

THE

Mixed Model Application to Reserving for Enterprise Risk Management

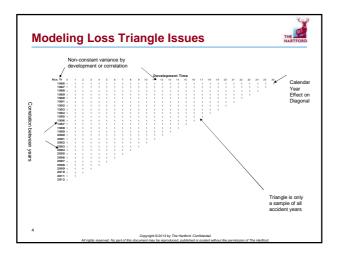
Michael R. Larsen Director & Actuary September 17, 2013

Agenda

• Reserve model requirements for Economic Capital (DFA) model

Copyright © 2013 by The Hartford. Confi

- Describe modeling problems for reserving • Why use a Mixed Model when estimating reserves?
- · What is a Mixed Model?
- · Example of application of Linear Mixed Model to Work Comp


Conclusion

Economic Capital Reserve Model Application

THE

- · Input to financial simulation model
- Economic Capital Model requirements - Distribution functions that describe variability
 - By payment period
 - For each accident year total (excluding inflation)
- Linkage between interest rates, CPI & loss costs
- One year spot rates linked to CPI change (separate model)
 Formula linking calendar year loss cost change to CPI (developed within reserve model)
- Correlation between lines estimate

Bootstrapping Option for Reserve Payment Distribution

THE

THE

- Bootstrapping paid link ratio option

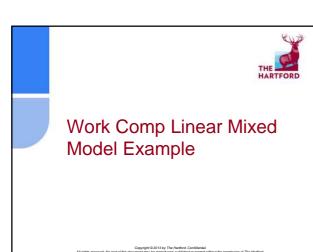
 Re-sample triangle error terms from paid link ratios
 Repeat re-sampling and projection process many times
 Create empirical forecast distribution
- Bootstrapping assumption
- Model (paid link ratios) is a good fit to the data
- Error terms are randomly distributed
- Assumptions may not be met leading to questions on bootstrap results

Mixed Model vs. GLM

• GLM assumes

- Variance function of mean
 No correlation between observations
- Only covers fixed effect explanatory variables
- Linear model (after link function)Data distribution is part of
- exponential family - Assumptions don't match re
- Assumptions don't match reserve modeling requirements
- Mixed Model
 Models verience over
- Models variance explicitly
 Handles correlation between observations
- Includes both random and fixed effects
- Linear model (after link function)
 Data distribution is part of exponential family
- Assumptions may match reserve modeling requirements
- Copyright © 2013 by The Hartford. Confidential. All rinkts reserved. No part of this document may be reproduced rushished or posted without it

What is a Mixed Model



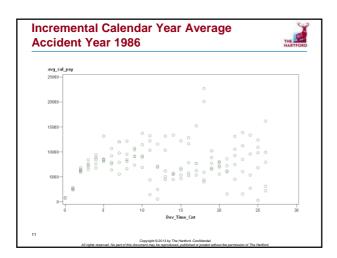
- Fixed effect completely contains variable levels
- Random effect recognizes one has a sample of possible values for a variable

THE

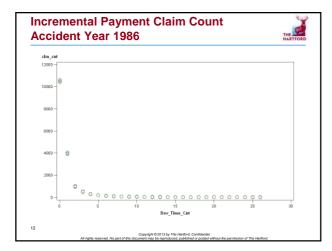
THE

- Two Covariance Matrixes
- Fixed & Random each have own matrix (matrices are interconnected with each other)
 Iterative approach to solve: freeze one and optimize other until
- convergence
- Matrix structure options
 Orrelation description options
- Grouping effects (related to modeling varying variance)

Live Work Comp Example Description

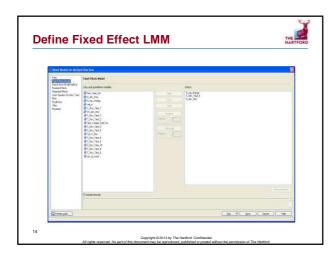

- · Sample of live experience
- Review model set up
- Examine graphs of experience
- Walk through SAS EG screen shots from setting up Linear Mixed Model run

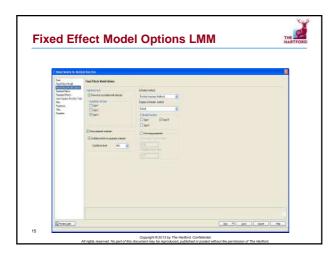
Linear Mixed Model (LMM) Example Description

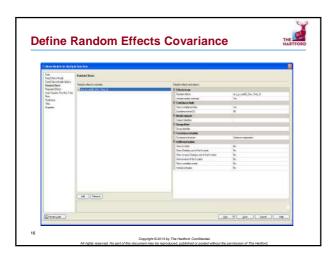

- Model incremental counts X amounts
- Count is number of claims with positive payment in one development period by accident year (Poisson Distribution used with GLM)
 Amount is Natural Log of average incremental payment by accident year & development (transformed to Normal & use LMM)

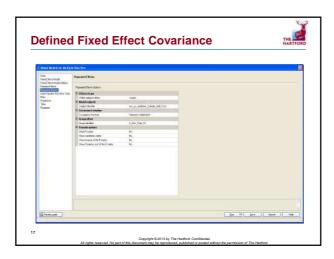
THE


- Exposure Base
- Reported claim count at 12 months for each accident year
 Random vs. Fixed Effects
- Fixed Effects: development time & log of CPI change
- Random Effect: accident year
- Variance Model
 Crouped affects down
- Grouped effect: development time to solve for varianceModel by payment type (gross, ceded, salvage & subrogation)
- Sample groups
 - Split claim numbers into 20 random groups
- 10
 - Copyright © 2013 by The Hardord. Confidential. All rights reserved. No part of this document may be reproduced, published or posted v



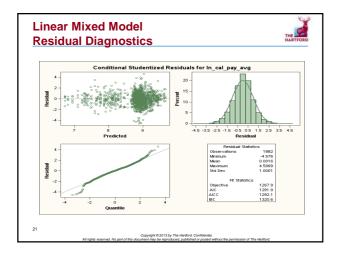




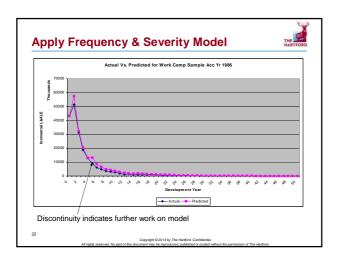


Covariance Parameter Estimates						
Cov Parm	Subject	Group	Estima			
acc_yr_us(C_	Dev_Tim)		0.022			
Intercept			0.00118			
Residual	acc_yr_us(rank_Samp)	C_Dev_Time_101	0.00263			
Residual	acc_yr_us(rank_Samp)	C_Dev_Time_102	0.00317			
Residual	acc_yr_us(rank_Samp)	C_Dev_Time_103	0.0119			
Residual	acc_yr_us(rank_Samp)	C_Dev_Time_10.4	0.0146			
Residual	acc_yr_us(rank_Samp)	C_Dev_Time_105	0.0392			
Residual	acc_yr_us(rank_Samp)	C_Dev_Time_106	0.102			
Residual	acc_yr_us(rank_Samp)	C_Dev_Time_107	0.0785			
Residual	acc_yr_us(rank_Samp)	C_Dev_Time_108	0.215			
Residual	acc_yr_us(rank_Samp)	C_Dev_Time_109	0.213			
Residual	acc_yr_us(rank_Samp)	C_Dev_Time_1010	0.501			

Linear Mixed Model Fixed Effect Parameters


Effect	C_Dev_Time_6	Estimate	Error	DF	t Value	Pr> t	Alpha	Lower	Uppe
Intercept		7.3641	0.1607	0	45.82		0.05		
ln_cpi_change		1.3578	0.08442	1799	16.08	<.0001	0.05	1.1922	1.5233
C_Dev_Time_6	1	-2.533	0.09613	1799	-26.35	<.0001	0.05	-2.7216	-2.3445
C_Dev_Time_6	2	-1.4547	0.07233	1799	-20.11	<.0001	0.05	-1.5966	-1.3129
C_Dev_Time_6	3	-0.5871	0.04403	1799	-13.33	<.0001	0.05	-0.6735	-0.5008
C_Dev_Time_6	4	-0.2645	0.03453	1799	-7.66	<.0001	0.05	-0.3322	-0.1968
C_Dev_Time_6	5	-0.1352	0.03145	1799	-4.3	<.0001	0.05	-0.1969	-0.07348
C_Dev_Time_6	6	0							
ln_dev_time		-0.5609	0.04276	1799	-13.12	<.0001	0.05	-0.6447	-0.477

THE



artia	ıl So	lutio	n (1 ^s	t Dvlp	o Pe	riod)			THE
				Solution fo	r Random	Effects				
Effect	C_Dev_Ti me 3	acc_yr_u sed	Estimate	Std Err Pred	DE	t Value	Pr > t	Alpha	Lower	Upp
		sea 1986	=0.2755	0.049.94	1799	-5.52	< 0.001	0.05	-0.3735	-0.177
acc_yr_us		1985	-0.2755	0.04994	1799	-5.02	<.0001	0.05	+0.3735	-0.177
acc yr us		1988	-0.1527	0.04593	1799	-3.32	0.0009	0.05	-0.2428	-0.0626
acc vr us		1989	-0.06135	0.04371	1799	-1.4	0.1606	0.05	-0.1471	0.0243
acc vr us		1990	-0.00103	0.04149	1799	-0.24	0.8076	0.05	-0.09147	0.0712
acc vr us		1991	0.015	0.03999	1799	0.38	0.7076	0.05	-0.06343	0.0934
acc vr us		1992	-0.03069	0.03906	1799	-0.79	0.4321	0.05	-0.1073	0.0459
acc vr us		1993	-0.08784	0.03828	1799	-2.29	0.0219	0.05	-0.1629	+0.0127
acc vr us		1994	-0.0503	0.03771	1799	-1.33	0.1824	0.05	-0.1243	0.0236
acc vr us	1	1995	-0.08642	0.03722	1799	+2.32	0.0204	0.05	-0.1594	+0.0134
acc_yr_us	1	1996	-0.07962	0.03686	1799	-2.16	0.0309	0.05	-0.1519	+0.0073
acc vr us	1	1997	-0.04298	0.03668	1799	-1.17	0.2414	0.05	-0.1149	0.0289
acc_yr_us	1	1998	-0.0354	0.03661	1799	+0.97	0.3337	0.05	-0.1072	0.036
acc_yr_us	1	1999	0.02819	0.03659	1799	0.77	0.4411	0.05	+0.04357	0.0999
acc_yr_us	1	2000	0.0274	0.03673	1799	0.75	0.4558	0.05	-0.04463	0.0994
acc_yr_us		2001	0.01208	0.037	1799	0.33	0.744	0.05	-0.06048	0.0846
acc_yr_us		2002	0.03257	0.03721	1799	0.88	0.3816	0.05	-0.04042	0.105
acc_yr_us		2003	0.07121	0.0376	1799	1.89	0.0584	0.05	-0.00254	0.14
acc_yr_us		2004	0.005488	0.03816	1799	0.14	0.8857	0.05	+0.06936	0.0803
acc_yr_us		2005	-0.01259	0.03903	1799	+0.32	0.747	0.05	-0.08914	0.0639
acc_yr_us		2006	0.06507	0.04001	1799	1.63	0.1041	0.05	-0.01341	0.143
acc_yr_us		2007	0.05198	0.04101	1799	1.27	0.0022	0.05	-0.02846	0.132
acc_yr_us		2008	0.1305	0.04236	1799	4.17	€ 0001	0.05		
acc_yr_us		2009	0.1766	0.04236	1799	4.17	<.0001	0.05	0.09355	0.259
acc_yr_us		2010	0.1732	0.04306	1799	4.02	<.0001	0.05	0.08874	0.257
		2011	0.1917	0.04446	1799	4.31	<.0001	0.05	0.1045	0.278
acc_yr_us	1 1	2012	U.1854	U.U4544	1799	4.08	<.0001	0.05	U.U9627	U.274

Concluding Remarks

- Technology is changing
- Move beyond Linear Mixed Model
- Distributions may be more skewed than Lognormal
- Underlying may not be linear
 Simplest form of Hierarchical Model (good starting point)
- Bayesian MCMC
- Offers wider range of distributions
- Facilitates updating model estimate vs. ignoring last model and refitting

Copyright © 2013 by The Hartford. Co

More complex environment

23

THE HARTEN

This presentation is made available to the CAS solely for educational purposes and may only be downloaded from the CAS web site. Please contact me for any other usage.