

Workforce Reductions and Workers Compensation Claim Costs: A Case Study

SEPTEMBER 17, 2013

Scott J Lefkowitz FCAS, MAAA, FCA Steven G. McKinnon FCAS, MAAA, FCA

• GOAL: Use a specific situation that evolved over a five year period to illustrate the impact of material workforce reductions on considerations and metrics underlying an actuarial analysis.

• CAVEAT: Many numbers and charts have been normalized or adjusted to ensure the confidentiality of data. Relativities, trends, and other key metrics have been preserved.

Background

- Commercial and Military Ship Building and Repair
- Multi-jurisdictional Workers Compensation Exposures
 - Claims filed primarily under the USLHWA
 - Numerous state jurisdictions as well
- High Hazard Exposure
 - Inherently dangerous work
 - Long-term exposure to repetitive motion
 - Long-term exposure to hazardous materials
- Unionized and Confrontational Workforce
 - Very much aware of remedies under workers compensation
 - Aided by active and aggressive legal firms
- Self-insured under all jurisdictions

- High Maximum Weekly Benefit: 200% NAWW
 - Effective 10/1/2012: \$1,325.18
- High Minimum Weekly Benefit: 50% NAWW
 - Effective 10/1/2012: \$331.30
- Temporary Total Disability: no limit on healing period
- COLA: annual change in NAWW limited to 5% annual maximum
 - Fatal
 - PTD
- Lifetime Non-scheduled Permanent Partial Disability Awards
 - Back and other musculoskeletal injuries not listed in schedule
 - Other bodily injuries: respiratory

- Non-scheduled Permanent Partial Disability Claims are an Issue
 - Scheduled PPD Awards
 - Arm Lost: 312 weeks
 - Leg Lost: 288 weeks
 - Hand Lost: 244 weeks
 - Foot Lost: 205 weeks
 - Eye Lost: 160 weeks
 - Thumb Lost: 75 weeks
 - First Finger Lost: 46 weeks

- Great Toe Lost: 38 weeks
- Second Finger Lost: 30 weeks
- Third Finger Lost: 25 weeks
- Toe Other Than Great Toe Lost: 16 weeks
- Fourth Finger Lost: 15 weeks

- Other PPD are non-scheduled and are paid for the duration of disability

- Second Injury Fund Assessments
 - \sim \$130,000,000 operating cost is funded by assessments
 - Compensation and Participation Assessment Components

Assessment is based on:

Prior year indemnity payments Prior year fund payments on behalf of entity

- CY 2013: \$132 million need against \$815 million prior year total USLHWA indemnity payments
 - 16% of indemnity payments if you were to ignore participation cost
- Assessment base is unlimited indemnity payments
- Balance sheet accrual required for unpaid assessments

- Simplified Second Injury Fund Assessments Accrual
 - Unpaid cost of unlimited indemnity benefits
 - Apply historical compensation assessment percentage
 - Unpaid cost of employers claims in the second injury fund
 - Apply historical participation assessment percentage
 - Point: For every additional dollar of indemnity costs generated by the workforce reduction, there is an additional balance sheet requirement on the order of 8% (one half 16%) to provide for second injury fund assessments.
 - \$100 million increase in balance sheet accrual for indemnity costs will generate an additional \$8 million for future assessments

Understanding Multi-jurisdictional Claims

- Claimants cannot collect benefits concurrently from two jurisdictions
- Claimants can and do change jurisdictions during their life cycle to maximize benefits, if permitted by statute:
 - Example: PTD evolves into a widow(er) case
 - USLHWA
 - PTD is 2/3 AWW subject to \$1,325.18 maximum
 - Widow(er) is 1/2 AWW subject to \$1,325.18 maximum
 - Other State
 - Widow(er) is 2/3 AWW subject to state maximum
- Interaction of USLHWA and state acts is complex, and varies by state.
 - Example: Virginia, effective July 1, 2012, law passed that if worker is covered by USLHWA, they can no longer pursue coverage under the state act.

Understanding the Hazard: Traumatic Injuries

- Employees file many claims throughout career
- Steady state annual frequency is ~25 claims per 100 employees today
 - During the time period considered by this presentation, annual claim frequency was close to 40 claims per 100 active employees
 - During the height of the workforce reduction period, annual claim frequency peaked at 60 claims per 100 active employees
 - These are all claims lost time and medical only claims
- Steady state pure premiums are ~\$15 per \$100 payroll today
 - During the period of time considered in this presentation, average pure premiums were ~\$20 per \$100 payroll
 - During the height of the workforce reduction, they peaked at \$55
- Current average severity is ~\$40,000 per claim, today.
 - Had been ~10,000 (1988-1991) peaking at ~\$35,000 in 1996

- Exposure to asbestos, heavy metals, toxic fumes, dust, and chemicals
 - Grinding, painting, welding, machining, electroplating, etc.
- Diseases Include: Mesothelioma Lung Cancer
 Other Cancer Asbestosis
 Respiratory Impairment Hearing Loss
- All of these diseases have the potential to (and generally do) emerge many years after last date of exposure (last date worked)
- US statute identifies the responsible employer as the employer where last exposure occurred.
- Underlying latency and associated report lag is a material issue for determining appropriate reserves.

• Mesothelioma

AGE AT REPORT: MESOTHELIOMA

Lag	Age at Report	<u>Report Lag</u>	Portion of Claims
≤2	68	0.4 years	87%
> 2	68	10.7 years	13%

• Lung Cancer

AGE AT REPORT: LUNG CANCER

<u></u>	<u></u>	<u></u>	<u></u>
≤2	62	0.5 years	38%
> 2	69	13.2 years	62%

• Other Cancer

AGE AT REPORT: OTHER CANCER

Lag	Age at Report	<u>Report Lag</u>	Portion of Claims
≤2	59	0.5 years	65%
> 2	69	9.8 years	35%

67

Asbestosis

AGE AT REPORT: ASBESTOSIS

> 2

12.4 years

29%

• Other Respiratory

Lag Age at Report		<u>Report Lag</u>	Portion of Claims	
≤2	43	0.2 years	91%	
> 2	59	9.5 years	9%	

63

• Hearing Loss

AGE AT REPORT: HEARING LOSS

> 2

8.6 years

8%

Understanding the Hazard: Cumulative Trauma

- Diseases:
 - Carpal Tunnel (and bilateral carpal tunnel)
 - Bursitis
 - Tenosynovitis
 - Epicondylitis
 - Tendonitis
 - Hernia
 - Other Inflammation arthritis, for example
 - Sprain/Strain/Tear
 - Vibratory White Finger
- Two issues:
 - Immediate claims due to long term exposure
 - Latent claims that emerge years after last date worked

Understanding the Hazard: Cumulative Trauma

Understanding the Hazard: Cumulative Trauma

AVERAGE LAG BY AGE AT REPORT: FOR LAG > TWO YEARS CUMULATIVE TRAUMA

September 17, 2013

Understanding the Hazard: Latent Disease Exposure Cumulative Trauma

- Financial impact of exposure to hazardous materials and cumulative trauma is focused on a single date: last date of exposure
- Last Date of Exposure = Date of Loss = Last Day Worked

• Material workforce reductions create a highly leveraged financial impact of long-term exposure to workplace hazards

• Cost of latent disease claims, which may not emerge for decades, falls into the accident period during which the workforce reduction occurred.

Description of Workforce Reduction: Impact of Head Count

• Employee Count Maximized in 1988

- Slow Erratic Decline to 1993
 - Cumulative Reduction ~ 7% through 1993

• Large Reductions Begin in 1994

Description of Workforce Reduction: Impact of Head Count

Annual Employment

Description of Workforce Reduction: Impact of Head Count

Year over Year Changes to Average Annual Employment

1993→1994: 13%

1994→1995: 20%

1995→1996: 40%

1996→1997: 26%

1993 \rightarrow 1997: Cumulative 70% Reduction

(multiplicative, not additive)

• Payroll Maximized in 1988

- Slow Erratic Decline to 1993
 - Cumulative Reduction ~ 5% through 1993

• Large Reductions Begin in 1994

Annual Payroll

- Union Shop: Last Hired First Fired
 - Varies by Trade or Section
 - Generally, lower pay tier employees terminated first
- Overtime and Shift Premium Increased
 - Distribution of Workload by Section
 - Varying Production Requirements
- Average Annual Compensation Increased

Average Annual Payroll Per Employee

- Compensation Rate
- Frequency
- Mix of Claims
- Severity
- Average Age at Injury
- Impact of Prior Claims

- Compensation Rate: Compensation Rate is Benefit for Total Disability
 - Lower tier employees terminated first
 - By 1997, remaining employees from highest pay tier
 - Overtime and Shift Premium
 - Goes directly to calculation of compensation rate

AVERAGE WEEKLY COMPENSATION RATE LOST TIME CLAIMS

Note: This is the measurement of the Average Compensation Rate for employees that filed lost-time claims.

• Frequency and Surge in Claims

Reported Claims at 18 Months

Additional Claim Development ~ 1.07 to 1.15 from 18 months to ultimate

• Frequency and Surge in Claims

Reported Claims at 18 Months per Employee

- Mix of Claims
 - Cumulative Trauma
 - Back
 - Neck
 - Knees
 - Carpal Tunnel
 - Vibratory White Finger

• Mix of Claims

Cumulative Trauma as Percetange of Total Reported Claims: 18 Months

- Mix of Claims
 - Latent disease claims take years to emerge
 Open Late Emerging Claims as of 12/31/12 PTD/Fatal

1988	6
1989	7
1990	9
1991	9
1992	6
1993	10
1994	11
1995	12
1996	10
1997	6
1998	3
1999	4
2000	5

Average Cost: \$1.2 Million

For AY's 1996 and prior (going back to early 70s): PTDs had been emerging at 17 per year ~ 2000 Now emerging at a rate of 6 per year

These are open claims:

Does not include closed (settled) claims Does not include claims placed into SIF

• Severity

Estimated Average UltimateTotal Claim Severity as of 12/31/12

- Severity
 - Indemnity Increased Due to:
 - Change in Claims Mix
 - Increase in Compensation Rate
 - Latent Disease Exposure
 - Medical Increased Due to:
 - Change in Claim Mix
 - Litigation
 - Expenses Increased Due to:
 - Litigation
 - Claim History

- Severity
 - Defense and Litigation Cost

CALENDAR YEAR	ALAE PAYMENT RELATIVITY
1992	1.00
1993	1.36
1994	1.26
1995	1.22
1996	1.52
1997	1.46
1998	1.52
1999	1.44
2000	1.24

- Calendar year expense payments had been ~ \$4 Million
- These are payments, NOT ultimate costs

- Severity
 - Defense and Litigation Cost
 - Impact of Ultimate Cost: Dramatic

Estimated Ultimate ALAE as of 12/31/12

• Severity

Relative Severity Growth by Component

- Severity
 - Relative Severity by Component

Relative Severity by Component

Average Age at Injury

ACCIDENT YEAR	AVERAGE AGE AT INJURY	PERCENT OF CLAIMS AGE >55	PERCENT OF CLAIMS AGE <35
1087	34	1%	57%
1988	36	2%	48%
1989	36	1%	40%
1990	37	2%	38%
1991	38	2%	33%
1992	40	3%	25%
1993	41	4%	20%
1994	42	6%	15%
1995	44	11%	11%
1996	44	7%	9%
1997	46	13%	4%
1998	47	17%	3%
1999	47	20%	5%
2000	48	24%	5%

Material implications for loss development tail Average age at injury today is in the very low 50s

- Impact of Prior Claims
 - Steady State Frequency: 40 Claims / 100 Employees prior to reductions
 - Each claimant has a long claim history
 - 5 to 10 claims or more
 - Settlements required a global impairment rating to consider the impact of the entire claim history

- Impact of Prior Claims
 - Settlement dollars are attributed to each individual claim (and the year that claim occurred)
 - Based on its contribution to total rating:

Accident Year	Relative Contribution	Settlement Allocation Cost
1980	5	\$5,000
1983	15	15,000
1987	10	10,000
1991	20	20,000
1992	5	5,000
1996	45	45,000

Total Settlement Cost: \$100,000

• Impact of Prior Claims

Calendar Year Paid Loss Development 54 to 174 Months

Summary of the Situation

- 1. Compensation Rate Surge
- 2. Frequency Surge
- 3. Mix of Claims Changed
- 4. Increase to Severity
 - Indemnity
 - Medical
 - ALAE
- 5. Average Age at Injury Increased from ~ 35 to ~ 50 years
- 6. Impact of Prior Claims on Settlement Costs
 - Affects Year of Workforce Reduction
 - Affects Prior Accident Years
- 7. Attorneys Actively Marketing Workforce
- 8. Second Injury Fund Issue
 - Rejection of Applicants
 - Additional Contamination of Data

Implication of the Situation

- 1. Historical Metrics Not Meaningful
 - Frequency
 - Severity
 - Pure Premium
- 2. Loss Development Histories Not Meaningful
 - Development Surge in Older Years
 - Change in Age at Injury
 - Claim Mix Implications
 - Leveraging of Latent Disease Claims
- 3. Industry Data Was Not Relevant (nor was anything meaningful available)

Specific Steps Taken at 12/31/96

- Indemnity, Medical and ALAE were measured separately
- Consideration given to all items discussed previously
- All payment based models reported loss development not meaningful at that point in time

Specific Steps at 12/31/96: Indemnity

- Changes in calendar year loss development data in older accident years were correlated with the year of workforce reduction
 - Measured additional payments in older accident years due to global settlements
 - Considered impact of mix of claims surge early in payment pattern not expected to continue indefinitely into the future
 - Adjustments made to reduce future loss development as global settlements were expected to decline
 - Expected future workforce levels were considered when selecting future development factors
 - Workforce reductions were behind us, but there was some residual impact as it took 2 years for all workforce reduction related claims to be reported

Specific Steps at 12/31/96: Indemnity Continued

- Process was basically trying to complete the triangles
 - Sounds more complex than it was Intelligent guess work
 - Adjustments made to reflect increase in age at injury
 - Annuity approach used to make changes to tail factor
 - This step was very important we use this same approach today
- Complete Review of Second Injury Fund Cases
 - Claims expected to be rejected were accounted for individually by accident year
 - The cost of these claims were estimated using life models and individual claim characteristics

Specific Steps at 12/31/96: Indemnity Continued

- Another consideration is the change in the manner by which claims were managed
 - Attempts to settle and close all claims material change from the "check-writing" mentality
 - Changed payment patterns significantly
 - Notwithstanding any other issue, this would have materially affected data
- Latent Disease
 - Models constructed to forecast the emergence of widow(er)s claims and PTD claims
 - Primitive and generally inaccurate in 1996
 - Did not have enough information

Specific Steps at 12/31/96: Medical

- Similar adjustments as for indemnity loss development less than 20 years
- Tail development estimated individually by accident year based on age at injury data
 - Annuity approach
 - Average medical payment per open claim is starting point
 - Load annuity payments for additional claim emergence
 - Nothing complex flat factor based on experience
 - Result is a series of tail factors that decline materially as average age increases
 - Still using this method today
 - Results are generally reasonable in the aggregate

Specific Steps at 12/31/96: ALAE

- ALAE includes both defense costs and claimant attorney costs
- Examine history of paid ALAE to paid indemnity to understand the impact of workforce reductions and claim mix
- Primitive adjustments at the time of analysis:
 - Guessed at what paid to paid ratios would be based on available data
 - Applied to indemnity payment forecasts by calendar year

Calendar Year Payments

- Five Year Forecasts Critical to Client
 - Includes payout of current reserve position and contribution from claims with dates of loss during the five year forecast horizon
- Cash Out the Door
- 70 Year⁺ Payment Pattern
- Inaccuracy of Long-Term Payment Horizon Mitigated by Discounting
- "I am going to be dead in 40 years get the ****\$\$ five year forecast right!"

Average Calendar Year Benefit and Expense Payments per \$100 Payroll

Claim Frequency

- Critical to Current and Future Reserve Positions
- Measured Contribution of Workforce Reduction to Claim Frequency
- Future Terminated AND Retirement Related Claims Impacted Current Reserve Position
 - Workforce reductions created a new claims environment
 - Claimant attorneys actively soliciting terminated, retired, and active employees
 - Global Settlements

Claim Severity

Claim Severity

Estimated Ultimate Average Cost Per Claim - Comparison Of Forecast to Actual Results

Claim Severity

Where Are We Today?

Comparison of Estimates of Ultimate Costs: 12/31/12 vs 12/31/00

	Accident	Ultimate	Ultimate	Dollar	Percent
	Year	12/31/2000	12/31/2012	Difference	Difference
	1973	12.56	12.22	(0.34)	(3)%
	1974	16.14	17.11	0.97	6%
	1975	18.45	19.94	1.50	8%
	1976	14.14	14.12	(0.02)	(0)%
	1977	16.67	17.50	0.83	5%
	1978	19.78	20.13	0.36	2%
	1979	20.17	22.11	1.93	10%
	1980	28.90	29.98	1.08	4%
	1981	32.04	32.36	0.32	1%
	1982	30.92	30.92	0.00	0%
	1983	35.98	37.75	1.78	5%
	1984	51.40	53.05	1.65	3%
	1985	63.00	65.20	2.20	3%
	1986	72.33	72.25	(0.08)	(0)%
	1987	76.56	76.48	(0.08)	(0)%
	1988	59.66	60.61	0.95	2%
	1989	53.07	55.92	2.85	5%
	1990	55.76	62.04	6.28	11%
	1991	55.52	60.84	5.32	10%
	1992	56.29	57.61	1.32	2%
	1993	46.88	48.05	1.17	2%
	1994	60.34	69.23	8.88	15%
	1995	70.45	81.63	11.18	16%
	1996	71.91	80.02	8.11	11%
	1997	44.43	40.48	(3.95)	(9)%
	1998	42.81	35.84	(6.97)	(16)%
	1999	48.92	34.55	(14.37)	(29)%
	2000	35.25	39.23	3.98	11%
Ulti	mate Retained	1,210.31	1,247.16	36.85	3%
Paid	at 12/31/2000	925.00	925.00		
Reserve	at 12/31/2000	285.31	322.16	36.85	13%

How We Do It Now

Indemnity: Accident Years 1996 and earlier

- Claim Model
- Lifetime awards modeled individually by claim
- Non-lifetime awards modeled assuming case reserves sufficient and assumed durations based on reported loss values
 - Higher values, higher durations
 - Durations range from 1 to 10 years
- Non-lifetime IBNR modeled based on claim-emergence data
 - Cost and duration based on historical data
 - Hearing Loss and Cumulative Trauma
 - Credible data from which to measure claim reporting patterns
 - Low to moderate cost claims: \$15,000 to \$100,000

Indemnity: Accident Years 1996 and earlier

- Lifetime IBNR modeled based on claim-emergence data
 - Includes PPD, PTD, and Widow claims
 - Widow claims for the purpose of this analysis are generated by newly reported claims (mesothelioma) as well as the lifetime PPDs.
 - Duration assumed to be life pension

How We Do It Now

Indemnity: Accident Years 1997 and Subsequent

- Workforce has fluctuated, but not materially as in the 1990's
- Standard Development and Development Based Methods Used
 - Common tail based on 52 years of age at injury
 - Starting point is the result of the claim model discussed earlier for accident years 1997 through 2000.

Medical: All Years

- Paid Development Based Model
 - Tail factors are annuity based as described earlier
 - Tail factors are not changed unless emerging experience shows a disconnect between model and actual data
- Development forecasts are adjusted by accident year to reflect actual medical payments
 - If observed loss development for a particular accident year is measurably and consistently greater than model, adjustments are made to ensure near-term development factors are consistent with immediate past history. Adjustments are phased out over a ten year time horizon.
 - Adjustments are updated annually, but goal is to prevent large changes in year to year results.
 - Approach works very well in the aggregate

How We Do It Now

ALAE:

- 1996 and Prior Ratio Based Methods
 - Most recently observed paid ALAE to paid Indemnity ratios are used to estimate unpaid ALAE
- 1997 and Subsequent: Ratio Based Methods coupled with loss development approaches

