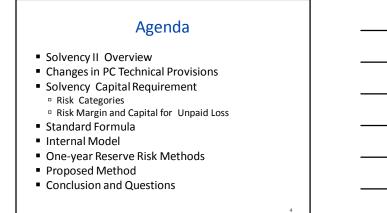
CLRS 2012_Robbin

2012 Casualty Loss Reserves Seminar Call Paper: "A Practical Way to Estimate One-Year Reserve Risk"

> Ira Robbin, Principal P&C Actuarial Analysts LLC

CAS Antitrust Notice

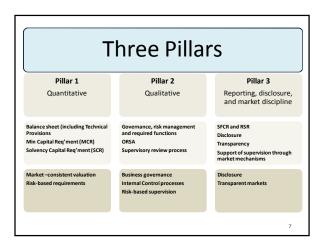

The Casualty Actuarial Society is committed to adhering strictly to the letter and spirit of the antitrust laws. Seminars conducted under the auspices of the CAS are designed solely to provide a forum for the expression of various points of view on topics described in the programs or agendas for such meetings.

- ⁷ Under no circumstances shall CAS seminars be used as a means for competing companies or firms to reach any understanding – expressed or implied – that restricts competition or in any way impairs the ability of members to exercise independent business judgment regarding matters affecting competition.
- It is the responsibility of all seminar participants to be aware of antitrust regulations, to prevent any written or verbal discussions that appear to violate these laws, and to adhere in every respect to the CAS antitrust compliance policy.

2

Disclaimers and Cautions

- No statements about the views or proprietary practices of prior employers will be made or should be inferred.
- No liability whatsoever is assumed for any damages, either direct or indirect, that may be attributed to use of any of the material in this presentation.
- Whatever you allege I said, either I never said it, I said the opposite, I was just joking, or I was quoted out of context.




Context Pillars

SOLVENCY II – OVERVIEW

EIOPA Solvency II – Overview

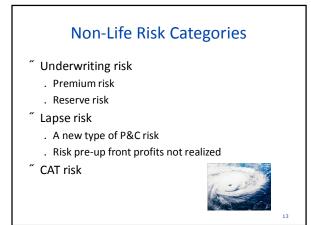
- Regulatory initiative promulgated by EIOPA
- Institutes consistent accounting rules and solvency requirements for insurance cos across Europe .
- .
- Changes approach to solvency regulation Utilizes principles-based regulatory accounting Allows use of internal models to determine capital requirements
- .
- Very costly, non-transparent Implementation repeatedly delayed but inevitable US NAIC has stated it is taking "functional equivalence" as goal and will not be making wholesale changes in stat accounting. [See Appendix.] NAIC is undertaking SMI project and introducing ORSA

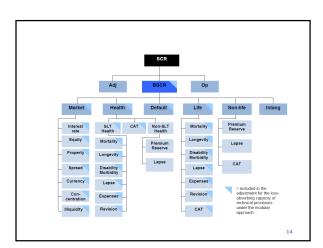
TECHNICAL PROVISIONS

Accounting Changes Loss Provision Risk Margin

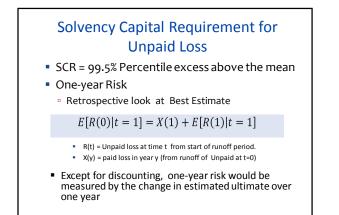
Accounting Changes

- 'Market-based' Valuation
 Mark-to-model
- Removal of prudential margins
- Explicit discounting
- Explicit Risk Margin
- Cash flow instead of accrual
- No UEPR
- Up-front recognition EPIFP
- Expected Profits Included in Future Premiums
 Pre-up front = Contract boundary date when obligation is made different from UWY and AY





Decentional Provisions (Liability) P= B£ + CM P= B£ + CM</l



(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
						End of		End of	Retro
		Initial		Initial		Yr 1	End of	Yr 1	Estimate
		Case	Initial	Estimate	Yr 1	Case	Yr 1	Est'd	Intial
Scenario	Prob	O/S	IBNR	Unpaid	Paid	O/S	IBNR	Unpaid	Unpaid
				(3) + (4)				(7) + (8)	(6) + (9)
1	25%	\$40	\$60	\$100	\$10	\$45	\$40	\$85	\$95
2	25%	\$40	\$60	\$100	\$10	\$30	\$35	\$65	\$75
3	25%	\$40	\$60	\$100	\$30	\$45	\$50	\$95	\$125
4	25%	\$40	\$60	\$100	\$30	\$30	\$45	\$75	\$105
Avg		\$40	\$60	\$100	\$20	\$38	\$43	\$80	\$100
Stnd Dev									\$18

One-year Risk Conceptual Drivers

- Volatility of ultimate unpaid
- Information obtained over one year
- Reserving methodology
 - Long-tail lines
 - Stable method often used over first few years
 - Implies 1 yr risk may be small for long-tail lobs over first few years.

Standard Formula – QIS5 and JWG

- EIOPA 12 LOBs
- Premium Risk and Reserve Risk CVs
- Lognormal distribution assumption
- Premium and Reserve correlations
- LOB Correlation matrix
- Volume measures
- Credit for geographic diversity
- Lognormal assumption for aggregation
 Questionable since sum of lognormals not lognormal
- Total SCR allocated using standalone LOB SCRs
- Same CVs and correlations for every year of run-off
 Implausible as IBNR/Case OS evolve over run-off period

19

SF CVs for Premium and Reserve Risk

SF CVs	Premium I	risk - gross	Reserve risk - net		
Segment	QIS5	JWG Rec	QIS5	JWG Rec	
Motor vehicle liability	10.0%	9.6%	9.5%	8.9%	
Other motor	7.0%	8.2%	10.0%	8.0%	
Marine, aviation & transport	17.0%	14.9%	14.0%	11.0%	
Fire / property	10.0%	8.2%	11.0%	10.2%	
General liability	15.0%	13.9%	11.0%	11.0%	
Credit and suretyship	21.5%	11.7%	19.0%		
Legal expenses	6.5%	6.5%	9.0%	12.3%	
Assistance	5.0%	9.3%	11.0%		
Miscellaneous financial loss	13.0%	12.8%	15.0%	20.0%	
Medical expenses	4.0%	5.0%	10.0%	5-3%	
Income protection	8.5%	8.5%	14.0%	13.9%	
Workers' compensation	5.5%	8.0%	11.0%	11.4%	

LOB Reserve CV Calibration – QIS5 SF

- Heterogeneity major differences in reserve risk within an EIOPA LOB due to limits, layers, coverages, and other factors. No one CV is right.
- Size of Risk larger volume of homogeneous reserves should lead to lower process risk unless reserves are perfectly correlated. Same CV should not be used for all companies large and small.
- JWG
 - "... volatility factors for premium and reserve risks are typically impacted by the size of the portfolio (in the sense that with increasing size the volatility will typically decrease)"
 - "... the SCR will be too large for the larger portfolios and too small for the smaller ones".
- Rating Agencies formulas have similar issues due to use of fixed factors to derive reserve charges.

Overview Schedule P One Year Development and Ranges Proposed methods

INTERNAL MODEL FOR ONE-YEAR RESERVE RISK

22

Internal Model Overview

- ["] Can be used in lieu of Standard Formula if approved by regulator
- Exact form or type of model not specifiedMany companies using giant simulation models
- ⁷ Requires significant amount of documentation
- ⁷ Needs to satisfy "Use" test
- [®] Ability to split business into smaller units
 - . Better model of actual business
 - . Reduces capital req'ment by reducing process risk depending on CVs and correlations selected

23

Use of Schedule P or Reserve Ranges

- Schedule P One year Reserve Development Test
 Posted reserves not "Best Estimates" -impact of cycle management
- Reserve Ranges for Ultimate Unpaid
 - Need to translate ranges into statement about distribution of unpaid loss
 - High- Low range of different types of estimates is not sufficient.
 - Going from ultimate to one-year risk.
- Application Issues
 - Assumptions needed to capture 99.5th percentile
 - May not be available at business unit level of detail
 - Industry data may not apply to single company

Reserve Risk					
Method	Author	Description			
Variance of Chain Ladder estimates	Merz and Wutrich	Derived variance estimate of one-year claims development result assuming the distribution -free Chain Ladder algorithm is used to derive reserve estimates. Works off triangle of data.			
Diagonal Simulation	Ohlsson and Lauzeningks	Simulate next diagonal and assume actuary-in- a- box sets reserves. Derive distribution of one- year claim development result.			
Regression	Rehman and Klugman	Regression assuming lognormal distribution of ATA factors of estimated ultimate loss. Fitted parameters used to compute one year risk			
Recognition Factor	???	Start with ultimate variability. Apply recognition factor to determine how much is recognized each year.			

	Recognition – Variance Recogni Pct of variance recognized by run-off year							
FV B	est Estimate	of Unpaid		1,00	00			
Sele	cted CV of U	npaid		20.	o %			
Stnd	Dev of of U	npaid		20	00			
Varia	ance of Unpa	id		40,00	0.			
Run-off	Initial FV	Recognition	Variance	One-year	One-year			
year	Unpaid	Factor	recognized	Stnd Dev	C١			
1	1,000	80%	32,000	179	18%			
2	700	10%	4,000	63	9%			
3	350	5%	2,000	45	13%			
4	150	5%	2,000	45	30%			
Total		100%	40,000	200				

	Recognition – Trial Deviation Recognized								
″Si	["] Simulation trial deviation – pct recognized by								
r _F	V Best Esti	mate of Unpai	d	1,000					
S	imulation	trial of Unpaid		1,500					
0	Deviation o	f trial		500	_				
	Run-off	Recognition	Deviation	Retro					
	year	Factor	recognized	Unpaid					
	1	80%	400	1,400					
	2	10%	50	1,450					
	3	5%	25	1,475					
	4	5%	25	1,500					
	Total	100%	500		27				

Recognition Method Concerns

- Terminology What is being Recognized?
 - All that can reasonably be recognized each year given incompleteness of knowledge at each evaluation
 Change in the Best Estimate
 - Not how much management decides it will recognize of a revised estimate of ultimate loss
- Selection of Recognition Factors

• No empirical data

- Posted reserves (including IBNR) not Best Estimates
- Ad hoc factors not consistent with reserve run-off?

28

PROPOSED PRACTICAL METHOD

Overview Steps Proposed methods

29

Proposed Practical Method Overview

- " CVs for one-year risk vary by year of run-off
- CVs depend on mix of Case O/S vs IBNRIBNR relatively more risky than Case O/S
- ["] One-year risk derived from ultimate unpaid risk
- " Comparison with other proposed methods
 - . More sophisticated version of Standard Formula
 - . A form of recognition factor method with a set of
 - systematically derived factors . No regressions or simulations needed
- $\ensuremath{\,^{''}}$ Handles new, small volume, or high sev business

D

Step 1 – Split Variance into Case vs IBNR Components

- Select CV of ultimate unpaid
- ~ Select Ratio of CV of IBNR to CV of Case O/S Use existing balances to decompose variance into Case O/S and IBNR variance components Compute CVs per unit of Case O/S and IBNR
- ~

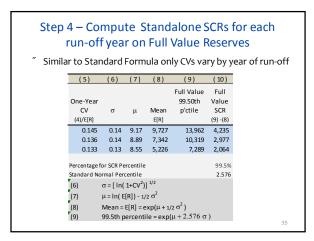
-				
(1)	CY Year End	2011		
(2)	Mean FV of Ult Unpaid Loss	9,727	Ex 3 Tbl 1	
(3)	Case O/S	3,789	Ex 3 Tbl 5	
(4)	Mean IBNR	5,938	Ex 3 Tbl 3	
(5)	CV of Ultimate Unpaid Loss	20.0%	User selection	
(6)	k = CV of IBNR over CV of Case O/S	150.0%	User selection	
(7)	Stnd Dev of Ultimate Unpaid	1,945	(2)*(5)	
(8)	Case OS CV Coefficient	0.201	$\{(7)^2)/[(3)^2+((6)^*(4))^2]\}^{-5}$	
(9)	IBNR CV Coefficient	0.301	(8)*(6)	
				31

Step 2 – Project Reserve Variance by Run-off Year

" Project Case O/S and IBNR for each year of run-off Apply CV factors and square to get Case O/S and IBNR variance components

~ Sum to get projected variance of unpaid by runoff year

(1)	(3)	(4)	(5)	(6)	(7)	(8)
				Stnd Dev	Stnd Dev	
			Total	from	from	
CY	Case O/S	IBNR	Unpaid	Case O/S	IBNR	Variance
			(3)+(4)	(3)*CV _{COS}	(4)*CV _{IBNR}	$(6)^{2}+(7)^{2}$
2011	3,789	5,938	9,727	762	1,790	3,784,581
2012	3,609	3,732	7,342	725	1,125	1,792,267
2013	3,168	2,057	5,226	637	620	790, 176
2014	2,051	1,221	3,272	412	368	305,519
2015	1,001	704	1,706	201	212	85,608
						32


_				
-				
-				
_				
-				

Step 3 – Derive One-Year Variances and CVs							
Evolution of Ultimate Variance Estimates equals One- year Risk under "Strong BF" assumptions							
(1)	(2)	(3)	(4)	(5)			
			One-				
			Year				
	Ultimate	One-Year	Stnd	One-Year			
CY	Variance	Variance	Dev	CV			
		∆(2)	(3) ^{1/2}	(4)/E[R]			
2011	3,784,581	1,992,314	1,411	0.145			
2012	1,792,267	1,002,092	1,001	0.136			
2013	790,176	484,657	696	0.133			
					3		

″Μ.	Step 5 ply SCR f iltiply by scount Cc	actor to Cost-of	Discour -Capital I		erves to	÷	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
		FV	PV				Discounted
		Unpaid	Unpaid	SCR		Cost of	Cost of
CY	Paid Loss	Loss	Loss	Factor	SCR	Capital	Capital
	from Ex 3		. ,	from Ex 6	(5)*(4)	CocRate	
	Table 2	Table 1	Ex 8 Col 5			*(6)	Ex 8 Col 5
2011	-	9,727	9,199	43.5%	4,005	240	238
2012	2,385	7,342	7,020	40.5%	2,847	171	167
2013	2,116	5,226	5,042	39.5%	1,991	119	114
							36

CLRS 2012_Robbin

	Step 6 – Compute Technical Provision using Standalone Risk Margin								
,	⁷ Standalone Risk Margin is sum of Discounted Cost- of Capital applied to Standalone SCR								
	(1)	Mean of Full Value Ult Unpaid Loss	9,727	Ex 7 Col 3					
	(2)	Mean of Discounted Unpaid Loss	9,199	Ex 7 Col 4					
	(3)	Effect of Discount	(528)	(2) - (1)					
	(4)	Risk Margin	431	Ex 7 Col 8					
	(5)	Technical Provision	9,631	(1) + (3) + (4)					
				37					

Advantages of Proposed Method

" Conceptual

- . Only method to make use of our knowledge of evolution of Case vs IBNR reserve mix.
- . Can be framed as recognition factor approach with methodical selection of recognition factors

. Systematically relates ultimate risk to one-year views

Practical

"

- . Computationally straightforward only slightly more complicated than the Standard Formula
- . Works even if no triangle is available
- . No regressions or simulations required

Conclusions

- \H US actuaries should be aware of Solvency II
- One-year risk concept is founded on change in retrospective Best Estimates
 - . Some adjustment needed before using movement in posted reserves as an estimator for one-year risk
- ["] Internal models will lower required reserve capital
- ["] Other one-year risk methods available
 - . some require well-behaved data
 - . others use many assumptions
- Proposed method is practical and worth having in the tool box

39

Appendix: US Regulator Comments

- CT Commissioner Leonardi: Aug 2011
 "... well-intended but untested European regulatory changes, known as "Solvency II" ... could
 weaken consumer protections ..."
 "Solvency II is a much-needed effort to modernize an ...outmoded European regulatory
 regime, but it has been aggressively marketed by some as the 'be all and end all' of insurance
 regulation."
 "any equivalence process must respect the different legal and regulatory systems that exist
 around the globe."
 Nov 2011
- around the globe."
 NAIC CEO Vaughn Nov 2011
 "Our system is one that we're quite comfortable with... equivalence should be assessed on an outcomes basis. On that basis, we should be found equivalent."
 NAIC President McCarty Mar 2012, May 2012
 "We're not interested in taking our system and putting it through the ...analysis undertaken by... Switzerland, Bernuda and Japan"
 "No disrespect to the EU but... at best, they would want to make a comparison to a system [Solveror] II that sint in place yet. It's a theoretical systemessaved up against a system that's been tried and tasted It's kind of silly to even consider that an equivalence process."