Extreme development techniques

2012 Casualty Loss Reserving Seminar Denver, CO

September 5, 2012

Justin Brenden, FCAS, MAAA Actuary, Third Point Reinsurance Ltd.

Christopher Diamantoukos, FCAS, MAAA Senior Actuarial Advisor, Ernst & Young LLP

Ian Sterling, FCAS, MAAA Senior Actuarial Advisor, Ernst & Young LLP

Overview

Background and motivation

Walkthrough of specific methods

- Incremental paid / incurred loss development method
- Case reserve run-off method
- Recursive method

What are extreme development techniques?

Extreme development techniques are methods that may be necessary in the following situations:

- Claims and exposure data are limited to nearly non-existent
- Traditional development patterns are not available
- Data are so mature that ultimate loss estimates are "extremely" volatile

Some of these methods are extensions of traditional development methods, while others are novel approaches to viewing loss development and projecting future claims.

When are extreme development techniques useful?

This session will discuss a number of examples of such extreme development methods and models that may be useful to actuaries who are modeling the following:

- Long-tailed lines of business
- Run-off portfolios
- Reinsurance liabilities

Incremental loss development method

1. Incremental paid/incurred loss development method

2. Case reserve run-off method

- When is this method appropriate?
 - When reliable data are only available from a certain point in time onward (e.g., after a systems conversion)
 - When the liabilities are very mature, and paid-to-date or incurredto-date measures are of limited value
- What data are needed?
 - Paid losses from a fixed point in time forward
 - Incurred losses from a fixed point in time forward
 - Case reserve at date

Data preparation

1. Incremental paid/incurred loss development method

2. Case reserve run-off method

3. Recursive method

Calculate the change in paid loss based on the incremental paid triangle

- Assumption: evaluated as of 31 December 2010
- The following triangle is the incremental paid/loss triangle; we are going to calculate the incremental paid/loss development factors based on this triangle
 A few more ages are not shown

A few more ages are not shown here due to limited room.

	Age (yrs)																		
J/W Year	12	13	14	15	16	17	18	19	20	21	22 I	27	28	29	30	31	32	33	34
1977								2,811,530	2,482,581	1,551,050	24,397	(10,000)	73,910	0	29,900	30,528	928	221	2
1978							5,302,785	2,773,356	3,971,550	1,327,150	ا 355,550 ا ا	65,604	38,706	16,950	0	106,000	21,220	438	
1979						7,286,341	1,020,570	1,018,529	682,414	1,312,383	419,963 <mark> </mark>	0	36,550	27,932	1,922	823	2,201		
1980					13,738,448	11,320,482	2,662,400	5,516,100	1,695,950	(50,091)	(39,171) <mark> </mark> 	42,192	2,102	1,821	3,105	920			
1981				7,241,050	6,012,428	1,785,059	525,718	401,611	261,705	758,351	ו 1 722,135 ו	4,550	10,291	0	3,910				
1982			3,825,050	1,710,305	1,361,162	3,656,080	4,814,300	533,656	338,776	216,700	216,691 	523	1,190	949					
1983		6,709,700	3,808,744	2,609,950	2,602,120	1,386,939	5,233,688	4,960,051	170,624	26,350	ا 73,799 ا ا	120,192	201						
1984	5,161,750	5,784,645	4,606,044	4,573,758	836,374	128,119	239,651	430,221	220,731	81,321	101,293	2,120							

Select incremental development factors

1. Incremental paid/incurred loss development method

2. Case reserve run-off method

	End Age											1						
U/W Year	13	14	15	16	17	18	19	20	21	22	27	28	29	30	31	32	33	34
1977								0.883	0.625	0.016	2.323	(7.391)	0.000	0.000	1.021	0.030	0.238	0.009
1978							0.523	1.432	0.334	0.268	1.866	0.590	0.438	0.000	0.000	0.200	0.021	
1979						0.140	0.998	0.670	1.923	0.320	1.923	0.000	0.764	0.069	0.428	2.674		
1980					0.824	0.235	2.072	0.307	(0.030)	0.782	(6.510)	0.050	0.866	1.705	0.296			
1981				0.830	0.297	0.295	0.764	0.652	2.898	0.952	0.317	2.262	0.000					
1982			0.447	0.796	2.686	1.317	0.111	0.635	0.640	1.000	0.559	2.275	0.797					
1983		0.568	0.685	0.997	0.533	3.774	0.948	0.034	0.154	2.801	0.119	0.002						
1984	1.121	0.796	0.993	0.183	0.153	1.871	1.795	0.513	0.368	1.246	0.051	 						
Wtd Average	1.121	0.673	0.727	0.670	0.744	0.567	0.790	0.533	0.532	0.359	1.145	0.567	0.293	0.108	0.924	0.177	0.030	0.009
Straight Avg	1.121	0.682	0.708	0.702	0.899	1.272	1.030	0.641	0.864	0.923	0.081	(0.369)	0.478	0.591	0.582	0.968	0.129	0.009
Straight Avg Ex H/L	1.121	0.682	0.685	0.813	0.551	0.929	1.006	0.610	0.674	0.761	0.806	0.726	0.500	0.069	0.428	0.200	0.129	0.009
Select		0.682	0.708	0.813	0.712	0.751	1.006	0.641	0.864	0.761	0.806	0.567	0.500	0.591	0.582	0.200	0.129	0.000
	13	14	15	16	17	18	19	20	21	22	23	28	29	30	31	32	33	34
Increm ental Pattern	1.000	0.682	0.483	0.393	0.280	0.210	0.211	0.135	0.117	0.089	0.072	0.016	0.008	0.005	0.003	0.001	0.000	0.000
Accum ulated Values	1.000	1.682	2.165	2.558	2.838	3.048	3.259	3.394	3.511	3.600	3.672	1 3.847 	3.855	3.859	3.862	3.863	3.863	3.863

1. Incremental paid/incurred loss development method

2. Case reserve run-off method

3. Recursive method

We fitted x and y values into different distributions (e.g., Weibull, Gompertz and Richards model) to get the coefficients.

		Actual			Weibull	Gompertz
		Y =			<i>y</i> =	<i>y</i> =
		Accumulated			$a - b \times e^{-cx^d}$	a v e ^{-e^{b-cu}}
Age (in	X = Age	incremental	From curve fitting software		u-v~c	une
months)	(in years)	selections				
	10	4 000	Weibdii Hodei. $y = a - b \times e^{-a}$.		1.046	1.141
144	12	1.000	Coencient Data:	0.070	1.646	1.621
156	13	1.682	a =	3.870	2.133	2.081
168	14	2.165	b =	20.470	2.523	2.486
180	15	2.558	C =	0.058	2.834	2.822
192	16	2.838	d =	1.423	3.078	3.087
204	17	3.048			3.269	3.292
216	18	3.259	Standard error: 0.02	213885	3.416	3.445
228	19	3.394	Correlation coefficient: 0.9	999683	3.530	3.558
240	20	3.511			3.617	3.641
252	21	3.600	Gompertz relation:		3.682	3.701
264	22	3.672	Coefficient data:		3.732	3.745
276	23	3.726	Coefficient data.	2 954	3.769	3.776
288	24	3.766	d =	3.004	3.796	3.798
300	25	3.802	D =	4.284	3.817	3.814
312	26	3.831	C =	0.341	3.832	3.826
324	27	3.847			3.842	3.834
336	28	3.855	Standard error: 0.04	494986	3.850	3.839
348	29	3.859	Correlation coefficient: 0.99	982117	3.856	3.844
360	30	3.862			3.860	3.847
372	31	3.863	This column is from		3.863	3.849
384	32	3.863	This column is from		3.865	3.850
396	33	3.863	the triangle on page 8.		3.866	3.851
408	34	3.863			0.000	0.001

Curve fitting

Accumulated incremental paid ratio model selection

1. Incremental paid/incurred loss development method

2. Case reserve run-off method

3. Recursive method

CLRS 2012 - Workshop: Extreme development techniques

Incremental ratios calculation and reserve projection

1. Incremental paid/incurred loss development method

2. Case reserve run-off method

3. Recursive method

Calculate the incremental loss development ratio to ultimate development based on curve fit, and estimate the total reserves.

(1)	(2)	(3)	(4)	(5)	(6)	Weibull		Ratio to total	Estimated total
(')	(4)	(0)	(')	(0)	(0)	Trensul		period change	reserves
U/W year	Start age	End age	Total paid	Total paid	Total change	(7)	(8)	(9)	(10)
			At start age	At end age	From start age to end age	Accumulated incremental (at start)	Accumulated incremental (at end)	$\frac{Ult - (8)}{(8) - (7)}$	(6) * (9)
1977	19	34	2,811,530	7,131,041	4,319,511	3.416403	3.866466	0.007409	32,004
1978	18	33	5,302,785	15,012,037	9,709,252	3.268574	3.865007	0.008037	78,029
1979	17	32	7,286,341	12,634,556	5,348,215	3.077762	3.862942	0.008735	46,714
1980	16	31	13,738,448	36,226,919	22,488,471	2.833444	3.860034	0.009514	213,947
1981	15	30	7,241,050	18,501,792	11,260,742	2.523254	3.855958	0.010386	116,957
1982	14	29	3,825,050	19,294,363	15,469,313	2.132930	3.850278	0.011367	175,847
1983	13	28	6,709,700	27,847,579	21,137,879	1.646396	3.842404	0.012475	263,702
1984	12	27	5,161,750	22,455,375	17,293,625	1.046024	3.831549	0.013732	237,477
Total			52,076,654	159,103,662	107,027,008	Ultimate:	3.869800		1,164,676

Ultimate value = 3.869800 According to the Weibull model, $y = a - b \times e^{-cx^d}$; when $x \to \infty, y \to a = 3.869800$

Incremental ratio for U/W Yr 1984:

 $\frac{3.869800 - 3.831549}{3.831549 - 1.046024} = 0.013732$

Estimated unpaid reserve for U/W Yr 1984: 0.013732 × \$17,293,625 = \$237,477

Case reserve run-off method

1. Incremental paid/incurred loss development method

Case reserve run-off method

- When is this method appropriate?
 - When there is a long history of incremental paid / incurred losses
 - When the incremental activity is more significant than in cases where incremental method may be more appropriate
- What data are needed?
 - Incremental paid / incurred losses
 - Cumulative incurred loss from start age

Case reserve run-off method

1. Incremental paid/incurred loss development method

2. Case reserve run-off method

Case reserve run-off method

1. Incremental paid/incurred loss development method

2. Case reserve run-off method

Recursive method

1. Incremental paid/incurred loss development method

2. Case reserve run-off method

- When is this method appropriate?
 - When only incremental loss data are available
 - When we assume the relationship of $\frac{\Delta P}{\Delta C}$ is consistent as the exposure approaches ultimate
 - When only aggregate calendar year losses for all exposure years are available, and particularly when all years are very mature
- What data are needed?
 - Incremental paid / incurred losses
 - Change in case reserves

Recursive method

1. Incremental paid/incurred loss development method

2. Case reserve run-off method

Questions?

1. Incremental paid/incurred loss development method

2. Case reserve run-off method

