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Antitrust Notice 

The Casualty Actuarial Society is committed to adhering strictly to the letter and 

spirit of the antitrust laws.  Seminars conducted under the auspices of the CAS 

are designed solely to provide a forum for the expression of various points of 

view on topics described in the programs or agendas for such meetings.   

 

Under no circumstances shall CAS seminars be used as a means for competing 

companies or firms to reach any understanding – expressed or implied – that 

restricts competition or in any way impairs the ability of members to exercise 

independent business judgment regarding matters affecting competition.   

 

It is the responsibility of all seminar participants to be aware of antitrust 

regulations, to prevent any written or verbal discussions that appear to violate 

these laws, and to adhere in every respect to the CAS antitrust compliance 

policy. 
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Today’s Agenda 

• Morning – Introduction to Bayesian Data Analysis 
• Session 1:   Bayesian concepts, computation (MCMC), and software (JAGS) 

• Session 2:  Bayesian case studies 

 

 

• Afternoon – Bayesian data analysis for loss reserving 
• Session 3:   Retrospective Testing of Stochastic Loss Reserve Models 

• Session 4: The Correlated Chain Ladder and Correlated Incremental Trend models 
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Agenda – Morning  

• Preamble 

 

• Bayesian Concepts 

 

• Bayesian Computation:  Markov Chain Monte Carlo 

 

• Software:  R and JAGS 

 

• Simple Case Studies 
• Loss Distribution Analyses 

• Bayesian Regression and GLM 

• Adding autoregressive structure to a regression 

• Simple Bayesian Chain Ladder Analysis 

 

• Nonlinear Hierarchical Bayes Loss Reserving Model 
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Agenda – Afternoon 

• How to Validate Stochastic Loss Reserving Methodologies 

 

• Data:  The CAS Loss Reserve Database 

 

• Validating the Mack and England-Verrall Models 

 

• Searching for stochastic models that do validate 

 

• Correlated Chain Ladder (CCL) Model 

 

• Bayesian Loss Reserving Models for Incremental Paid Loss Data 

‒ The problem of negative incremental losses 

‒ The skew normal distribution 

‒ The Correlated Incremental Trend (CIT) Model 

 

• Conclusions and Open Discussion 
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Why Stochastic Loss Reserving  

• Much everyday loss reserving practice is “pre-theoretical” in nature:  based on 

spreadsheet projection methods originating before the availability of cheap 

computing power. 

 

• Advantages:   
• Flexible 

• Easy to learn/explain 

• Places appropriate emphasis on the need for expert judgment and knowledge of the business 

context behind the data 

• Avoids common pitfall of model complexity for the sake of model complexity 

 

• Disadvantages:   
• Prone to over-fit small datasets.   

• No concept of “model criticism” 

• Some procedures are equivalent to statistical procedures that might seem arbitrary when 

assumptions are viewed in the light of day 

• Produce point estimates… but we are ultimately interested in predictive distributions of ultimate 

losses. 

• (“No probabilities in, no probabilities out.”) 
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The Ultimate Issue 

• “Given any value (estimate of future payments) and our current state of 

knowledge, what is the probability that the final payments will be no larger than 

the given value?” 

   -- Casualty Actuarial Society 

     Working Party on Quantifying Variability in Reserve Estimates, 2004 

 

• This can be read as a request for a Bayesian analysis. 

 

• We ultimately would like to estimate a posterior probability distribution of the 

aggregate future payments random variable. 

 

• Premise:  not all stochastic reserving frameworks are created equal.   
• We want to avoid overly “procedural” data analytic approaches to stochastic loss reserving. 

• Simply moving from “methods” to “models” is not the answer. 

• We want a “modeling methodology” that offers a formal framework for (a) modeling the data-

generating process and (b) incorporating prior knowledge into the analysis. 

• Enter modern Bayesian data analysis. 
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Why Bayes, Why Now 

From John Kruschke, Indiana University:  

“An open letter to Editors of journals, Chairs of departments, Directors of funding programs, 

Directors of graduate training, Reviewers of grants and manuscripts, Researchers, 

Teachers, and Students”: 

 

Statistical methods have been evolving rapidly, and many people think it’s time to adopt 

modern Bayesian data analysis as standard procedure in our scientific practice and in our 

educational curriculum. Three reasons: 

 

1. Scientific disciplines from astronomy to zoology are moving to Bayesian data analysis.                 

We should be leaders of the move, not followers. 

2. Modern Bayesian methods provide richer information, with greater flexibility and broader 

applicability than 20th century methods. Bayesian methods are intellectually coherent and intuitive. 

Bayesian analyses are readily computed with modern software and hardware. 

3. Null-hypothesis significance testing (NHST), with its reliance on p values, has many problems. 

There is little reason to persist with NHST now that Bayesian methods are accessible to 

everyone. 

 

My conclusion from those points is that we should do whatever we can to encourage the 

move to Bayesian data analysis.  

 

   

(I couldn’t have said it better myself…) 
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Today’s Bayes  

Is our 

profession 

living up to its 

rich Bayesian 

heritage? 

 

Concepts 

Computation 

Case Studies 

Morning Session 
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Bayesian Concepts 
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Vocabulary – Preview  

These are some of the concepts we will discuss and illustrate as the day 

progresses. 

 

• “Evidential” (“subjective”) probability vs limiting relative frequency 

 

• Credible intervals vs confidence intervals  (informal discussion) 

 

• Posterior and predictive distributions 

 

• Shrinkage / Credibility 

 

• Hierarchical models 

 

• “Borrowing strength” 

 

• Markov Chain Monte Carlo Simulation 
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How Frequentist and Bayesian Inference Differs 

• The methodological differences between frequentists and Bayesians emanate 

from the philosophical difference about the interpretation of probability. 

 

• As an example – consider the statement:  “the probability that a tossed coin will 

land heads is ½.” 

 

• Frequentists:  the “true probability of heads” is a fact about the world that is 

manifested in relative frequencies in repeated tosses. 
• The outcome of (say) 3 heads in 12 tosses is one of many possible outcomes of sampling from the 

“true distribution in the sky”. 

• Probability is assigned to the data… not to model parameters 

 

• Bayesians:  the data is a fact in the world.  We assign probabilities to quantities 

we are uncertain about… 
• Probabilities are not assigned to data (although we can incorporate observation errors/sampling 

mechanisms in a model). 

• Rather, probabilities are assigned to model parameters which we do not know with certainty. 

• “Evidential probability” (aka “subjective probability”) 
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Updating Subjective Probability 

• Bayes’ Theorem (a mathematical fact): 

 

 

 

 

• Bayes’ updating rule (a methodological premise):   
 

• Let P(H) represents our belief in hypothesis H before receiving evidence E. 
 

• Let P*(H) represent our belief about H after receiving evidence E. 
 

• Bayes Rule:  P*(H) = Pr(H|E) 
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Bayesian Computation 
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Why Isn’t Everyone a Bayesian? 
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Why Isn’t Everyone a Bayesian? 

• Given that the Bayesian framework is so great, why isn’t it used more in practice? 

 

• Answer 1:  Actually, it is… things have changed rapidly. 

 

• Answer 2:  Thoughts on why frequentism has been dominant. 

 

• (Jim’s speculation): Cognitive biases… failures of probabilistic reasoning 

• E.g. the Monty Hall problem, the prosecutor’s fallacy, Kahneman’s blue taxis 

 

• Much of classical statistics is “automatic” in ways that can be programmed into canned 

software packages (PROCs). 

 

• Argument that Bayesian statistics is “subjective” and science isn’t “subjective”. 

 

• Bayesian computation has traditionally been very difficult. 

• Pre-1990s:  Bayesian practice was largely limited to ad hoc credibility formulas and 

conjugate prior relationships. 
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Why Bayesian Computation is Difficult 

• Remember Bayes’ Theorem: 

 

 

The great virtue of the Bayesian framework:  

• It enables us to calculate a predictive distribution for future outcomes Y given 

past outcomes X:  f(Y|X) 
• E.g. in loss reserving, we can get a predictive distribution of future claim payments Y given a loss 

triangle of past payments X. 

 

 

 

 

 

 

• But in practice all of this integration is intractable… impasse. 
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A New World Order 

• This impasse came to an end ~1990 when a simulation-based approach to 

estimating posterior probabilities was introduced. 
• (Circa the fall of the Soviet empire and Francis Fukuyama’s “end of history”) 
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What is Markov Chain Monte Carlo? 

• Markov chain:  a type of stochastic process in which each future state is 

independent of each past state, conditional upon the present state. 
• Intuitively:  once you know the present state, information about past states contain no additional 

information useful for predicting the future. 

• For us the space of states will be a parameter space 

• We will construct Markov chains that will wander around parameter space…. 

• … and use these chains to do Monte Carlo simulation 

 

 

• Monte Carlo:  stochastic simulation 

 

• Monte Carlo simulation is already familiar, so let’s discuss these concepts in 

reverse order. 
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Why Traditional Monte Carlo Isn’t Enough 

• Monte Carlo simulation is all well and good when we can write down the 

probability distribution in a computer program. 
• It enables to generate iid draws from the distribution of interest…  

• … and the Strong Law of Large Numbers implies that the Monte Carlo estimate will converse to the 

true value of the integral with probability 1. 

 

• But the problem in Bayesian computation is that we generally can’t write down 

an expression for the posterior probability distribution. 

 

• Specifically:  the integral in the denominator gets very nasty very quickly… 

especially when  is a vector of parameters… 

 

 

 

 

 

• We therefore turn to the theory stochastic processes. 

• This will enable us to bypass the independence requirement of MC integration. 
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• Stochastic process:  a time-indexed set of random variables {Xt} defined on a 

space of states W ={x1, x2 ,…}.   
• For us W will be a parameter space. 

 

• Markov chain:  is a stochastic process that satisfies:   

 

 

 

• In words:  the probability of an event in the chain depends only on the 

immediately previous event. 

 

• P is called a transition matrix and represents the Markov chain 

 

• P gives the probability of moving from each possible state at time t to each 

possible state at time t+1. 
• If the state space has a finite number k values, then P is a k-by-k matrix of transition probabilities 

 

Markov Chains – Definitions  

    ),(,|Pr,...,|Pr 1111 yxPxXyXxXxXyX tttt  

 jXiXP ttji  1, |Pr



9/10/2013 

13 

Illustration of 
Metropolis-Hastings 
Sampling 

26 

A Random Walk Down Parameter Lane 

• Recall:  we can’t do Monte Carlo because in general we can’t write down the 

posterior probability density f(|X). 

 

• But what if we could set up a random walk through our parameter space that… in 

the limit… passes through each point in the probability space in proportion to the 

posterior probability density. 

 

• If we could, then we could just use the most recent x000 steps of that random 

walk as a good approximation of the posterior density… 

 

• Yes we can! 
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Chains We Can Believe In 

• The Metropolis-Hastings sampler generates a Markov chain {1, 2, 3,… } in 

the following way: 

 
1. Time t=1:  select a random initial position 1 in parameter space. 

2. Select a proposal distribution p() that we will use to select proposed random steps away from 

our current position in parameter space. 

3. Starting at time t=2:  repeat the following until you get convergence: 

a) At step t, generate a proposed *~p() 

b) Also generate u ~ unif(0,1) 

c) If u < R then t= *.  Else, t= t-1. 

 

 

 

 

(R is known as the acceptance ratio.) 

 

• Step 3c) implies that at step t, we accept the proposed step * with probability 

min(1,R). 
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• At each step we flip a coin with probability of heads min(1,R) and  accept * if the 

coin lands heads.   
• Otherwise reject * and stay put at t-1. 

 

• But why is this any easier?  R contains the dreaded posterior density f(|X) that 

we can’t write down.  
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Making Bayesian Computation Practical 
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Making Bayesian Computation Practical 

• At each step we flip a coin with probability of heads min(1,R) and  accept * if the 

coin lands heads.   
• Otherwise reject * and stay put at t-1. 

 

• But why is this any easier?  R contains the dreaded posterior density f(|X) that 

we can’t write down.  

 

 

• Here’s why: 
)|(

)|(

)|(

)|(

1

*

*

1

1

*








t

t

t p

p

Xf

Xf
R









)|(

)|(

)()|(

)()|(

)()|(

)()|(

1

*

*

1

11

**












t

t

tt p

p

dXf

Xf

dXf

Xf

R












30 

Making Bayesian Computation Practical 

• At each step we flip a coin with probability of heads min(1,R) and  accept * if the 

coin lands heads.   
• Otherwise reject * and stay put at t-1. 

 

• But why is this any easier?  R contains the dreaded posterior density f(|X) that 

we can’t write down.  

 

 

• Here’s why: 
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they are functions only of 
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parameters .  

 

We have re-written R in 

terms of the likelihood 

function f(X|), and the 

prior (). 
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Now We Can Go to the Metropolis 

• So now we have something we can easily program into a computer.  

 

• At each step, give yourself a coin with probability of heads min(1,R) and flip it. 

 

 

 

 

• If the coin lands heads move from t-1 to * 

 

• Otherwise, stay put.  

 

• The result is a Markov chain (step t depends only on step t-1… not on prior 

steps).  And it converges on the posterior distribution. 
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Simple Illustration 

• Let’s illustrate MH via a simple example. 

 

• “Target” density that we wish to simulate:  the lognormal. 

 

 

 

 

• We take logs so that we add/subtract rather than multiply/divide 

 

• “Target” “density”:   
• As noted before, we can eliminate terms that cancel out 

 

• Proposal densities: 
• The proposal (*,*) is a standard normal step away from the current location. 

 










)ln(
,

2
exp

2

1
),|(

2 x
zz

x
xf

2
)log(

*5.0)ln(),,( 






 







x
xtgt

)1,()|(;)1,()|( 11

*

11

*

  tttt NpNp 



9/10/2013 

17 

33 

Random Walks with 4 Different Starting Points 

• We estimate the lognormal 

density using 4 separate sets 

of starting values. 

 

• Data:  50 random draws from 

lognormal(9,2). 
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Random Walks with 4 Different Starting Points 

• After 10 iterations, the lower 

right chain is already in the 

right neighborhood. 
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Random Walks with 4 Different Starting Points 

• After 20 iterations, only the 3rd 

chain is still in the wrong 

neighborhood. 
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Random Walks with 4 Different Starting Points 

• After 50 iterations, all 4 chains 

have arrived in the right 

neighborhood. 
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Random Walks with 4 Different Starting Points 

• By 500 chains, it appears 

that the burn-in has long 

since been accomplished. 

 

• The chain continues to 

wander. 

 

• The time the chain spends 

in a neighborhood 

approximates the posterior 

probability that (,) lies in 

this neighborhood.  
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In 3D 

• The true lognormal parameters 

are:   =9 and =2 

 

• The MH algorithm yields an 

estimate of the posterior density: 

 

 

 

• This density results from a diffuse 

prior 

 

• It is based on the information 

available in the data. 

),...,,|,( 5021 XXXf 
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Metropolis-Hastings Results 

• The true lognormal 

parameters are:  

 =9 and =2 

 

• The MH simulation is gives 

consistent results: 

 

 

 

 

 

 

 

• Only the final 5000 of the 10000 

MH iterations were used to 

estimate , 
• (This motivates the use of the musical 

term “coda”) 
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Metropolis-Hastings Results 

• The true lognormal 

parameters are:  

 =9 and =2 

 

• Note the very rapid 

convergence despite 

unrealistic initial values. 
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Some MCMC Intuition 

42 

Metropolis-Hastings Intuition  

• Let’s take a step back and remember why we’ve done all of this. 

 

• In ordinary Monte Carlo integration, we take a large number of independent 

draws from the probability distribution of interest and let the sample average of 

{g(i)} approximate the expected value E[g()]. 

 

 

 

 

• The Strong Law of Large Numbers justifies this approximation. 

 

• But:  when estimating Bayesian posteriors, we are generally not able to take 

independent draws from the distribution of interest. 

 

• Results from the theory of stochastic processes tell us that suitably well-behaved 

Markov Chains can also be used to perform Monte Carlo integration. 
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How do we know this algorithm yields reasonable approximations? 

 

• Suppose our Markov chain 1, 2, … with transition matrix P satisfies some 

“reasonable conditions”: 
• Aperiodic, irreducible, positive recurrent (more on these in a moment) 

• Chains generated by the M-H algorithm satisfy these conditions 

 

• Fact #1 (convergence theorem):  P has a unique stationary (“equilibrium”) 

distribution, .  (i.e. =P).  Furthermore, the chain converges to . 
• Implication: We can start anywhere in the sample space so long as we through out a sufficiently 

long “burn-in”. 

 

• Fact #2 (Ergodic Theorem):  suppose g() is some function of .  Then: 
 

 

 

• Implication:  After a suitable burn-in, perform Monte Carlo integration by averaging over a suitably 

well-behaved Markov chain.  

• The values of the chain are not independent, as required by the SLLN.   

• But the Ergodic Theorem says we’re close enough to independence to get what we need. 

Some Facts from Markov Chain Theory 
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
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More on those “reasonable conditions”  on Markov chains: 

 

• Aperiodic:  The chain does not regularly return to any value  in the state 

space in multiples of some k>1. 

 

• Irreducible:  It is possible to go from any state i to any other state j in some 

finite number of steps. 

 

• Positive recurrent:  The chain will return to any particular state  with 

probability 1, and expected return time finite. 

 

• Intuition:   
• The Ergodic Theorem tells us that (in the limit) the amount of time the chain spends in a particular 

region of state space equals the probability assigned to that region. 

• This won’t be true if (for example) the chain gets trapped in a loop, or won’t visit certain parts of the 

space in finite time. 

 

• The practical problem:  use the Markov chain to select a representative sample 

from the distribution , expending a minimum amount of computer time. 

 

 

Conditions for Ergodicity 
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Tuning the Metropolis 
Hastings Algorithm 

46 

• E[X] = , Var[X] = f·p 

• We are given that f = 1, p = 1.5 and  is unknown 

• Given the data: 

 

 

 

 

• Find the predictive distribution of  and X 

A Tweedie Example 

Loss Amount 0 1 2 3 5 8 10 12 16

Number 8 6 2 2 2 1 1 1 2
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1. Select a starting value 1 

2. For t = 2, …, select a candidate value, *, at random from the proposal density 

distribution. 

 

 

 

 

3. Calculate the ratio 

 

 

 

 

 

 

 

4. Select the value, U, at random from a uniform distribution. 

5. If U < R then t = *, else t = t-1  

The Metropolis-Hastings Algorithm  
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• Run the “MH Example Tuning.R” script 

• Choose “burn in” period = 1,000 iterations 

• Run 10,000 additional iterations 

• Choose  ranging from 0.2 to 2000 

• Large  means that * is “close” to t-1, so R is “close” to 1 
• Acceptance (t = *) is likely 

• Small  means that * could be “far” from t-1, so R could be less than 1 
• Rejection (t = t-1) is likely 

•  There are “optimal” rejection rates 
• 50% for one parameter, and decreasing to 25% for many parameters 

Tuning the Metropolis Hastings Algorithm 
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• Tuning by trial and error – this example 

• Mechanical or “adaptive” tuning – JAGS 

Trace plots for different values of  

50 

• Run longer chain and take every kth iteration 

• Our example with k = 10 

When Tuning Doesn’t Work - Thinning 
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• MH Algorithm produces a sample from the posterior distribution of  

• For each  in the sample, simulate a random variable, x, from a Tweedie 

distribution with parameters f = 1, p = 1.5 and mean . 

 

From 

 

 

 

 

 

 

To  

 

Back to the problem – Predictive distributions of  and X 

Loss Amount 0 1 2 3 5 8 10 12 16

Number 8 6 2 2 2 1 1 1 2

A JAGS Example 
Adaptive Tuning and 
Convergence Testing 
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The Data 

 

 

 

The Model 

• LRt ~ normal(ELRt, ) 

• ELR1 ~ uniform(0.5, 1.5) 

• ELRt = z·LRt-1 + (1-z)·ELRt-1 

• z ~ uniform(0,1) 

•  ~ uniform(0, 0.25)  

 

• True parameters – ELR1, z,   (i.e. those parameters with prior distributions) 

• Derived parameters – ELR2, …, ELR10 

A Simple Example with JAGS 

Predict the Distribution of the Outcomes of a  

Time Series of Loss Ratios for the Next 5 Years  

Accident Year 1 2 3 4 5 6 7 8 9 10

Loss Ratio 0.685 0.762 0.737 0.735 0.848 0.665 0.545 0.644 0.557 0.671

54 

1. Get data 

2. Create JAGS object – calls a separate text file with JAGS script 
• Specify data 

• Specify (adaptive) tuning period 

• Thinning parameter 

• Setting a fixed random number seed 

• Specify the number of chains  (Why does this matter?) 

3. Update the JAGS object (Burning Period) 
• Burn until chain converges 

• Question – What do we mean by “converge?”  

4. Take the sample 
• I use the “coda” package (distributed with “rjags”) 

5. Construct statistics of interest and produce output 

 

Comment – No unique way to do these analyses.  My approach is to find 

something that “appears” to work and focus on problems of interest to actuaries.  

General Structure of an R/JAGS Script Created by Meyers 



9/10/2013 

28 

55 

• Run the script and explore output 

• Run with “n.adapt = 10” 

• Discuss “convergence” - I use the Gelman-Rubin convergence diagnostic. 

1. Run multiple chains in JAGS 

2. Estimate the average within-chain variability, W 

3. Estimate the between-chain variability, B 

4. Calculate the “Potential Scale Reduction Factor” or PSRF 

 

                                                                      Gelman and Rubin < 1.2 is OK. 

 

Brooks and Gelman “General Methods for Monitoring Convergence of Iterative 

Simulations” describe a “Multivariate PSRF.”    < 1.2 is OK 

 

Gelman Plots 

1. PSRF for iterations 1-50 

2. PSRF for iterations 1-100 

3. Etc. 

 

 

 

 

 

 

 

 

 

 

 

In Rstudio - Open “ELR JAGS Example.R” Script  

1
W B

R
W


 
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In practice, bad results can happen – MPSRF = 7.88 

A preview of things to come. 
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Case Studies 

Case Study #1 
Loss Models 
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Loss Model Case Study #1a 

• Suppose we are given data for 100 losses and are told that they represent losses 

in $1M’s for a new line of specialty insurance. 

 

• We multiply the numbers by 10 for convenience: 
• (round the numbers only for display purposes… not in the analysis) 

 

 

 

 

 

• We are asked to estimate the 99th percentile Value at Risk (VaR). 

60 

Exploratory Data Analysis 

• Just to help visualize the 

data: 
• Perform gamma MLE fit 

• Create a QQ plot. 

 

• Data doesn’t look terribly 

inconsistent with a 

gamma… 

 

• … but is this like concluding 

that the coin is (un)biased 

after 12 tosses? 
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Exploratory Data Analysis 

• Motivated by the two outliers 

in the Gamma analysis, let’s 

fit a Pareto. 

 

• The fit is still ambiguous, but 

the heavier tailed Pareto 

seems more consistent with 

the data. 

62 

Bayesian Analysis 

• We will assume that the 

data is Pareto distributed. 

 

• Given this assumption, 

what can we inter about {} 

given the data? 

 

• Technical note:  JAGS 

provides only a 1-

parameter Pareto function 

(dpar).  We therefore use 

the fact that a Pareto is a 

gamma mixture of 

exponentials. 
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Posterior Distribution VaR99 Estimates 

• If we had settled for our 

initial Gamma MLE fit, our 

estimate would have likely 

been way too low.  

 

• Just reporting the VaR for a 

Pareto(3,10) fit doesn’t tell 

the whole story either. 
• Parameter uncertainty results in 

widely divergent VaR estimates. 

• In real life, the next step would 

be to specify more informative 

priors… 
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Loss Model Case Study #1b:  Finite Mixtures  

• Actual Project data: 

 

• We are given 539 size-of-

loss observations. 
• Distribution of logged losses 

plotted to right. 

 

 

 

 

 

 

• What can we say about the 

distribution of these 

observations? 
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Case Study  #2  
Bayesian Regression Modeling 

66 

Bayesian Regression Case Study 

• The classic dataset used to introduce ordinary least squares [OLS] regression is 

the Galton height data. 

 

• We predict the height of the child using the height of the parent. 

 

• Let’s fit a Bayesian regression model to this data. 
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Results 

• Bayesian posterior density 

estimate is well behaved 

and consistent with 

classical regression. 

68 

Results 

• We superimpose our draws 

from the simulated posterior 

on the original data. 
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Bayesian Non-Linear Regression Case Study 

• Data:  daily 1995-2013 Boston average temperature observations 

• Let’s fit a non-linear Bayesian model on the data < 2011, test on remaining data. 

70 

Nonlinear Bayesian Model 

• Our model assumes normal dispersion around an underlying pattern that includes 

both a linear trend as well as seasonal variation. 
• The beta1 parameter is interesting. 

 

 

 

 

 

 

 

 

 

 
• t:  number of years from arbitrary origin (April 1, 2004) 

• alpha: amplitude of seasonal component 

• omega:  frequency  (presumably 2) 

• theta:  phase shift 
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Nonlinear Bayesian Model 

• Grey lines:  20 draws from the posterior predictive distribution 

• Dark blue dots:  data used to fit the model 

• Light blue dots:  holdout data to test the model’s predictions. 

 

 

 

 

 

 

 

 

 

 

• The posterior distribution of  1 

suggests a gradual rise in 

temperature since 1995. 

 

 

 

 

 

Case Study  #3  
Trend Analysis with 

Autocorrelation 
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Trend Analysis with Autocorrelation 

• Average claim severity 

time series from Dave 

Clark via Glenn Meyers’ 

Brainstorms column. 

 

• Let’s build a Bayesian 

exponential trend model, 

incorporating 

autocorrelation. 

74 

Bayesian Trend Analysis with Autocorrelation 

• Posterior Density 

estimate of the trend 

parameter. 
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Bayesian Trend Analysis with Autocorrelation 

• We re-plot the data and 

superimpose 100 draws 

from the posterior. 

Case Study  #4  
Bayesian Poisson Regression  

(Loss Reserving Warm-up) 



9/10/2013 

39 

77 

Bayesian Poisson Regression 

• To demonstrate Bayesian GLM, we will construct a Bayesian analog of the over-

dispersed Poisson [ODP] model outlined in England-Verrall [2002] 

 

• The ODP model is mathematically equivalent to the type of model commonly used 

in contingency table analysis. 

 

• A over-dispersed Poisson GLM model with 20 covariates 
• One indicator variable for each accident year 

• One indicator variable for each development period 

• No intercept term 

 

• Reserve variability can be estimated by bootstrapping residuals and re-running the 

model on the resulting pseud-datasets 

78 

Case Study Data 

• A garden-variety Workers Comp Schedule P loss triangle: 

 

 

 

 

 

 

 

 

 

 

 

• Let’s model this as a longitudinal dataset. 

• Grouping dimension:  Accident Year (AY) 

 

• We can build a parsimonious non-linear model that uses random effects to allow 

the model parameters to vary by accident year. 

Cumulative Losses in 1000's

AY premium 12 24 36 48 60 72 84 96 108 120 CL Ult CL LR CL res

1988 2,609 404 986 1,342 1,582 1,736 1,833 1,907 1,967 2,006 2,036 2,036 0.78 0

1989 2,694 387 964 1,336 1,580 1,726 1,823 1,903 1,949 1,987 2,017 0.75 29

1990 2,594 421 1,037 1,401 1,604 1,729 1,821 1,878 1,919 1,986 0.77 67

1991 2,609 338 753 1,029 1,195 1,326 1,395 1,446 1,535 0.59 89

1992 2,077 257 569 754 892 958 1,007 1,110 0.53 103

1993 1,703 193 423 589 661 713 828 0.49 115

1994 1,438 142 361 463 533 675 0.47 142

1995 1,093 160 312 408 601 0.55 193

1996 1,012 131 352 702 0.69 350

1997 976 122 576 0.59 454

chain link 2.365 1.354 1.164 1.090 1.054 1.038 1.026 1.020 1.015 1.000 12,067 1,543

chain ldf 4.720 1.996 1.473 1.266 1.162 1.102 1.062 1.035 1.015 1.000

growth curve 21.2% 50.1% 67.9% 79.0% 86.1% 90.7% 94.2% 96.6% 98.5% 100.0%
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Results:  Bayesian Poisson Regression 

• Blue densities are density estimates of Bayesian MCMC posteriors 

• Red densities are normal with mean, s.d. taken from Mack model results 

 

Case Study  #5  
Bayesian Hierarchical Poisson Regression 

Ratemaking Example 
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Data and Problem 

• We have 7 years of Workers Comp data 
• For each of 7 years we are given payroll and claim count by class. 

• Let’s build a Bayesian hierarchical Poisson GLM model on years 1-6 and compare the result with the 

actual claim counts from year 7. 

• Data is from Start Klugman 1992 book on Bayesian Statistics for actuarial science. 

82 

Exploratory Data Analysis 

• The endgame is to build a Bayesian hierarchical GLM model. 

 

• But in the spirit of data exploration, it makes sense to built empirical Bayes models 

first. 
• This is essentially a Bühlmann-Straub type credibility model. 

• This will help us get a feel for how much “shrinkage” (credibility-weighting) is called for.  

• Compare credibility weighted result with simply calculating empirical 6-year claim frequency by class. 
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Shrinkage Effect of Hierarchical Model 

• Top row:  estimated claim 

frequencies from un-pooled 

model. 
• Separately calculate #claims/payroll 

by class 

 

• Bottom row:  estimated claim 

frequencies from Poisson 

hierarchical (credibility) model. 

 

• Credibility estimates are 

“shrunk” towards the grand 

mean. 

Claim Frequency

hierach

no pool

grand mean0.00 0.05 0.10

Modeled Claim Frequency by Class

Poisson Models:  No Pooling and Simple Credibility
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Shrinkage Effect of Hierarchical Model 

• Let’s plot the claim frequencies 

only for classes that experience 

a shrinkage effect is 5% or 

greater. 
• Dotted line:  shrinkage between 

5=10%. 

• Solid line:  shrinkage > 10% 
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Shrinkage Effect of Hierarchical Model 

• The most extreme shrinkage 

occurs for class 61. 
• Only 1 claim in years 3-6. 

• But very low payroll results in a 

large pre-shrunk estimated 

frequency. 

 

 

Claim Frequency

hierach

no pool

grand mean0.00 0.05 0.10

Modeled Claim Frequency by Class

Poisson Models:  No Pooling and Simple Credibility

1

19

24

26

30

35 42

4750

51

5356

58
6364

66

68
70

86
88

93

107114 115
121

124

126

130
133

86 

Shrinkage Effect of Hierarchical Model 

• Shrinkage also occurs for class 

63. 
• More payroll than class 61 but 

similar logic. 
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Now Specify a Fully Bayesian Model 

• Here we specify a fully Bayesian model.   
• Still Poisson regression with an offset (y[i] is claim count) 

• Replace year-7 actual values with missing values so that we model the year-7 results and can 

compare actual with posterior credible interval. 

• Let’s run and then criticize the model. 

88 

First Model:  Validation 

• Does model seem 

realistic?  

 

• What change should 

we make? 
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Second Model:  Validation 

• Now  roughly 90% of 

the year-7 claims fall 

within the 90% credible 

interval. 
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Third Model:  Validation 

• Only a minor difference. 
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Case Study  #6  
Bayesian Nonlinear Hierarchical Model 

 

 

 

References:  

Wayne Zhang, Vanja Dukic, James Guszcza:  “A Bayesian Nonlinear Model for Forecasting Insurance Loss 

Payments”, Journal of the Royal Statistical Society, Series A, 175, 637-56. 

James Guszcza, “Hierarchical Growth Curves Models for Loss Reserving”, CAS Forum, 2008. 
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Growth Curves – At the Heart of the Model 

• We want our model to 

reflect the non-linear nature 

of loss development.  
• GLM shows up a lot in the 

stochastic loss reserving 

literature… 

• … but are GLMs natural models 

for loss triangles? 

 

• Growth curves (Clark 2003) 
•  = ultimate loss ratio 

•  = scale 

•  = shape (“warp”) 

 

• Heuristic idea 
• We judgmentally select a 

growth curve form 

• Let  vary by year (hierarchical) 

• Add priors to the 

hyperparameters (Bayesian) 
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An Exploratory Non-Bayesian Hierarchical Model 

• It is easy to fit non-Bayesian hierarchical 

models as a data exploration step. 
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Adding Bayesian Structure 

• Our hierarchical model is “half-way Bayesian” 
• On the one hand, we place probability sub-models on certain parameters 

• But on the other hand, various (hyper)parameters are estimated directly from the data. 

 

• To make this fully Bayesian, we need to put probability distributions on all 

quantities that are uncertain.   

 

• We then employ Bayesian updating:  the model (“likelihood function”) together with 

the prior results in a posterior probability distribution over all uncertain quantities. 
• Including ultimate loss ratio parameters and hyperparameters! 

•  We are directly modeling the ultimate quantity of interest.  

 

• Before this morning this might have sounded impossible.   
• JAGS to the rescue 
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Results 

• Now we fit a fully Bayesian version of the model by providing prior distributions 

for all of the model hyperparameters, and simulating the posterior distribution. 

 

96 

Results 

• Here we are using the most recent Calendar Year (red) as a holdout sample. 

• The model fits the holdout well. 
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Bayesian Credible Intervals 

• Now refit the model on all of the data and re-calculate the posterior credible intervals. 

98 

Comparison with the Chain Ladder 

• For comparison, superimpose the “at 120 months” chain ladder estimates on the 

posterior credible intervals. 
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Posterior Distribution of Aggregate Outstanding Losses 

• In the top two images, we sum 

up the projected losses for all 

estimated AY’s evaluated at 120 

(180) months; then subtract 

losses to date (LTD). 
• For the 120 month estimate, the 

posterior median (1519) comes very 

close to the chain ladder estimate 

(1543) 

 

• In the bottom image, we multiply 

the estimated ultimate loss ratio 

parameters by premium and 

subtract LTD. 

 

• Deciding which of these options 

is most appropriate is akin to 

selecting a tail factor. 
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Background 

• Risk based capital proposals, e.g. EU Solvency II and USA SMI 

rely on stochastic models. 
•    VaR@99.5% and TVaR@99% 

• There are many stochastic loss reserve models that claim to 

predict the distribution of ultimate losses. 

 

• How good are these models?  

 

• We now discuss tests of the predictions of currently popular 

stochastic loss reserve models on real data from 50 insurers in 

each of four lines of insurances. 

102 

Criteria for a “Good”  
Stochastic Loss Reserve Model 

• Using the upper triangle “training” data, predict the distribution of the 

outcomes in the lower triangle 

• Can be observations from individual (AY, Lag) cells or sums of observations in 

different (AY,Lag) cells. 

•  Using the predictive distributions, find the percentiles of the outcome data. 

•  The percentiles should be uniformly distributed. 

• Histograms 

• Test with PP Plots/Kolmogorov-Smirnov (KS) tests  

• Plot Expected vs Predicted Percentiles 

• KS 95% critical values = 19.2 for n = 50 and 9.6 for n = 200 
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Illustrative Tests of Uniformity 

104 

The CAS Loss Reserve Database 

Created by Meyers and Shi 

With Permission of American NAIC 

Schedule P (Data from Parts 1-4) for several US Insurers 
• Private Passenger Auto 

• Commercial Auto  

• Workers’ Compensation 

• General Liability 

• Product Liability 

• Medical Malpractice (Claims Made) 

 

Available on CAS Website  
http://www.casact.org/research/index.cfm?fa=loss_reserves_data 

http://www.casact.org/research/index.cfm?fa=loss_reserves_data
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w = Accident Year  w = 1,…,10 

d = Development Year  d = 1,…,10 

Cw,d = Cumulative (either incurred or paid) loss 

Iw,d = Incremental paid loss  = Cw,d – Cw-1,d 

Notation 

106 

Illustrative Insurer – Incurred Losses 
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Illustrative Insurer – Paid Losses 

108 

• Insurers listed in Meyers – Summer 2012 e-Forum 

• Also in files  “CCL_IG10K.csv” (etc.) in “MCMC Workshop” directory 

• 50 Insurers from four lines of business 

• Commercial Auto 

• Personal Auto 

• Workers’ Compensation 

• Other Liability 

• Both paid and incurred losses 

• In RStudio - open and run “Look at Triangle.R” 

 

Data Used in the Study 
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Exercise – Run the Mack Model 

In RStudio – Open “Mack Model.R” 

Key Steps in the Code 

• Read data from CAS Loss Reserve Database 

• Use R “ChainLadder” package to fit Mack Model 

• Calculate 1st two moments of predicted outcomes 

• Fit a lognormal distribution using moments 

• Calculate percentile of actual outcome 

Examine Output 

110 

Exercise – Run the Bootstrap ODP Model 

In RStudio – Open “ODP Model.R” 

Key Steps in the Code 

• Read data from CAS Loss Reserve Database 

• Use R “ChainLadder” package to fit ODP Model 

• Generate 10,000 outcomes 

• Calculate percentile of actual outcome 

Examine Output 
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Test of Mack Model on Incurred Data 

Conclusion – The Mack model predicts tails that are too light.   

112 

Test of Mack Model on Paid Data 

Conclusion – The Mack model is biased upward.   



9/10/2013 

57 

113 

Test of Bootstrap ODP on Paid Data 

Conclusion – The Bootstrap ODP model is biased upward.   

Response to Model 
Failures 
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• The “Black Swans” got us again! 

• We do the best we can in building our models, but the real 

world keeps throwing curve balls at us.  

• Every few years, the world gives us a unique “black swan” 

event.  

• Build a better model. 

‒ Use a model, or data, that sees the “black swans.” 

‒ MCMC is a good tool to use for stochastic loss reserve 

model building. 
 

Possible Responses to the model failures 

116 

• Use R and JAGS packages 

• Get a sample of 10,000 parameter sets from the posterior 

distribution of the model 

• Use the parameter sets to get 10,000 simulated outcomes 

• Calculate summary statistics of the simulated outcomes 
• Mean 

• Standard deviation 

• Percentile of the actual outcome  

 

 

Bayesian MCMC Models 
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• What do we know about the performance of the Mack model? 

• Did not observe bias on our data. 

• Predicted variance of the outcomes is too low. 

• How do we increase the predicted variance? 

 

Discussion  

Model Features with Incurred Data 

118 

How Can We Increase the Predicted Variance of 
Outcomes? 

Model – log(Cwd)~lognormal(wd,wd) 

wd = w + d 

Mack assumes accident years are independent. 

How can we introduce correlation between accident years? 

wd = w + d  + ·(log(Cw-1,d) – w-1,d) 
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Model – log(Cwd)~lognormal(wd,wd) 

Note – Coefficient of variation is a function of .  

wd = d    

Do we know anything else about d? 

1 > 2 > … > 10   

 

 

How Can We Increase the Predicted Variance of 
Outcomes? 

120 

The Correlated Chain Ladder (CCL) Model 

1,d = 1 + d  

C1,d ~ lognormal(1,d, d) 

w,d = w + d  + ·(log(Cw-1,d) – w-1,d) for w = 2,…,10 

Cw,d ~ lognormal(w,d, d) 

 ~ U(-1,1) 

w and d are widely distributed with, 10 = 0. 

                  ai ~ U(0,1)  Forces d to decrease as d increases 

Estimate distribution of  
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In RStudio – Open “CCL Model.R” 

 

Key steps in the script 

• Read data from CAS Loss Reserve Database 

• Run JAGS to produce 10,000 parameter sets 

• Generate convergence diagnostics 

• Generate 10,000 outcomes by simulating loss from each parameter set. 

• Calculate summary statistics 

• Calculate percentile of actual outcome 

Examine Output 

• Look at convergence diagnostics 

Repeat exercise with “CCL Model Old.R” 

• Look at convergence diagnostics 

 

Exercise – Run the CCL Model 

122 

MPSRF Statistics on CCL Model for the 200 Triangles 
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• Chain ladder applies factors to last fixed observation 

• CCL uses  uncertain “level” parameters for each accident year. 

 

 

• Mack uses point estimations of parameters 

• CCL uses Bayesian estimation to get a posterior distribution of 

parameters 

• Mack assumes independence between accident years 

• CCL allows for correlation between accident years  

• Corr[log(Cw-1,d),log(Cw,d)] =  

  

The Correlated Chain Ladder Model 
Predicts Distributions with Thicker Tails 

, , ,| |
w ww d w d w w d wVar C E Var C Var E C 

                   
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Posterior Distribution of   

for Illustrative Insurer 

 is highly 

uncertain, 

but in 

general 

positive. 
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Generally Positive Posterior Means of  

126 

Results for the Illustrative Incurred Data 
with burn-in of 500,000  on old CCL 

Note the increase in the 

standard error of CCL 

over Mack. 
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Compare SDs for All 200 Triangles 

128 

Test of Mack Model on Incurred Data 

Conclusion – The Mack model predicts tails that are too light.   
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Test of CCL on Incurred Data 

Conclusion – CCL model percentiles lie within KS statistical bounds.   

130 

Accomplished by “pumping up” the variance of Mack model. 

 

What About Paid Data? 
 

Start by looking at CCL model on cumulative paid data. 

Improvement with Incurred Data 
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Test of Bootstrap ODP on Paid Data 

Conclusion – The Bootstrap ODP model is biased upward.   

132 

Test of CCL on Paid Data 

Conclusion – Roughly the same performance a bootstrapping and Mack   
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Look at models with payment year trend. 

• Ben Zehnwirth has been championing these for years. 

Payment year trend does not make sense with cumulative data! 

• Settled claims are unaffected by trend. 

Recurring problem with incremental data – Negatives! 

• We need a skewed distribution that has support over the entire real line. 

How Do We Correct the Bias? 

134 

X ~ Normal(Z,),  Z ~ Lognormal(,) 

The Lognormal-Normal (ln-n) Mixture 
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w,d = w + d + t∙(w + d – 1) 

Zw,d ~ lognormal(w,d, d) subject to 1 < 2 < …< 10  

I1,d ~ normal(Z1,d, ) 

Iw,d ~ normal(Zw,d + ∙(Iw-1,d – Zw-1,d)∙e
t, ) 

 

Estimate the distribution of  

 

“Sensible” priors on w,d, andt.  1 = 0 

• Needed to control d  

• Interaction between t , w  and d.   

 

 

The Correlated Incremental Trend (CIT) Model 
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CIT Model for Illustrative Insurer 
with a burn-in of 500,000 iterations 
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MPSRF Statistics on CIT Model for the 200 Triangles 

CA # 14257 

138 

In-Depth Look at a Slow Mixing - CA # 14257 

MPSRF = 1.072 with n_adapt = n_burn = n_sample = 50,000 

138 

???? 
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In-Depth Look at a Slow Mixing - CA # 14257 

MPSRF = 1.072 with n_adapt = n_burn = n_sample = 50,000 

The Incremental Paid Triangle 

w\d 1 2 3 4 5 6 7 8 9 10

1 216 168 112 65 23 0 0 0 0 0

2 245 280 104 96 52 5 0 0 0

3 306 225 111 17 -3 0 -2 0

4 400 162 181 165 1 0 0

5 231 153 10 516 -361 0

6 183 195 34 0 6

7 306 150 -2 0

8 333 128 62

9 296 228

10 309

140 

In-Depth Look at a Slow Mixing - CA # 14257 

MPSRF = 1.072 with n_adapt = n_burn = n_sample = 50,000 

140 
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In-Depth Look at a Slow Mixing - CA # 14257 

MPSRF = 1.072 with n_adapt = n_burn = n_sample = 50,000 

141 

142 

In-Depth Look at a Slow Mixing - CA # 14257 

MPSRF = 1.072 with n_adapt = n_burn = n_sample = 50,000 

142 
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In-Depth Look at a Slow Mixing - CA # 14257 

MPSRF = 1.072 with n_adapt = n_burn = n_sample = 50,000 

143 

144 

In-Depth Look at a Slow Mixing Model - CA # 14257 

MPSRF = 1.072 with n_adapt = n_burn = n_sample = 50,000 

144 
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In-Depth Look at a Slow Mixing - CA # 14257 

MPSRF = 1.072 with n_adapt = n_burn = n_sample = 50,000 

145 

146 

In-Depth Look at a Slow Mixing - CA # 14257 

MPSRF = 1.072 with n_adapt = n_burn = n_sample = 50,000 

w Premium CIT.Estimate CIT.SE CIT.CV Outcome CIT.Pct

1 1041 584 0 0 584

2 1112 782 103 0.1317 782

3 1077 656 165 0.2515 654

4 713 916 206 0.2249 909

5 819 557 242 0.4345 548

6 1042 427 271 0.6347 419

7 1165 680 328 0.4824 607

8 1317 889 567 0.6378 607

9 1463 901 929 1.0311 780

10 1675 950 1390 1.4632 984

Total 11424 7344 2347 0.3195 6874 46.13

Is this a reasonable prediction? 



9/10/2013 

74 

147 

• Chapter 6 in Brooks, Gelman, Jones and Meng.  Chapter authors are Andrew 

Gelman and Kenneth Shirley 

1. Run model with four chains. 

2. n_adapt = n_burn = n_sample, with n_thin selected to get 10,000 parameter 

sets 

3. Select  

4. Run the “gelman.diag” function 

5. If MPSRF < 1.05, don’t worry (too much) about nonconvergence. Gelman-

Shirley suggest 1.1 (and use results from multiple chains). 

6. If worried, or if you have time and are not worried, look at the trace plots. 

 

My prior practice – Brute force with burn in of 500,000+  

My Current Practice on Convergence Testing 

147 

148 

In RStudio – Open “CIT Model.R” 

Key Steps in the Code 

• Read data from CAS Loss Reserve Database 

• Run JAGS to produce 10,000 parameter sets 

• Generate 10,000 outcomes by simulating loss from each parameter set. 

• Generate convergence diagnostics  

• Calculate summary statistics 

• Calculate percentile of actual outcome 

Examine Output 

 

Exercise – Run the CIT Model 
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Posterior Distribution of  and t  

for Illustrative Insurer 

Should we allow  in the 

model? 

Predominantly negative 

trends 

150 

Posterior Mean   for All Insurers 

On Paid Data 
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Posterior Mean   for All Insurers 

On Incurred Data 

152 

Posterior Mean t  for All Insurers 
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Test of Bootstrap ODP on Paid Data 

Conclusion – The Bootstrap ODP model is biased upward.   

154 

Test of CIT with  = 0 on Paid Data 

Conclusion – Overall improvement but look at Personal Auto   
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Test of CIT on Paid Data 

Conclusion – CIT model percentiles are an improvement but do not lie within the KS bounds.   

156 

Mack underpredicts the variability of outcomes with incurred data. 

Both Mack and Bootstrap ODP are biased high with paid data. 

Bayesian MCMC models 

• Easily modified to produce new models. 

• Easily implemented to produce predictive distributions of outcomes. 

CCL model improves significantly on predictions with incurred data. 

• Important feature – Correlation between accident years 

CIT models improves somewhat on predictions with paid data. 

• Important features – Payment year trend and correlation between accident 

years 

Shortcoming – Study needs to be repeated on different time periods. 

Goals of workshop 

• Enable users to run Bayesian MCMC models for loss reserving 

• Provide in depth understanding of CCL and CIT models so that users can 

explore improvements to those models. 

Summary 
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