

Motivation: dynamics

Motivation: dynamics - types of claims

Motivation: from macro to micro-level models

Traditional approach:

- aggregate data by (arrival, development) year combination;
- apply reserving method designed for run-off triangle

(cfr. many of the talks presented at this seminar).

• Our viewpoint:

design a reserving method at individual claim level.

► Inspiration?

September 17 2013, K. Antonio, KU Leuven and University of Amsterdam

Motivation: from macro to micro-level models

"The problem is more with the data than the methods, since, clearly, it is **the** estimation of aggregate case reserves which is at fault. [...] In this respect, models based on individual claims, rather than data aggregated into triangles, are likely to be of benefit. [...] Aggregate triangles are useful for management information, and have the advantage that simple deterministic methods can be used to analyze them." (England & Verrall, 2002, p.507)

"However, it has to be borne in mind that **traditional techniques** were developed **before the advent of desktop computers**, using methods which could be **evaluated using pencil and paper**." (England & Verrall, 2002, p.507)

"The triangle is a **summary**, whose origins are very much **driven by the computational restrictions of a bygone era**." (Taylor & Campbell, 2002, p.21)

Motivation: from macro to micro-level models

"Recall that condition XXX in Mack's model had only one purpose: it was chosen in order to explain the form of the chain ladder estimators XXX used by practitioners for predicting future claim numbers. Hence condition XXX was chosen for **pragmatic** reasons." (Mikosch, 2009, p.374)

"Conditions such as XXX and XXX (i.e. Mack's conditions) do not explain the dynamics of the underlying claim arrival and payment process in a satisfactory way. This is not surprising since only the first and second conditional moments of the annual dynamics are specified." (Mikosch, 2009, p.381)

Micro-level reserving: strictly Scandinavian?

(*Time line contains a selection of papers from international actuarial journals.*)

[AP]: continuous time, claim-by-claim

- ► A **claim** *i* is a combination of
 - an accident date T_i ;
 - a reporting delay U_i ;
 - a set of covariates **C**_i;
 - a development process \mathbf{X}_i : $\mathbf{X}_i = (\{E_i(v), P_i(v)\})_{v \in [0, V_{iN_i}]};$
- ► In the **development process** we use:
 - $E_i(v_{ij}) := E_{ij}$ the type of the *j*th event in development of claim *i*;
 - occurs at time v_{ij} , in months after notification date;
 - corresponding payment vector $P_i(v_{ij}) := P_{ij}$.

• Event types?

- payment, settlement with payment, settlement without payment, \ldots

My research on micro-level loss reserving

 Antonio & Plat [AP] (2013, SAJ, in press): development of individual claims in continuous time, parametric;

inspired by Norberg (1993,1999), Haastrup & Arjas (1996), Cook & Lawless (2007);

 Pigeon, Antonio & Denuit [PAD] (2013, ASTIN Bulletin, in press): development of individual claims in discrete time, parametric;

inspired by chain-ladder method;

 Antonio & Godecharle: development of individual claims in discrete time, historical simulation from empirical data;

inspired by Drieskens, Henry, Walhin & Wielandts (Scandinavian Actuarial Journal, 2012) and Rosenlund (ASTIN Bulletin, 2012).

September 17 2013, K. Antonio, KU Leuven and University of Amsterdam

[AP]: continuous time, claim-by-claim

Run-off process of a non-life claim: micro-level.

[AP]: statistical model

Observed data

development up to time τ of claims reported before τ .

$$(T_i^o, U_i^o, X_i^o)_{i\geq 1}.$$

- Development of claim *i* is censored \(\tau T_i^o U_i^o\) time units after notification.
- Likelihood of the observed claim development process:

$$\propto \left\{ \prod_{i\geq 1} \lambda(T_i^o) P_{U|t}(\tau - T_i^o) \right\} \exp\left(-\int_0^\tau w(t)\lambda(t) P_{U|t}(\tau - t)dt \\ \cdot \left\{ \prod_{i\geq 1} \frac{P_{U|t}(dU_i^o)}{P_{U|t}(\tau - T_i^o)} \right\} \cdot \prod_{i\geq 1} P_{X|t,u}^{\tau - T_i^o - U_i^o}(dX_i^o).$$

September 17 2013, K. Antonio, KU Leuven and University of Amsterdam

[AP]: building block - reporting delay

Reporting delay: Weibull with degenerate components at 0 days delay, 1 day delay, ..., 8 days delay:

Fit Reporting Delay - 'Injury Fit Reporting Delay -'Materia Weibull / Degenerate Weibull / Degenerate 0.0 05 1.0 1.5 2.0 2.5 3.0 0.0 0.5 1.0 1.5 2.0 2.5 In months since occurrence In months since occurrence

[AP]: statistical model - building blocks

- The **reporting delay**: $\prod_{i\geq 1} \frac{P_{U|t}(dU_i^o)}{P_{U|t}(\tau-T_i^o)};$
- The **occurrence times** (given the reporting delay distribution):

$$\left\{\prod_{i\geq 1}\lambda(T_i^o)P_{U|t}(\tau-T_i^o)\right\}\exp\left(-\int_0^\tau w(t)\lambda(t)P_{U|t}(\tau-t)dt\right);$$

► The **development process** – **event** part:

 $\prod_{i\geq 1}\prod_{j=1}^{N_i}\left\{h_{se}^{\delta_{ij1}}(V_{ij})\cdot h_{sep}^{\delta_{ij2}}(V_{ij})\cdot h_p^{\delta_{ij3}}(V_{ij})\right\}\exp\left(-\int_0^{\tau_i}(h_{se}(u)+h_{sep}(u)+h_p(u))du\right);$

► The development process – severity part:

$$\prod_{\geq 1}\prod_{j}P_p(dV_{ij}).$$

September 17 2013, K. Antonio, KU Leuven and University of Amsterdam

14 / 38

[AP]: building block - occurrence of claims

Poisson process driving the occurrence of Material Damage (MD) claims.

[AP]: building block - occurrence, type of events

[AP]: simulating the predictive distribution of reserves

- Using these building blocks we can easily:
 - **simulate** the time to a next event, the corresponding type and severity for an RBNS claim;
 - use survival function/cdf determined by estimated hazard rates;
 - **simulate** the number of IBNR claims that will show up, their occurrence time and their development;
 - use filtered Poisson process, in combination with reporting delay distribution;

[AP]: building block - severity model

- **Severity** distribution.
- \blacktriangleright Lognormal distributions with μ and σ depending on:
 - the development period: 0-12 months after notification, 12-24 months ... (for injury) and 0-4 months, 4-8 months ... (for material);
 - the initial reserve (set by company experts): categorized.
- ▶ Policy limit of 2,500,000 euro is implemented.

September 17 2013, K. Antonio, KU Leuven and University of Amsterdam

[AP]: example with data from practice

- ▶ Data from Antonio & Plat (2013, SAJ):
 - portfolio of general liability insurance policies for private individuals;
 - use data from 1997 to 2004 as training set, 2005-2009 as validation set;
 - exposure measure available;
 - all payments discounted to 1/1/1997;
 - Bodily Injury (BI) and Material Damage (MD) payments;
 - 279,094 reported claims: 273,977 are MD, 5,117 are BI;
 - closed?: 268,484 MD and 4,098 BI claims.

[AP]: example with data from practice

Perform a back-test for BI and MD claims.

Arrival year	1	2	ا ع	Develop 4	oment y 5	rear 6	7	8
1997 1998 1999 2000 2001 2002 2003 2004	308 257 292 317 466 314 304 333	635 482 590 601 846 615 802 864	366 312 410 439 566 540 617 412	530 336 273 498 567 449 268 245	549 269 254 407 446 133 223 273	137 56 286 371 375 131 216 100	132 179 132 247 147 332 173	339 78 97 275 240 1,082

Total outstanding BI = 7,923,000 and total outstanding MD = 1,861,000.

September 17 2013, K. Antonio, KU Leuven and University of Amsterdam

21/38

23 / 38

[AP]: MD claims, collective vs. micro-model

[AP]: output for BI claims, CY 2006

[AP]: BI claims, collective vs. micro-model

Aggregate Model - Lognormal: Total

From continuous time to discrete time, claim-by-claim

- Viewpoint in Antonio & Plat (2013, SAJ): continuous time, inspired by survival analysis.
- Pigeon, Antonio & Denuit (2013, ASTIN) switch to discrete time, inspired by chain–ladder.

[PAD]: discrete-time, an example

	Date	Our notation	
Accident	06/17/1997	<i>i</i> = '1997'	
Number of periods with payment > 0 after first one	07/22/1997	$t_{(ik)} \equiv 0$ $u_{(ik)} = 4$	
Payment	09/24/1997	$q_{(ik)}=0$	
	11/07/1997		$Y_{(ik),1}$
	05/08/1998 12/11/1998	$n_{(ik),1} = 1$	Y _{(ik),2}
	03/23/1999	$n_{(ik),2} = 1$	Y _{(ik),3}
	02/23/2000	$n_{(ik),3} = 1$	$Y_{(ik),4}$
	01/03/2001 02/24/2001	$n_{(ik),4} = 1$	$Y_{(ik),5}$
Closure	08/13/2001	$n_{(ik),5} = 0$	

September 17 2013, K. Antonio, KU Leuven and University of Amsterdam

[PAD]: model set-up

We identify (in discrete time):

September 17 2013, K. Antonio, KU Leuven and University of Amsterdam

- (*ik*) claim *k* from occurrence period *i*;
- T_{ik} reporting delay, i.e. number of periods between occurrence and notification period;
- Q_{ik} first payment delay, i.e. number of periods between notification and first payment period;
- U_{ik} number of periods with partial payment > 0 after first payment;
- Y_{ikj} the *j*th incremental partial amount for claim (*ik*) (> 0);
- N_{ikj} delay between 2 periods with payment, i.e. number of periods between payments j and j + 1;
- $N_{ik,U_{ik}+1}$ number of periods between last payment and settlement.

[PAD]: development pattern

- ► We use:
 - initial amount Y_{ik1} ;
 - payment-to-payment development factors (note: chain-ladder is period-to-period)

$$\lambda_{j}^{(ik)} = \frac{\sum_{r=1}^{j+1} Y_{ikr}}{\sum_{r=1}^{j} Y_{ikr}}, \quad j = 1, \dots, u_{ik}.$$

• Thus, development pattern $\mathbf{\Lambda}_{u_{ik}+1}^{(ik)}$ is

$$\boldsymbol{\Lambda}_{u_{ik}+1}^{(ik)} = \begin{bmatrix} Y_{ik1} & \lambda_1^{(ik)} & \dots & \lambda_{u_{ik}}^{(ik)} \end{bmatrix}'.$$

Note: multivariate distribution of Λ^(ik)_{uik+1} should account for dependence and asymmetry ⇒ use Multivariate (Skew) Normal.

[PAD]: likelihood expressions

- ▶ As in [AP] we can write down likelihood contributions of:
 - occurrence of claims: use Poisson process, thinned;
 - closed claims;
 - **RBNS** claims: *u_{ik}* is not observed, development is censored;
 - RBNP claims (new!): Reported But Not Paid
 - first period with payment not observed (yet);
 - first payment delay is censored, etc.
 - IBNR claims: use Poisson process, appropriately thinned;
- We use:
 - (not MSN) maximum likelihood;
 - (in MSN) maximum product of spacings for shape, combined with ML for location and scale parameters.
- September 17 2013, K. Antonio, KU Leuven and University of Amsterdam

[PAD]: what we get – predictive distributions

- Simulation-based, using all building blocks;
- Parameter uncertainty?
 - simulate each parameter from asymptotic normal distribution;
 - (at least for discrete time components and location parameter in $M(\mathsf{S})\mathsf{N});$
 - more work to be done.

[PAD]: what we get – analytical results

• An **IBNR or RBNP** claim: $C = Y_1 \cdot \lambda_1 \cdot \lambda_2 \cdot \ldots \cdot \lambda_U$

with
$$E[\mathsf{IBNR}|\mathcal{I}] \text{ versus } E[\mathsf{RBNP}|\mathcal{I}]$$
$$= (x) \cdot E_U \left[2^{U+1} \exp(\mathbf{t}'_1 \boldsymbol{\mu}_{U+1} + 0.5 \mathbf{t}'_1 \boldsymbol{\Sigma}_{U+1}^{1/2} \left(\boldsymbol{\Sigma}_{U+1}^{1/2} \right)' \mathbf{t}_1 \right) \cdot \prod_{j=1}^{U+1} \Phi \left(\frac{\Delta_j \cdot ((\boldsymbol{\Sigma}_{U+1}^{1/2})' \mathbf{t}_1)_j}{\sqrt{1 + \Delta_j^2}} \right) \right],$$

where (x) is $E[K_{\text{IBNR}}]$ versus k_{RBNP} .

• An **RBNS** claim: $[C|\mathbf{\Lambda}_A = \boldsymbol{\ell}_A] = y_1 \cdot \ell_1 \cdot \ldots \cdot \ell_{u_A-1} \cdot \lambda_{u_A} \ldots \cdot \lambda_U$

with
$$E[RBNS|\mathcal{I}] = \sum_{(ik)_{RBNS}} y_1 \cdot \ell_1 \cdot \ldots \cdot \ell_{u_1-1}$$

$$\cdot E_{U_B} \left[2^{U_B} \exp(\mathbf{h}'_1 \mu^*_{U+1} + 0.5\mathbf{h}'_1 (\mathbf{\Sigma}^*_{U+1})^{1/2} \left((\mathbf{\Sigma}^*_{U+1})^{1/2} \right)' \mathbf{h}_1 \right) \cdot \prod_{j=1}^{U_B} \Phi \left(\frac{\Delta_j^* \cdot \left(((\mathbf{\Sigma}^*_{U+1})^{1/2} \right)' \mathbf{h}_1 \right)}{\sqrt{1 + (\Delta_j^*)^2}} \right) \right].$$

September 17 2013, K. Antonio, KU Leuven and University of Amsterdam

29/38

30 / 38

[PAD]: example with (same) data from practice

- Distribution for **number of periods**: $\{T_{ik}, Q_{ik}, U_{ik}, N_{ik}\}$
 - mixtures of discrete distribution with degenerate components;
 - model selection using AIC and BIC;
 - comparison of observed data and fits.

• Development pattern:

- Multivariate Normal (MN) and Multivariate Skew Normal (MSN) with UN, TOEP, CS and DIA structure for $\Sigma_c^{1/2}$;
- model selection with AIC and BIC;
- comparison of observed data and fits.

[PAD]: example with (same) data from practice

Claims closing with 'single' payment: explore U(S)N.

September 17 2013, K. Antonio, KU Leuven and University of Amsterdam

[PAD]: example - predictive results

Model or Scenario	ltem	Expected Value	S.E.	$VaR_{0.95}$	$VaR_{0.995}$
Individual MSN Analytical (until settlement)	IBNR ⁺ RBNS Total	2,970,645 5,433,548 8,404,192			
Individual MSN Simulated (until settlement)	IBNR ⁺ RBNS Total	3,035,519 5,439,318 8,474,837	494,771 704,701 853,812	3,912,159 6,650,958 9,927,439	4,673,340 7,738,003 11,105,174
Chain-Ladder (Bootstrap, ODP) Observed	Total Total	9, 126, 639 7, 684, 000	1, 284, 793	11, 380, 743	13,061,937

([PAD] uses slightly adjusted distinction MD vs BI, compared to [AP].)

[PAD]: example with (same) data from practice

Claims with multiple payments: explore M(S)N.

September 17 2013, K. Antonio, KU Leuven and University of Amsterdam

[PAD]: example – predictive results

Model or Scenario	ltem	Expected Value	S.E.	$VaR_{0.95}$	VaR _{0.995}
Individual MSN Sim. + Unc. (until settlement)	Total	8, 568, 506	922,657	10, 134, 198	11,406,905
Individual MSN Sim. + Unc. + Pol. Limit (until settlement)	Total	8, 568, 355	902,601	10, 141, 226	11, 320, 931
Individual MSN Sim. + Unc. + Pol. Limit (until triangle bound)	Total	7, 251, 103	817, 878	8,679,618	9,717,771
Chain-Ladder (Bootstrap, ODP) Observed	Total Total	9, 126, 639 7, 684, 000	1, 284, 793	11, 380, 743	13,061,937

[PAD]: example - predictive results

Highlights

- ► Novel setting for claims reserving at individual level.
- Continuous time framework, inspired by survival analysis, on the one hand.
- Discrete time framework, inspired by chain–ladder, on the other hand.
- Analytical expressions for moments of (RBNS, RBNP, IBNR) reserve + simulation approach.
- ► More work ongoing.
- ► Comments?: k.antonio@uva.nl.

8 September 17 2013, K. Antonio, KU Leuven and University of Amsterdam