainly more complex than that.

Therefore, actuaries often rely on assumed distributional forms, as well as estimates of their key parameters, in order to produce their best description of G().


Let:



Ĝ : assumed distributional form of L
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: estimate of the mean
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 : estimate of the standard deviation


Therefore:
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Using  Ĝ  and a judgment about what is “reasonable” an actuary can and does describe a range of reasonable outcomes.  In so doing, the practitioner will undoubtedly perform several different analyses in order to determine a best estimate for [image: image10.png]


.  Indeed, the actuary may take the additional step of incorporating explicitly the distribution of [image: image12.png]


in order to better describe  Ĝ .


For example:
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With the distribution of [image: image19.png]


 in hand, we can begin to discuss the concept of range of reasonable estimates.  Under the gamma assumption, and with proper estimates for ( and (, one could describe an estimated distribution of the mean of L.  Using this information, an opining actuary could make value judgments about the reasonableness of various estimates of L.  For example, “Company X has booked IBNR such that the implied estimate of ultimate loss and DCC is at the 10th percentile of my estimated distribution of means ( [image: image21.png]


 ).  I would therefore conclude that reserve levels are not ‘reasonable’ as currently stated.”

When parameterizing the distribution of the means, actuaries will often look to the estimates derived from their various techniques (paid LDF, incurred LDF, etc.).  The range of such estimates, can give a sense for both a mean and standard deviation for the chosen distributional form of [image: image23.png]


 .  It is important to realize however, that it is not simply the dispersion in the array of estimated ultimates that is important in modeling [image: image25.png]


, but one must also consider the stability of those estimates as well.  In other words, one must consider the variance across the estimates as well as the variability of the estimates.  

For example, assume that there are two lines of business, each of which generate the following actuarial estimates:

[image: image26.emf]Estimated Ultimate Loss and ALAE

Method Line A Line B

Paid LDF 776,300         776,300        

Incurred LDF 768,300         768,300        

Paid Born-Ferg 775,900         775,900        

Incurred Born-Ferg 782,200         782,200        

Frequency/Severity 776,100         776,100        

Cape Cod 803,100         803,100        

Reserve Development 802,400         802,400        


If the actuary were only considering the variability in their estimates, they might conclude that these lines are equally volatile.  However, by looking at paid loss development factors, for example, one can see that there is a difference in the variability of the estimates which is clear.

[image: image27.emf]Line A

Paid Loss Development Factors

Acc Yr 12 24 36 48 60

1987 4.00 2.00 1.50 1.00 1.00

1988 4.00 2.00 1.50 1.00

1989 4.00 2.00 1.50

1990 4.00 2.00

1991 4.00

Select 4.00 2.00 1.50 1.00 1.00


[image: image28.emf]Line B

Paid Loss Development Factors

Acc Yr 12 24 36 48 60

1987 3.77 2.99 1.71 1.13 0.58

1988 4.34 1.12 2.14 1.31

1989 5.76 1.95 0.76

1990 2.12 1.76

1991 2.99

Select 4.00 2.00 1.50 1.00 1.00


7.2.4 Gross versus Net of Reinsurance
To this point, no distinction has been made as to whether the actuary is modeling losses (or reserves) on a basis net of reinsurance or gross of reinsurance.  Clearly, there are contexts in which each is appropriate.  In financial statements, for example, net of reinsurance is paramount.  However, in a study of corporate risk management, relating to the optimal outwards reinsurance structure, a gross analysis would be necessary.

What is important is that the actuary is aware of the correct (or at least most appropriate) approach for the analysis at hand, and is also aware of the potential limitations of their choice.  Whether in a dynamic or static modeling situation, it is important that the method of estimation receive its due consideration.

In Actuarial Standard of Practice No.43 - Property/Casualty Unpaid Claim Estimates, the Actuarial Standards Board offers the following:  “The scope of the unpaid claim estimate analysis may require estimates both gross and net of recoverables. Gross and net estimates may be viewed as having three components, which are the gross estimate, the estimated recoverables, and the net estimate. The actuary should consider the particular facts and circumstances of the assignment when choosing which components to estimate.”  

While the guidance does not proscribe any particular approach in a given situation, it does point out that an awareness of implicit assumptions are important.  It is also fair to say that, from a purely technical point of view, it is generally considered more accurate to estimate gross and ceded, thus inferring net via subtraction.  It is also generally accepted practice, due to practical considerations, to estimate gross and net, with the difference being ceded.  In this discussion, it is our intent to simply point out considerations and potential limitations, rather than offering general guidance for the practitioner.  

If an actuary is performing a dynamic reserving analysis for a portfolio with only quota share reinsurance from inception to date, and none of the terms and conditions of reinsurance have changed and the quota share percentages do not vary within reserve grouping – e.g. line of business and year – then the choice of approach is likely not material, but typically an actuary would simply perform the analysis gross, and apply ceded ratios at the end.

If, however, there are multiple types of reinsurance cessions applicable to a reserve grouping, the choice is more complicated.  In order to achieve homogeneity by reinsurance treaty, the data could be further segmented.  However, if the reduced credibility is not offset by greater accuracy, the actuary may need to simply model net and gross independently.

While this latter approach may be dictated by the realities of widely diverging treaty parameters
, it does present some limitations:

In a static or dynamic situation, the gross and net analysis may produce nearly identical results.  It is also possible that the net estimates could be greater than gross.

In a dynamic reserving exercise that requires both net and gross results be considered, care must be taken to insure that the scenarios make sense relative to one another.  As an example, if the objective is to show management the potential downside of the worst 10% of scenarios, care must be taken to insure that the actuary show the same scenarios.  It is not sufficient to simply model net and gross independently and take the worst 10% of each, because the worst gross years may not produce the worst net years, and vice versa.  This compilation error could be especially detrimental if the purpose of the project is to evaluate various reinsurance programs.  The solution is no less clear.  By definition, the relationship between net and gross is clouded by differences and changes in treaty parameters, rendering a dynamic relationship between the two similarly difficult to estimate.

If the dynamic analysis requires only net output, the previous errors are perhaps limited.  However, the analysis itself would leave unanswered questions of reinsurance collectability, for example.

As stated previously, estimating gross and ceded amounts separately yields the most robust estimates generally, but is also the superior choice in dynamic reserving in particular.  The relationships explicitly or implicitly created by reviewing the components separately can often avoid the issue of matching up scenarios.  In the case of simulation for an excess of loss treaty, for example, a gross loss is simulated, a ceded loss is calculated and a net loss is the remainder.  Thus, the underlying conditions creating each component are undeniably from the same scenario and thus the structural integrity of the results is maintained.

That said, simply deciding to model gross and ceded does not solve all problems, but rather creates new issues if one is modeling aggregate losses rather than individual claim data.  For example, the assumptions around the size of loss distribution becomes of paramount importance, creating parameter and model risk not present in a simple gross and net analysis of loss development triangles, for instance.  Not only does this analysis require assumptions of frequency, severity and size of loss, but it also must meaningfully comport with the expected value, in aggregate, of the needed loss reserves.  In other words, simulating 10,000 years of individual losses which imply a reserve balance bearing no resemblance to the expected value does little good in adding to the understanding of net versus gross.
7.2.5 Discounted versus Nominal Values

Traditionally, loss reserves are stated at their nominal value.  Whatever the historical basis for this, or ones feelings about its implicit economic validity, many analyses require the actuary to consider discounting.  This adds complexity to the analysis, placing emphasis as it does on not only the amounts to be paid, but also when those payments will be made.  Considerable debate also has taken place regarding the appropriate interest rate to be used, as well as the added estimation error in assuming an investment return many years hence.
Consideration of investment yields

The uncertainty inherent in reserve estimates is compounded by the consideration of investment yields (discounting) of unpaid claim estimates.  Statutory reserves are discounted in three instances: a) tabular discount on long-term disability and similar workers’ compensation indemnity benefits, (b) monoline (often single-state) medical malpractice carriers, and (c) financially troubled insurers (e.g. Michigan Catastrophic Claim Association) with explicit permission for discounting granted by their state insurance department.  The discount rates used are those approved by respective states.  For US GAAP reporting purposes, the discounting is allowed if payment pattern and ultimate cost are fixed and determinable on an individual claim basis, and the discount rate used is reasonable on the facts and circumstances applicable to the reporting entity at the time the claims are settled.  However, there is no clear guidance regarding the appropriate discount rates to be used.  Some insurers elect to use the statutory discount rates for GAAP reporting purposes, others have adopted an investment-related discount rate (e.g. US Treasury yields, investment-grade corporate bond yields).  The IASB/FASB (US GAAP and IFRS convergence) Insurance Contract discussions have noted that the discount rate should reflect the characteristic of the unpaid claim liability.  It was further mentioned that risk-free rate, adjusted for illiquidity, for the appropriate jurisdiction should be used.  However, the debate on whether risk-free rate is the most appropriate discount rate to apply is still ongoing.

Payment patterns

The other aspect of discounting of reserve estimates is the payment patterns used in conjunction with the selected discount rate to derive the discounted unpaid liability.  For the lines of business that are often discounted (usually long-tailed), such as workers’ compensation and general liability, an insurer’s own historical payment patterns (if data is considered credible) or industry payment patterns based on Schedule P are usually used.  It is worth noting, however, the claim payout for certain types of business (e.g. reinsurance liability, asbestos and other latent claims) are often driven by settlements of large claims.  Because such settlements can occur randomly, it is difficult to select a reasonable payment pattern with much confidence.  
7.2.6 Effects of Correlation

It is rare that an actuarial analysis will involve a single line of business and a single year.  It is therefore often the case that the actuary will be required to combine various estimates over time and across lines of business.  This requires the explicit or implicit consideration of correlation.  This is not a straightforward endeavor. 
Estimation of Correlation, Practical Approaches
It has long been recognized that various lines of business within an insurer’s portfolio are not perfectly correlated.  In addition, geographic diversification of an insurer’s portfolio may also mitigate the total risk faced by an insurer.  Therefore, the aggregate reserve risk estimate for an insurer should be less than the sum of the estimates for individual lines (geographies) of business.  Nonetheless, there does not appear to be a commonly used method to adjust for such correlation.  Some actuaries prefer a mathematical formula to calculate the amount of correlation adjustment explicitly, while others choose to consider the correlation among lines of business implicitly in their reserve variability estimates or disregard the adjustment altogether.  Solvency II prescribes that correlation matrices by lines of business are used for reserving purposes.  However, the parameters within such correlation matrices are still subject to insurer’s own estimates.

7.3. Interpretation and Application of Model Results
Perhaps the most complete presentation of the results of a model is the specification of a probability distribution of the variable of interest, whether the random variable is the  aggregate losses or the ACE as discussed earlier.  This presentation can take the form of individual iterations from a simulation or a parameterized analytical form that describes the results.  In some applications, several alternate scenarios may be modeled and the results of each scenario may be presented and reviewed; other times the scenarios may be combined through some type of weighting.

It is often of value when interpreting and understanding results to also provide supporting distributions of underlying parameters or subsets of the modeled circumstances.
It is also possible that the results of a model are captured in the estimate of a single parameter of a distribution.  For example, the model may only need to estimate the aggregate loss amount related to some specific probability level, normally a very high value in excess of 95%.

In addition to probability levels, it is often of value to decompose results into elements of the modeling process.  Earlier there was discussion of parameter risk (uncertainty), process risk, and model risk.  A dynamic reserving risk model may be constructed in a manner that addresses each of these components.  Evaluation of the results may best be accomplished by reviewing the marginal impact of each of these elements separately.
7.3.1 Types of Models

As stated in Chapter 1, in “its ‘simplest’ form, a dynamic risk model can be used to analyze a narrowly defined pricing or reserving risk using stochastic simulation of future cash flows.  In a complex form, a dynamic risk model can be used to analyze the entire cash flow of a corporation, including all aspects of company operations”.  In this Chapter, we are exploring reserving risk and describing various ways that actuaries today are quantifying and describing that risk.  

Toward that end, we are attempting to describe the estimation of a distribution of outcomes related to unpaid loss liabilities.  As stated in The Analysis and Estimation of Loss & ALAE Variability:  A Summary Report (1), this distribution of outcomes (denoted as the “distribution of future loss payments”) “has a specific statistical meaning and actually exists separately from the professional estimating that distribution...”  In other words, there is a theoretical distribution of outcomes that exists, regardless of whether the tools employed are sophisticated enough to accurately measure said distribution.  At one end of the spectrum, the actuary may simply employ several standard (deterministic) models and use the results to imply a level of dispersion.  At the other extreme, one might include process risk, parameter risk, event risk, judicial risk, operational risk and a host of others to arrive at a more sophisticated estimate of the distribution of outcomes.  The models described in this Chapter are certainly more at the latter end of the spectrum, but there is still a great deal of diversity in terms of the level of sophistication required.

It is clear from this description that a dynamic risk modeling exercise in the context of reserving risk requires the establishment of (a) a model or framework describing how the loss process behaves; (b) expected values or projected values of the parameters required by the framework; and (c) a distribution of the parameters themselves and/or the exogenous factors which are presumed to impact the parameters or outcomes
.  

In a very real sense, then, the dynamic risk modeling of reserving risk is tied quite closely to the estimation of reserve variability.  Thankfully, the estimation of reserve variability is a topic with no shortage of treatment in the CAS literature.  In his Introduction to Selected Papers from the Variability in Reserves Prize Program (2), Gary Venter outlines for us several classes of methods or models used in estimating and evaluating reserve variability.  We have used these categories as a starting point for this Chapter.
As an example, assume that you are going to construct a dynamic reserving model based on paid loss development.  The framework chosen is a multiplicative model of paid loss at successive evaluations (monthly, quarterly, annual, etc.) for a given accident year, report year or policy year.  The parameters are the expected value loss development factors and the variability measure is the standard deviation or standard error of those loss development factors.

Taking the example one step further, one could assume that the development factors (LDFs) are distributed as lognormal, as described in Wacek (3).  The historical values for the LDFs are then used to parameterize the lognormals at each age.  Using simulation, the modeler could produce 10,000 “completed triangles”, from which a distribution of reserves could be inferred.
7.3.2 Overview of Selected Models
“The goal of modeling insurance losses is not to minimize process uncertainty, as this is simply a reflection of the underlying process that is generating the claims…The goal of the analyst should be to select a statistical model(s),…which most accurately describes the process uncertainty in the data while also minimizing the parameter and model uncertainty.” (1)

The broad categories of models are taken from Venter (2).  There are certainly other legitimate ways to categorize the methods, and there could be legitimate disagreement over which methods belong in which buckets.  For our purposes here, these distinctions are likely not important, as the goal is to outline in general terms the various approaches to estimating variability.

Methods Based on Variance in Link Ratios 

Generally speaking, loss costs evaluated at an age, D bear some mathematical relationship with the same loss costs evaluated at its ultimate age, U.  As most actuaries are aware, the link ratio technique makes the assumption that this mathematical relationship is linear, with no constant term.

If the link ratio model is the one chosen
, one can imagine that a variability measure assigned to the link ratios themselves can help in determining the variability of ultimate loss costs and thus reserves.

Perhaps the best known of the models in this category is the one first presented by Thomas Mack in 1994 (6).  The abstract for the paper describes its contents as follows:

“The variability of chain ladder reserve estimates is quantified without assuming any specific claims amount distribution function. This is done by establishing a formula for the so-called standard error which is an estimate for the standard deviation of the outstanding claims reserve. The information necessary for this purpose is extracted only from the usual chain ladder formulae. With the standard error as decisive tool it is shown how a confidence interval for the outstanding claims reserve and for the ultimate claims amount can be constructed. Moreover, the analysis of the information extracted and of its implications shows when it is appropriate to apply the chain ladder method and when not.”

Mack uses the implications and underlying assumptions of the link ratio technique to develop a measure of variability in the link ratio estimates.  From there, he is able to determine confidence intervals for ultimate loss costs and reserves.  

Mack postulates that, not only is the loss-weighted average loss development factor, fk, an unbiased estimator of the true underlying factor, fk, but so too are each of the individual observations by year (under the independence assumptions spelled out in the paper).  Again, these are not assumptions made by Mack, but rather direct consequences of choosing the link ratio method, and all of its implicit assumptions.

With independence by accident year and the unbiased nature of fk, Mack then develops a framework for determining the variability of fk, and thus the ultimate loss costs and reserve estimates.  Using Mack’s notation, we have the following results:
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Where:

1. Cjk = loss costs for accident year j, development age k

2. fk = loss development factor

3. s.e.(CiI) = standard error of the estimated ultimate loss costs

4. ( = proportionality constant from the variance calculations
5. [image: image31.png]



A detailed derivation of each of the parameters is beyond the scope of this chapter.  However, as pointed out in the paper, the distribution of C is completely described by the distribution of reserves, R (the difference between the two being a scalar).  Thus, s.e.(CiI)= s.e.(RiI) and RiI = CiI – Ci, I+1-i.  With the expected value and standard error terms in hand, one can directly estimate a confidence interval for reserves, by assuming a distributional format, such as lognormal.

In his paper, Wacek (3), building on a paper by Hayne (4) among others, takes a similar approach, but assumes that the individual age-to-age loss development factors themselves are distributed as Lognormal.  “The product of independent Lognormal random variables is also Lognormal, which implies that age-to-ultimate loss development factors are also Lognormal.”(3)  In similar fashion to Mack, Wacek/Hayne seek to estimate expected values and variance parameters for each age of development, thus describing the potential uncertainty in the link ratio estimates.

How might this information be used in so-called “dynamic reserving”?  In some sense it depends on how you define that phrase, and in the context for which the work will be used.  For some, the act of estimating the standard error of the reserve estimate and resulting confidence interval (as shown in Mack), might fit the bill.

For other practitioners in other situations, the application may be more involved.  Let us take as an example the use of the Wacek and Hayne view of the loss development paradigm.  Using a typical 10 x 10 triangle, one could derive a Lognormal distribution for each age
.  Making random draws from this lognormal, the actuary could develop completed triangles for each of 100, 1000 or even 10,000 years depending on the convergence characteristics of the results.
At this point, we again suggest that this may be sufficient for a given line or a given work product.  For example, say that a monoline insurer wishes to stress test the reserve estimates underlying their five year financial plan.  This sort of exercise might work very effectively.

Taking this a step further, however, one can see that the process of “dynamic reserving” can be further enhanced by:

· Performing the exercise on multiple lines of business, with assumptions about correlation.

· Estimating “random shocks,” which could be individual large losses or aggregate loss development factors well into the tail.

· Introducing additional variables
While these methods are relatively straightforward, there are practical considerations to implementation.  For example, how does one combine the various estimates and ranges developed from paid and incurred data separately?  What if my data appears to violate one or more of the basic assumptions underlying the link ratio method?
Methods Based on the Collective Risk Model 

The idea behind the collective risk model is fairly straightforward:  model frequency and severity separately to determine the aggregate loss distribution.  In his paper, A Method to Estimate Probability Levels for Loss Reserves, Roger M. Hayne lays out the basics for us.
In its simplest form this model calculates the total loss from an insurance portfolio as the sum of N random claims chosen from a single claim size distribution where the number N is itself a random variable. With some fairly broad assumptions regarding the number and size of claims we can draw conclusions regarding the various moments of distribution of total claims. Thus, this model seems to be a reasonable choice as a starting point in estimating the distribution of reserves for an insurer.

Unlike the Mack method, which is distribution-free, a collective risk model makes assumptions about the distributional forms of frequency and severity.  This adds an element of estimation uncertainty to our process, model specification risk
.  Again, we turn to Mr. Hayne in his own words:
Though many of the stochastic methods we have seen attempt to provide estimates of process variation and sometimes even parameter variation within the framework of the particular model those methods do not provide a convenient means of measuring the possibility that the model itself may be incorrect. Even regression related approaches with regimens in selecting which independent variables to include can only claim to provide the “best” estimate within a particular family of models and do not generally address whether another family is indeed better for a particular situation.

It is suggested that, in many cases, actuaries will use several models and allow the outcomes of each to help determine which family of models might be best.  It is also fairly common practice to use “set-aside” (or validation) data to help insure that the model is indeed predictive, and not simply over-specified.  In this case, the actuary might set aside one-third of their data for validation purposes, using the remaining two-thirds of the data to parameterize one or several model forms.  The set-aside data will give an indication of which model(s) work best.

The use of a collective risk model therefore presumes that the practitioner can (a) specify and parameterize the model; (b) determine in some meaningful way that model specification error is minimized; and (c) either accept or model directly the parameter uncertainty.

Using Hayne’s notation, the number of claims is denoted N, the value for each claim is Xi and T is the total loss costs, ∑Xi.  The process proceeds as follows:

1. Randomly generate Nj for iteration j
2. Randomly generate Xi,j for i = 1 to Nj
3. Tj = ∑Xi,j
4. Repeat for j = 1 to “many”

It is fairly common to assume that N is distributed as Poisson.  In order to allow for parameter uncertainty, Hayne suggests that the Poisson parameter () also be a random variable, a Bayesian approach which assumes that there is a distribution associated with this parameter.  For convenience, he has chosen a Gamma distribution, which results in N being distributed as Negative Binomial.  As a practical matter, since we are using simulation in this case, it is perhaps less important that N have a closed form distribution.
Instead, one could treat  as a random draw from any distribution, allow that random draw to feed the Poisson distribution, which in turn receives a second random draw, given .  As an example, assume that frequency has been between 1 claim and 4 claims over the experience period.  The practitioner may feel as though any  between these two numbers is equally likely, so the model is set up for a random draw from a uniform distribution to determine , which feeds the Poisson draw
.
The process for estimating the Xi is quite similar.  Typically, a size of loss distribution is determined and random draws are taken from this distribution.  Picking the family of models and the parameters has the same set of uncertainties previously described, so care should be taken.  In many cases, the actuary may choose a distribution underlying their increased limits factors, or those promulgated by the Insurance Services Office (ISO), or similar rating agency.  As with most actuarial activities, there is a tradeoff between the responsiveness of the results to the uniqueness of the Company book being estimated and the credibility of the underlying data.
Methods Based on Parametric Models of Development 
This section presents parametric modeling approaches to creating dynamic models of reserving risks.  Several types of models are presented that illustrate the potential broad spectrum of these types of models.

What is a common element of the models discussed is their focus on “incremental” approaches and the utilization of independent observations.  Incremental approaches avoid the complications of dependence and correlation encountered in estimation methods such as the chain ladder.  The establishment of independent random variables lends itself to the application of statistics in order to estimate expected values, variances, and other parameters of distributions depending on the information and data available.

A second common element is the lack of data needed to model process risk and include that in estimating the distribution of total liabilities.  The models presented sometimes include only estimates of standard deviations of the reserve distribution, or invoke assumptions based on reasoning applied to the claim and loss process in order to include process risk.  There continues to be increasing focus on model validation in all fields which is an important consideration when considering these types of models, both those included herein as well as new or revised models developed by an actuary.
All these methods provide references on how such models can be constructed and applied when the required data are available.  These methods also provide how to approach creating parameterized models for future research and development by actuaries.
 Although not included herein, the models can potentially be enhanced and expanded to include process risk by incorporating information and data, where available, that reflects the underlying and accompanying claims and loss process.  Models that estimate variances (second moments) could also be extended through bootstrapping, simulation, or matching moments to an analytical distribution that is assumed to be reasonable for modeling.
The models are presented in general chronological order based on publication.
Stochastic Claims Reserving When Past Claim Numbers are Known, Thomas S. Wright, Proceedings Reference (1992)
Wright presents a modeling approach to estimate future claim costs that requires at least two historical data triangles.  One data triangle is the dollar amounts while the other is the number of claims.  Wright identifies three types of primary triangles that may be available for use:

1. Number of closed claims, and payments on closed claims assigned to the development period of settlement.

2. Paid loss triangle (all payments), and paid claims triangle, where all payments are assigned to the development period of payment.  The latter reference addresses the assignment of “partial payments” on claims made prior to final settlement and payment.

3. Number of closed claims, and paid claims triangle, where all payments are assigned to the development period of payment

Wright first presents the analysis of the first two situations which are equivalent as regards the modeling presented, and then applies these methods to the third situation which is more common in practice.

His notation represents the incremental values from the two data triangles:

Yw,d =  Payments for year w during development period d.  Years may be accident, report, or policy years

Nw,d = Number of closed claims for year w during development period d.  These should include only claims closed with payment as claims closed with no payment introduces additional random variation

Similarly, as regards claim severity:

Xw,d = Individual claim amount for year w during development period d.

Wright introduces the concept of operational time in order to improve upon the estimation of future payments (claims reserves) that are built up from models separately estimating future closed claims and the claim amounts by year and development period.  This innovation defines operational time τ as the proportion of all claims closed to date.  For each year operational time starts at zero and increases to unity.  By estimating claim costs as a function of operational time, there is no need to model claims separately.  By construction the relationship of number of claims on operational time is known.  This means Y can be estimated by modeling Xw,τ alone and is simpler than estimating N and X.

The data Nw,d are used to estimate future claims, calculate operational time, and to estimate observed mean claim sizes Yw,d/Nw,d, the latter the dependent variable in the claim size model.

Wright begins with numerical examples of the modeling approach using simple unrealistic assumption for presentation purposes and then extends the numerical examples that relax the assumptions.  Assumptions that are relaxed include knowing the future number of closed claims and the absence of claim inflation or trend.  The most important content shows how the mean and variance of individual claims Xτ depends on τ.  From this the estimate of the mean and variance of all future claims is modeled and estimated as a function of future operational time as defined and constructed.  All the models presented in the paper are generalized linear models.

Statistical Method for the Chain Ladder Technique, Richard J. Verrall (1994)
Verrall uses the incremental loss data and creates a parameterized model using a loglinear form.

He creates a normalized model over the period of known development and relates the parameters of the Chain Ladder (“CL”) method to those of the loglinear model.

The following notation from Verral’s paper provides the relationships between the models and parameters:

Zi,j = incremental claims (incurred losses, paid losses) for exposure year i during loss development period j.  Verrall refers to “business years” and annual development periods and business year could be based on any one of accident, policy, underwriting, report, claims made, or recorded date.

By using data through t development periods with a traditional triangle of data, the set of data for each exposure year is {Zi,j: i= 1 to t; j = 1 to t-i+1}

CL factors are based on the ratios of, and applied to, cumulative losses, defined for an individual year by Ci,j = ∑k=1 to j Zi,k.  These factors are also referred to as age-to-age, report-to-report, or loss development factors and cumulative losses are also referred to as inception to date losses.

Verral uses an estimate of the CL factors based on weighted averages of the cumulative losses for each development period (column) j:

λj = ∑i=1 to t-j+1 Ci,j / ∑i=1 to t-j+1 Ci,j-1
The underlying model for the estimation of the next development periods losses is therefore:

E(Ci,j |Ci,1,…Ci,j-1) = λj Ci,j-1 for j=2 to t
Multiplying by the successive estimates of λ produces an ultimate loss estimate for each exposure year.  This is the familiar CL or “loss development method” and the formulation follows that presented by Thomas Mack and others and appears elsewhere in this chapter.  Recall that in this formulation the expected “ultimate” loss, denoted by E(Ci,t), is restricted to the number of observed development periods:

CL Estimate of E(Ci,t) = (∏j=t-i+2 to t λj) Ci,t-i+1 

The model is recognized to have both row (cumulative losses) and column effects (the λj parameters).  Verral now considers an alternative model that captures row and column effects using estimates based on the incremental data instead through a multiplicative model and a two-way analysis of variance.  The model estimates the incremental data using the form:

E[Zi,j] = UiSj
The construction of the model sets ∑j=1 to t Sj = 1.  Sj is the expected portion of the ultimate losses that occur in development period j so that Ui represents the expected ultimate loss for exposure year i given losses through age t (E(Ci,t)) as discussed earlier.

It can be shown algebraically that:

Sj = (λj -1) / ∏k=j to t λk 
and:

S1 = 1/∏k=2 to t λk
By definition:

Ui = E[Ci,t]

The loglinear model is created by taking the logarithms of the initial multiplicative equation assuming incremental values are positive to permit taking the logarithms:

E[Yi,j] = μ + αi + βj where Yi,j = ln(Zi,j)
In this formulation Verrall assumes the errors have an additive structure with a mean of zero, and identically distributed with variance σ2.  After exponentiating this model Verral comments on similarities between it and the chain ladder model and highlights the important differences on the method of estimation.  The model for Ui when transformed is:

Ui = eαi eμ ∑j=1 to t eβj
Verrall then derives estimates of the transformed dollar values of losses and estimated of the standard errors of the parameter estimates of the loglinear model.  To do this he assumes that the Zi,j are independently lognormally distributed.  Invoking this assumption of a lognormal distribution is used by Verral to derive probability levels of the total reserves through transformations of the cumulative distribution function of the standard normal distribution.  The paper includes numerical examples, additional related topics, and derivations of estimators for population parameters.
 
Probabilistic Development Factor Model with Applications to Loss Reserve Variability, Prediction Intervals and Risk Based Capital, Ben Zehnwirth (1994)

The model suggested by Ben Zehnwirth in this paper has four components which can be explained in a straightforward manner. The first three components are the trends in the three directions, development year, accident year and payment/calendar year.  The fourth component is the random fluctuations about these trends. 

DATA = TRENDS + RANDOM FLUCTUATIONS

The trends in the past are determined and the random fluctuations about the trends are quantified, so that it can be best judged which assumptions should be used for future trends. The trends would be derived from the history of logarithm of incremental loss payments. The probability distributions of the random fluctuations are identified.

If the trends are stable then the model will validate well and be stable. If the trends are unstable, then the decision about future trends is no longer straightforward. 

The trends are in three directions, development year, accident year and payment/calendar year, as indicated below:
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In his paper, Zehnwirth stated that payment year variable t can be expressed as w + d. Therefore, there are only two independent directions, w and d. The development and accident year directions are orthogonal, so they have zero correlation. 

As for the random fluctuations, Zehnwirth regarded them as the error term in the model. This error term should have a normal distribution with a mean of 0 and a variance of σ2. 

In the paper, Zehnwirth stated that residuals could be used to test whether the trends were fully captured in the model. Residuals were defined as data after the model fitted estimates were taken away from the original data. 

If the residuals show randomness and expected value of all residuals was 0, it was believed that all the trends were captured in the model. Otherwise, the model needed to be revisited for remaining trends that were not modeled. 
Generalized Framework for the Stochastic Lass Reserving, Changsoeb Joe Kim (1994)
Another way of analyzing and parametrizing the loss development process is given by Changseob Joe Kim in his paper A Generalized Framework for the Stochastic Loss Reserving.  In this article, Kim casts the development triangle as a two-dimensional time series problem.  After making the argument that a time series approach is better because of the inflation/trend, cyclicality, seasonality, and randomness involved in insurance data, Kim suggests that, although trend is observable in the accident year, development year, and calendar year directions, only the accident year and development year should be used as the explanatory variables.  Calendar year trends, it is thought, would be collinear to the other variables, and therefore undesirable.  Thus, only the accident year and development year are used to explain each cell in the triangle.

The framework for this analysis begins with an incremental triangle (paid, incurred, or claims reported or closed).  In addition, the logarithms of the incremental values are taken.  It is then desired to explain each entry in the triangle by its neighbors.  That is, the independent variables are the triangle entries to the left and above the dependent entry.  Kim denotes the model as AR(k,l), where  k = the number of accident years, and l = the number of development periods used to explain the IP(i,j), the incremental paid associated with AY  i, and development year j.  To see how this works, consider an AR(2,2) model on a triangle of incremental payments.  Consider, for example, the incremental payment IP(i,j).  It would be explained by the adjacent triangle points.  In particular,  IP(i-1, j), IP(i-2,j), IP(i, j-1), and IP(i,j-2).  

Using this as the framework, then, the IP’s are regressed against their corresponding explanatory entries.  The resulting model is given by the following:

           IPi,j = ∑φk,l ∙IPi-k,j-l +ei,j
for k= 0,1,2,…,i-1,  while l=0;   or  l= 0,1,2,…,j-1,  while k=0; excluding k=0, l=0.
This can also be written as the following:

           IPi,j = ei,j + ξ0,1ei,j-1 + ξ1,0ei-1,j +   ξ1,1ei-1,j-1 + …
The initial triangle is then completed with the selected (g,h) forecasts IPi,j(g,h)  can also be written in terms of current and past errors.  That is, the error associated with a forecasted entry is given by:

            ei,j(g,h) = IPi+g,j+h  – IPi,j(g,h)

                        = ei+g,j+h + ξ1,0ei+g-1,j+h + ξ0,1 ei+g,j+h-1 + ξ1,1ei+g-1,j+h-1 + …

From this, the variance of the forecasted errors is given by:

        V[ei,j(g,h)] = E[ei,j2(g,h)] = σe2 ∑p,q ξ2p,q  

                     where  p = 0 to g and q =0 to h,   (p,q) = (g,h) is excluded,

                         and σe2 is the variance of the error.
Kim goes on to derive the forecasted variances using an iterative procedure.  As an example, for the AR(1,1) model, the 1-year ahead variance is given by:

V(IPi,j+1) = (φ21,0 + φ20,1 + 1) σe2
The n-year ahead forecast variance is then given iteratively by:

V(IPi,j+n) = [(φ21,0 ∙V(IPi,j+n-1)/ σe2 +φ20,1 ∙V(IPi,j+n-1)/ σe2 + 1] σe2
Similar formulae are given for the AR(2,1) and AR(3,1) models. 

Once these forecasts are made, the values are accumulated row-wise to obtain the ultimate loss for each accident year based on the chosen models.  Based on the above formulae, the variances associated with these ultimates are derived. In this way, using a standard normal table, intervals with a desired confidence can be generated.  The paper gives examples for a variety of lines of business.  
LDF Curve-Fitting and Stochastic Reserving: A Maximum Likelihood Approach, David R. Clark, Fall 2003 CAS Forum
Clark models expected emergence of future losses by assuming it can be modeled by a cumulative distribution function (“CDF”) that by definition and construction increases from 0 to 1 from time zero to infinity.  His examples use a loglogistic and Weibull distribution, the former encountered in papers dealing with inverse power curves and the estimation of loss development factors
.

To estimate the parameters of these models, Clark uses a loss development model that assumes each accident (exposure) year is independent of other accident years as well as an alternate Cape Cod model that assumes some relationship between emerged losses and an exposure base.

The equations that relate the expected emergence of losses for an exposure year between time x and y are then:

μ(AY;x,y) = Premium(AY)·ELR·(G(y) – G(x)) for Cape Cod model

μ(AY;x,y) = Ult(AY)·(G(y) – G(x)) for the LDF method

Clark notes that the LDF requires the estimation of an ultimate loss for each AY, and therefore more parameters than the Cape Cod method.  The Cape Cod method assumes that the ELR in this formulation is the same for each AY.  Clark asserts that the Cape Cod method usually produces less estimation error by providing more information into the model through the exposure base.

Clark then estimates both parameter variance and process variance (see Section 7.2,2) through the method of maximum likelihood.

To estimate process variance Clark assumes that there is a constant ratio of variance to mean for losses during a development period and assumes that the loss emergence follows an over-dispersed Poisson distribution.  This is defined as a Poisson distribution that is scaled by a factor equal to the variance to represent loss dollars.

For Poisson, Prob(x) = λx·e-λ/x!, and both the expected value and variance of x is λ.

Transforming by setting incremental loss emergence (represented by c) equal to x·σ2, results in the variance of c to be equal to (σ2)2·λ = σ4λ, the variance of a constant times a random variable; expected value of c = λσ2; and Prob(c) = λ(c/σ2)·e-λ/(c/σ2)!.
The maximum likelihood functions are then presented and solved to find the ELR and Ultimate Loss as functions of actual losses and the CDF.  These are used later in practical example and minimized in order to estimate the parameters of the CDF and ULT by AY or the Cape Cod ELR.

Clark then proceeds to estimate the parameter variance of the model by using a Rao-Cramer approximation.  Combining the process variance with the parameter variance provides the variance of the total reserves.  The Appendix has details of derivations and estimates and the paper provides a thorough list of assumptions and discussion of  both their limitations and advantages.

Methods Based on Individual Claim Modeling 

As described previously, there are many ways of assessing the variability of loss reserves.  These methods are mostly derived from aggregated data.  In particular, methods based on aggregate loss triangles are standard in the profession.  There are certain benefits of using aggregate triangles, namely the implicit accounting of claim inflation and the inclusion of pure IBNR claims.  However, while they are good at producing ultimate reserve values, they do not necessarily answer all the questions an actuary may have.  In particular, questions concerning individual claim sizes as would be needed to assess the impact of per occurrence reinsurance treaties.  In addition, aggregate loss triangles can be difficult to adjust when books of business change over time.  It may also be the case that variables included in either rating variables or claim characteristics that are predictive of future claim payments, but would not be accounted for in the triangles.  To mitigate these problems, some actuaries have asked why more specific data can’t be used in the modeling process.  Toward this end, there is emerging a variety of methods to base claim sizes, development, and variability, on individual claim data and the characteristics of the claim settlement process.  These methods run the gamut of complexity, depending on the level of claim data to be used.  This section provides a summary of how loss modeling on an individual claim level might be achieved. 

In A Method For Projecting Individual Large Claims, Murphy and McLennan outline a method whereby open large claims can be developed to their ultimate values based on the historical development of other individual claims.  The variability of the large claim settlement values is estimated by noting the different possible ways that historical claims at the same development point developed to their ultimate cost.  The example presented in that paper starts with the following per large claim data, incurred value and open (o) or closed (c): 






        Development Year




Claim

1

2

3




A
      400,000 o
      800,000 c
     800,000 c




B
      500,000 o
    1,600,000 o
     850,000 c




C
     1,000,000 o     1,000,000 o    1,500,000 c






D
       200,000 o
      500,000 o




E
       300,000 o
      200,000 c




F
       150,000 o


An assumption is made that all claims close by development year 3, and the example continues to develop claims D, E, and F to their development year 3 ultimate value.  Toward this end, Claim D can develop like other claims open at year 2, namely B or C.  Hence the development factor to apply to D is either .53 = 850,000/1,600,000 or 1.50 = 1,500,000/1,000,000.  Hence, D develops to between 265,625 and 750,000.  Similarly, Claim E develops to 200,000 and Claim F develops to a range of 100,000 to 720,000.

As stated in the paper, this is a very simple example.  It can, however, be generalized to a large database by saying that any particular claim CN develops from  CN,Y to CN,Y+1 in accordance with factors developed from claims other than CN  and their observed change from development year Y to Y+1.  These per claim development factors would be selected by randomly sampling (with replacement) from the subset of observed claims of similar open/closed status and possibly size.  These selections must then be made for the entirety of the future development horizon. 

Since the approach thus far only includes claims that are already in the database, something has to be done to account for IBNR claims.  This must be accomplished by adding to the database claims simulated from Poisson or Negative Binomial claim count distributions and perhaps Pareto or Lognormal size distributions.  The parameters for these frequency and severity distributions would be estimated from the developed known large claim data.  Also, since the method thus far only accounts for large claims, non-large claim variability must also be included.  Murphy and McLennan accomplish this by compiling a capped triangle of loss data and applying other aggregate methods to assess the variability of this segment of the overall loss experience.

While Murphy and McLennan describe a method based on individual large claim data, they still do not incorporate claim-level data such as policy limits – data that could improve estimates of projected ultimates and their variability.  In addition, their method still offers no solution when the insurer’s book of business is changing.  Guszcza and Lommele, in Loss Reserving Using Claim-Level Data, outline a method which tries to address both of these using predictive modeling.  They also describe a “bootstrapping” application that can be used to set confidence intervals for the estimated reserves.

Guszcza and Lommele assume a database with one record for each claim.  Each record contains multiple variables of three types:

· Predictive variables (Credit Score, Injury Type, Policy Age, …)

· Target variables (Loss at 24 months, Loss at 36 months, …)

· Informational Variables (Accident Year, Zip Code, Agent, etc.)

To borrow their notation, let {X1, X2, …, XN} denote the predictive variables.  Note that these are typically taken from the policy rating variables.  Let the target variables be given by {Cj} where j = evaluation period of the claim (i.e. C24 = the claim value at 24 months).  In addition, Uk indicates the total ultimate losses for accident year k, and Rk, the outstanding losses (ultimate losses – losses paid to date) for accident year k.  The object of loss reserving is both to estimate R and derive confidence intervals around R.   This is accomplished by building a GLM framework using the Xi predictive variables and target variables equal to the claim-level link ratios so that 

Cj/Cj-1 =  f(α+β1X1 +… +βNXN ) 
defines GLM model Mj.
In this respect, then, the GLM models act as link ratios in the usual chain-ladder method.


The authors then make several other assumptions in order to let GLM methods estimate the parameters {α, β1, β2, … , βN}.  In particular, they assume that the function f  is the exponential function.  It is also assumed that the variance of Cj+1 is proportional to its mean.  Together, this indicates that an over-dispersed Poisson GLM model is being used.  That is to say, the function f is exponential and the error term δ  has an over-dispersed Poisson distribution.  The link ratios are then given by:

Cj / Cj-1 = exp{ α + β1X1+ … + βNXN } + δ
Alternatively, 
Cj = exp{ Ln(Cj-1) + α + β1X1 + … + βNXN } + ε 

Parameters may be estimated via standard GLM software with the following specifications:

1. Target:

Cj
2. Offset:

Ln(Cj-1)

3. Covariates:
{X1, X2,…,XN}

4. Weight:

none

5. Distribution:
Poisson

6. Link:

Ln

These age-to-age models are then used to make projections of the claim ultimate values, and the reserve amounts after that, the same way link ratios are used in a typical “triangle” setting.  The question is still at hand to describe how the reserve estimates vary with respect to process and parameter risk inherent in the above model.  It is still desirable to estimate either the theoretical distribution of the reserve amounts or the confidence levels associated with the mean of that distribution.  Toward this end, the authors propose a “bootstrap” approach to deriving the desired variability estimates.

“Bootstrapping” is outlined in the next section.  Following the approach outlined there, Guszcza and Lommele started with their data of 5000 claims. They then  created 500 pseudo-datasets and applied their GLM technique to each of them.  Remember that each application involves fitting multiple age-to-age models (data underlying a 10x10 triangle would produce 9 such models).  Altogether then, some 4500 GLM models had to be fit, but the authors attest that using R, this process only took less than 15 minutes.    Each pseudo-dataset j then produces an estimate of  R*j.  The results R*1  … R*500    are then graphed, and the final questions about reserve variability answered from them.

For those looking for more, suggested reading might include Modeling Loss Emergence and Settlement Processes by the CAS Loss Simulation Model Working Party to get ideas of the relationship between claim characteristics and settlement processes to the ultimate claim value.  Also, the literature includes a paper outlining the possibility of using text mining.  In Text Mining Handbook by Francis and Flynn, an analysis is made of free-form text claim description variables and claim severity.  Claim department accident descriptions are thereby used to define variables that are related to the ultimate value of individual claims, which in turn affects the overall reserve levels.

Bootstrapping 

Bootstrapping is a way of determining the accuracy of a statistic based on simulation rather than theoretical statistical formulae.  It was first introduced in 1979 by Bradley Efron.   That was followed by many books and articles outlining applications of the method.  This is particularly true in the 1993 book An Introduction to the Bootstrap by Efron and Tibshirani published by Chapman & Hall.  By substituting computer power for theoretical accuracy, the bootstrap provides an easy and flexible method that applies even in cases where the formulae are difficult or non-existent.   In addition, the method is very intuitive and gives a natural appreciation of probabilistic and statistical phenomena such as variance, confidence, bias, and correlation.

In general, one starts with a data sample X = {x1, x2, … ,xn} from a given population and a desired statistic s(X), say for example, the median of X.  It is desired to know the accuracy of s(X) as an estimate of the true population statistic.  The bootstrap process begins by resampling a “pseudo-dataset” with replacement from the original dataset.  That is, a “pseudo-dataset” X* of size n is created by sampling with replacement from the original dataset X.  For example, if  X={1,3,5,7}, X* might be {1,3,3,7} or {1,3,5,5} or {1,1,7,7}.  A number B of these pseudo-datasets are created so that one has X*1, X*2, … , X*B.  The desired statistic is then calculated for each of the X*b  and these s(X*1), s(X*2), … , s(X*B) are compiled to derive the desired variability results whether it be standard error of the s(X*b), CV, or confidence intervals.  For example, suppose B=1000. Ordering the s(X*b) from lowest to highest gives the framework for selecting the endpoints of each confidence interval.  The low end of a 95% confidence interval would be given by the 25th lowest s(X*b) and the high end by the 25th highest.
The following describes how the method can be applied to the problem of regression.   We can describe a general regression model as:

Xi = gi(β) + εi            for i = 1, 2, … , n
In this formulation, Xi is the observed data, εi are the residuals and are distributed according to F, β is the unknown parameter vector that is to be estimated.  It is assumed that F is centered at zero in some sense.   βe is the estimated parameter vector as solved by some method such as least squares.  We have that each residual is given by εi = xi – gi(βe).  To derive the bootstrap estimates, the residual εi* associated with each data element is given by resampling from the εi and the pseudo-datasets are then given by Xi* = gi(βe) + εi*.  From this pseudo-data we derive β* according to the same method used to get β.  Replications of this process give βe*1, βe*2, βe*3, … βe*N which can then be used to estimate the distribution of βe*, and hence β.  
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7.5. Authoritative Pronouncements

The insurance solvency regulations are evolving, such as Solvency II in Europe, the Swiss Solvency Test (SST) in Switzerland and the Bermuda Solvency Capital Requirement (BSCR) in Bermuda. The reserve risk is a key part of solvency and capital requirements. The importance of measuring the reserve risk has also been addressed in the actuarial best practice and the accounting standards.

Solvency II

Scheduled to come into effect in 2013, Solvency II is the new solvency regime for all EU insurers and reinsurers. It has reserve risk accounted for by a risk margin which is calculated using the cost of capital approach to determine the cost of providing an amount of eligible own funds equal to the Solvency Capital Requirement (SCR) necessary to support the current obligations over their lifetime. Without simplification, all future SCRs need to be projected and the SCR at each point of time is calibrated to a 99.5% value-at-risk measure over a one-year time horizon and represents capital to protect against adverse events that may occur over the next 12 months. Standard formulae (including standard stress tests and correlations) or internal models may be used to calculate the SCR, although internal models will need to be approved by the relevant supervisory authority
.

The SCR standard formulae calculate the capital requirement for reserve risk based on the overall best estimate (volume measure) and a function of the combined standard deviation. The function is set such that, assuming a lognormal distribution of the underlying risk, a risk capital requirement consistent with the Value at Risk (VaR) 99.5% calibration objective is produced. In the Quantitative Impact Study 5 (QIS5) completed in 2010, companies are encouraged to calculate undertaking-specific parameters (USP). They can apply the credibility adjusted standard deviations to the standard formula. There are three methods permitted to calculate standard deviation for reserve risk in the standard formula and two approaches are based on the mean squared error of prediction of the claims development result over the one year
 and fitting a model to these results.

Swiss Solvency Test (SST)

The Swiss Solvency Test (SST)
 developed by FINMA in Switzerland is now in effect for all insurers. The available capital is given by the risk-bearing capital (RBC). It is defined as the difference between the market-consistent values of the assets and the discounted best estimates of the liabilities. The required capital is given by the target capital (TC). It is defined as the sum of the market value margin and the expected shortfall (ES) or tail value at risk (TVaR) of the difference between the discounted RBC in one year and the current RBC. The time horizon for the SST is one year. This means that the derived target capital (TC) is the amount needed to be sure on the chosen confidence level that the assets at the end of the year are sufficient to cover the liabilities. The SST uses the expected shortfall at a confidence level of 99%.

Bermuda Solvency Capital Requirement (BSCR)

The Bermuda Solvency Capital Requirement
 establishes a measure of solvency capital that is used by the Bermuda Monetary Authority (BMA) to monitor the capital adequacy of certain (re)insurers domiciled in Bermuda since 2008. The BSCR model calculates a risk-based capital measure by applying capital factors to statutory financial statement and capital and solvency return elements. The capital factor established for each risk element including reserve risk, when applied to that element, produces a required capital and surplus amount. The particular framework that has been developed seeks to apply a standard measurement format to the associated risk. The framework is predicated on a 99% TVaR, approximately equivalent to 99.6% VaR, with a time horizon of one year with full run off. The BMA has its multi-year regulatory change programmed to enhance Bermuda’s insurance regulation framework in line with evolving global standards. In particular, it is working to achieve regulatory equivalence with Europe’s Solvency II
.

Risk-Based Capital Requirement (RBC) in the U.S.

The risk based capital requirements in the U.S. have been around more than a decade. The reserving risk charge in the RBC formula measures the susceptibility of loss reserves to adverse developments. The formula applies separate factors developed using industry data to each major line of business. These factors are adjusted for company experience and investment potential. 

The NAIC’s Solvency Modernization Initiative (SMI) began in June 2008. The SMI is a critical self-examination of the United States’ insurance solvency regulation frame work and includes a review of international developments regarding insurance supervision, banking supervision, and international accounting standards and their potential use in U.S. insurance regulation. The work plan of the SMI considers the uses of economic capital, enterprise risk management, and more extensive internal models (with appropriate approvals and safeguards) in the Risk-Based Capital system. RBC will be evaluated to determine how to incorporate risks that are not currently included in the RBC as well issues related to re-calibration.  The RBC Underwriting Risk Working Party has been formed by the Casualty Actuarial Society to assist the American Academy of Actuaries in the “Analysis of methods of properly quantifying reserve and premium risks and corresponding capital charges in RCB formulas for P&C insurance companies.”

Accounting Standards

The International Accounting Standards Board (IASB) and the US Financial Accounting Standards Board (FASB) have been working together to make progress toward the objective of a global insurance accounting standard. 

The IASB has published the exposure draft Insurance Contract to propose significant improvements to the accounting of insurance contracts. The proposals in the exposure draft had been jointly discussed with the FASB to develop a comprehensive standard. In the FASB model, risk and uncertainty of liabilities for unpaid losses are reflected implicitly through a single composite risk margin rather than explicitly through a separate risk adjustment along with residual margin in the two-margin approach under IASB scheme. There are three methods permitted to calculate risk adjustment: Confidence Level, Conditional Tail Expectancy (CTE) and Cost of Capital. 

Actuarial Standards of Practice (ASOP)

The American Academy of Actuary discusses uncertainty of loss reserves in Actuarial Standard of Practice 43, “The actuary should consider the purpose and use of the unpaid claim estimate in deciding whether or not to measure this uncertainty. When the actuary is measuring uncertainty, the actuary should consider the types and sources of uncertainty being measured and choose the methods, models, and assumptions that are appropriate for the measurement of such uncertainty. For example, when measuring the variability of an unpaid claim estimate covering multiple components, consideration should be given to whether the components are independent of each other or whether they are correlated. Such types and resources of uncertainty surrounding unpaid claim estimates may include uncertainty due to model risk, parameter risk, and process risk.”

ASOP 36, Statements of Actuarial Opinion Regarding Property/Casualty Loss and Loss Adjustment Expense Reserves, used to be cited as the source for the importance of considering reserve variability. The actuarial standard board (ASB) has adopted the revision of ASOP 36 which eliminated any redundant guidance and language that exists between ASOP 36 and 43. The topics related to reserve variability is being referred to ASOP 43. The new ASOP 36 will be effective May 1, 2011. 

Statement of Statutory Accounting Practices (SSAP)

In the SSAP 55, the NAIC establishes the statement statutory accounting principles for recording liabilities for loss adjustment expenses for property and casualty insurance contracts including the variability in the estimate, “Management’s analysis of the reasonableness of claim or loss and loss/claim adjustment expense reserve estimates shall include an analysis of the amount of variability in the estimate. If, for a particular line of business, management develops its estimate considering a range of claim or loss and loss/claim adjustment expense reserve estimates bounded by a high and a low estimate, management’s best estimate of the liability within that range shall be recorded. The high and low ends of the range shall not correspond to an absolute best-and-worst case scenario of ultimate settlements because such estimates may be the result of unlikely assumptions. Management’s range shall be realistic and, therefore, shall not include the set of all possible outcomes but only those outcomes that are considered reasonable.”
� Changes in the loss process might be in the way that claims are handled by adjusters, the way that case reserves are set up, or the speed at which any of these internal processes take place.  It might also relate more directly to the loss generation process.  If cars are safer, or if medicine is practiced with fewer errors, there may be less frequency or severity in auto liability or medical malpractice, respectively.





� 2010 CLRS presentation given by Bardis and Winslow�


� The measurement of accuracy requires knowing the true value of what is being modeled, which is not known ahead of time for insurance liabilities, but will be known upon full closure and payment of all claims.  This is in contrast to precision which is a statistical concept that can be measured by incorporating the sample mean and variance within the context of the subject analysis.


� Actuarial Standard of Practice No. 43 Section 2.1


� “Risk Theory” first published 1955 in Finnish by Teivo Pentikäinen and then revised and published 1969 and co-authored with R. Beard and E. Pesonon.


� Panjer, H.H., and Willmot, G.E. 1992, Society of Actuaries.


� These include a cumulative distribution that ranges from zero to unity, is nondecreasing (monotonic), and a sample space and events whose probabilities add to unity. 


� “Calculation of Aggregate Loss Distributions from Claim Severity and Claim Count Distributions”, Heckma, P.E, and Meyers, G.G., Proceedings of the Casualty Actuarial Society, Volume LXX, 1983.


� The Central Limit Theorem describes the limiting distribution of a sample sum, identical to the aggregate losses of a Collective Risk Model.


� Solvency II also considers “the risk of loss…related to extreme or exceptional events” that is part of model risk discussed later and this risk is combined with the one-year time horizon perspective.  Refer to “Directive 2009/138/EC of the European Parliament and of the Council of 25 November 2009”, Article 105.





� The “extreme or exceptional events” are sometimes referred to as “binary events”.


� Indeed, in many, if not most, large companies, it is a practical impossibility to model ceded losses directly.  Treaty parameters are simply too divergent over years and by business segment to allow such a direct assessment in many cases.





� For example, one may assume that LDFs follow a lognormal distribution with mean and standard deviation derived from empirical data.  Alternatively, one might also model loss development as a function of claims inflation, which could be modeled separately as part of a larger economic scenario model.


� As Venter notes, “Mack showed that some specific assumptions on the process of loss generation are needed for the chain ladder method to be optimal. Thus if actuaries find themselves in disagreement with one or another of these assumptions, they should look for some other method of development that is more in harmony with their intuition about the loss generation process.” (5)


� For ease, assume that all development is completed in advance of the attainment of age 10.


� It is perhaps incorrect to say that link ratio techniques are without model specification uncertainty.  Indeed, the link ratio techniques carry with them a host of underlying assumptions, which, if violated, will lead to estimation errors.  In that sense, the model specification error results from choosing the link ratio technique in the first place.


� The number of iterations necessary is an entirely separate question here.  The practitioner will need to consider such things as convergence, given the volatility of the underlying distributions, as well as determining the minimum number of iterations necessary in order to make sure that enough “tail events” will be represented.  With the availability of such enormous computing power today, there is generally no harm in running thousands of iterations (10,000 or 25,000 is not uncommon).


� This approach limits the possibility of claim counts being “beyond the realm of the possible”, but also limits tail events as well.  Care should be taken in the selections.  Also, if one were to consider a continuous distribution, such as a normal, you will have to control for negative values.  As a direct and practical trade-off, a discrete distribution, with appropriate minimums and maximums and reasonable tail probabilities, could be a good choice.


� The parameterization and statistical framework for the Chain Ladder method as contained T. Mack’s paper “Which Stochastic Model is Underlying the Chain Ladder Method?” was awarded the Hachmeister Prize by the CAS in 1994 many years after this the method was commonly used by casualty actuaries. 


� In this equation λj should be an estimate of λj and for presentation the weighted average estimate is shown. 


� This paper won the CAS Theory of Risk Prize in 1993.


� For example see Sherman, R.E., “Extrapolating, Smoothing, and Interpolating Development Factors”, Proceedings of the Casualty Actuarial Society, 1984


� Lloyd’s Technical Provisions under Solvency II Detailed Guidance, July 2010 Update.


� “Modelling The Claims Development Result For Solvency Purposes” by Michael Merz and Mario V Wüthrich, Casualty Actuarial Society E-Forum, Fall 2008


� Technical document on the Swiss Solvency Test, Version of 2 October 2006, Federal Office of Private Insurance.


� Consultation Paper on Bermuda Solvency Capital Requirement (‘BSCR’), July 18, 2007, BMA


� Bermuda’s Insurance Solvency Framework, The Roadmap to Regulatory Equivalence, September 2010, BMA.
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