CLRS 2013 CLFM Estimates

Daniel M urphy Trinostics LLC with Emmanuel Bardis and Ali M ajidi

Agenda

- CLFM and the R ChainLadder package
- Finding the selection-consistent model
- Graphing the link ratio function
- A look at two diagnostic plots
- Calculating IBNR and standard errors
- Visualizing the estimated distribution of the predicted IBNR outcomes
- California Workers Comp data
- Questions for discussion

Users are demanding something be done! ()

- Apr 8, 2009

I am using the latest version of Chainladder in R 2.8.1 and have found it to be an excellent package indeed.
props, Markus!

There are occasions when the development factor may need

M arkusGesmann to be selected as different from the output of the linear model. Is there a place in the M ackChainLadder code where different development factors may be used?

Thanks and Regards.

- Feb 27, 2013

I agree with this proposal. We often have to choose specific coefficients. Could it be an option in the input of the functions bootchainladder and M ackChainLadder?

Thank you in advance.

CLFM in the ChainLadder Package

- ChainLadder (https://code.google.com/p/chainladder/)
- A library of functions (a "package") for the R statistical environment (www.r-project.org)
- Primarily targeted toward stochastic reserving
- Originated and maintained by Markus Gesmann of Lloyds
- Other contributing authors: Wayne Zhang and yours truly
- Distributed under the GPL (General Public License)
- Therefore, open-source, free to download, use, copy, modify, etc.
- Markus programmed the M ack method using linear regression models on the development periods
- He used Barnett \& Zehnwirth's ("Best Estimates for Reserves") delta (δ) notation for weighting the observations
- So CLFM 's $\alpha=$ Barnett \& Zehnwirth's δ
- He used M ack's recursive formula (1999 paper) to chain the standard error statistics together
- M ack's formulas use alpha (2-ס) for weighting the observations

Finding a selection-consistent model: CLFMdelta

- As explained by M anolis, a selection-consistent member of CLFM is a model whose expected value of the regression slope equals the actuary's selected RTR
- Use CLFM delta(Triangle, selected, tolerance =.0005)
- Triangle = loss data
- selected = actuary's selected age-to-age factors
- tolerance = proximity of found parameter to selected RTR
- \quad selected $=c(8.206,1.624,1.275,1.175,1.115,1.042,1.035,1.018,1.009)$
- CLFM delta(RAA, selected)

ChainLadder
2.0000001 .0000001 .1581501 .3054411 .1165621 .0000033 .0000002 .0000001 .000000

Paper
$\begin{array}{lllllllll}2.000 & 1.000 & 1.158 & 1.305 & 1.117 & 1.000 & 2.565 & 2.005 & 2.005\end{array}$

Visualizing the search for α : ChainLadder's LRfunction

- LRfunction $(x, y, d e l t a) \Leftarrow B \& Z^{\prime} s \delta$ notation
- $x=$ beginning value of loss during a development period
- $y=$ ending value of loss during a development period
- delta =a real number or a vector of real numbers
- Here, $x \& y$ are the column $7 \& 8$ losses for development period 7-8

Inspect the residuals:
 Built-in diagnostics for linear model fits

Two diagnostics (cont.)

Development period 3-4 (alpha $=1.158$)

Running ChainLadder's MackChainLadder function with alpha $=2$-delta gets close to a full CLFM implementation

\checkmark Although the MackChainLadder function does not provide for the psifunction process risk adjustment, the bottom line CVs are virtually identical

Running "Vanilla" Mack Method

> MackChainLadder (RAA)					
MackChainLadder (Triangle $=$ RAA)					
Latest	Dev.To.Date	Ultimate	IBNR	Mack.S.E	CV (IBNR)
1981 18,834	41.000	18,834	0	0	NaN
198216,704	40.991	16,858	154	143	0.928
1983 23,466	$6 \quad 0.974$	24,083	617	592	0.959
198427,067	$7 \quad 0.943$	28,703	1,636	713	0.436
198526,180	0.0 .905	28,927	2,747	1,452	0.529
198615,852	20.813	19,501	3,649	1,995	0.547
198712,314	$4 \quad 0.694$	17,749	5,435	2,204	0.405
198813,112	20.546	24,019	10,907	5,354	0.491
1989 5,395	$5 \quad 0.336$	16,045	10,650	6,332	0.595
1990 2,063	30.112	18,402	16,339	24,566	1.503
Totals					
Latest: $160,987.00$					
Dev: 0.76					
Ultimate: 213,122.23					
IBNR: $\quad 52,135.23$					
$\text { Mack S.E.: } 26,880.74$					

- Can fit a lognormal to the mean and standard error
- CLFM : use the IBNR and M ack S.E. on the previous page
- Mack-scaled: use the IBNR on the previous page and standard error = IBNR on previous page times CV on this page (not recommended; non-cohesive model)

Visualizing the predictive IBNR distributions

WC Indemnity Paid Dollars

Paid Indemnity Loss Development (\$millions)												
Age (months)												
Acc Year	12	24	36	48	60	72	84	96	108	120	...	372
1979											...	410
1980											...	490
...					
2001			2,454	3,244	3,715	4,001	4,205	4,348	4,452	4,528		
2002		1,438	2,563	3,306	3,726	4,006	4,190	4,320	4,406	4,486		
2003	434	1,464	2,482	3,100	3,497	3,749	3,910	4,028	4,132	4,227		
2004	392	1,142	1,738	2,148	2,397	2,573	2,699	2,809	2,908			
2005	322	880	1,331	1,644	1,843	1,988	2,108	2,207				
2006	311	890	1,370	1,683	1,911	2,083	2,224					
2007	320	929	1,438	1,791	2,042	2,230						
2008	322	942	1,486	1,888	2,171							
2009	287	881	1,424	1,822								
2010	292	921	1,500									
2011	299	956										
2012	325											

- California workers comp data evaluated $12 / 31 / 2012$
- The green shaded cell is the observation with the minimum beginning value in that development period
- The blue shaded cell is the maximum beginning value

Link Ratios

Acc Year	$24 / 12$	$36 / 24$	$48 / 36$	$60 / 48$	$72 / 60$	$84 / 72$	$96 / 84$	$108 / 96$	$120 / 108$
2001			1.322	1.145	1.077	1.051	1.034	1.024	1.017
2002		1.782	1.290	1.127	1.075	1.046	1.031	1.020	1.018
2003	3.370	1.696	1.249	1.128	1.072	1.043	1.030	1.026	1.023
2004	2.914	1.522	1.236	1.116	1.073	1.049	1.041	1.035	
2005	2.734	1.512	1.235	1.121	1.079	1.060	1.047		
2006	2.866	1.539	1.229	1.135	1.090	1.068			
2007	2.905	1.547	1.246	1.140	1.092				
2008	2.927	1.577	1.271	1.150					
2009	3.069	1.616	1.280						
2010	3.154	1.628							
2011	3.202								
Selected	3.202	1.628	1.280	1.150	1.092	1.068	1.047	1.035	1.019

- The industry committee's decision is to select the most recent factor
- The green cell in each column is the link ratio corresponding to the observation with the minimum beginning value
- The blue cell is corresponds to the observation with the maximum beginning value

Link Ratio Function First Four Development Periods

- Red horizontal dotted line: selected value
- Red vertical dotted line: value of alpha such that LRfunction(alpha) =selected vale
- Asymptotes are at the link ratios of the AY with the minimum and maximum beginning values
- Link ratios between asymptotes termed "reasonable" in paper
- A less restrictive definition appears possible - an unsolved problem at this time

Project the development of unpaid loss to age 48 months

```
> triangle
2001 NA NA 2454 3244
2002 NA 1438 2563 3306
2003434 1464 2482 3100
2004 392 1142 1738 2148
2005 322 880 1331 1644
2006 311 890 1370 1683
2007 320 929 1438 1791
2008 322 942 1486 1888
2009 287 881 1424 1822
2010 292 921 1500 NA
2011 299 956 NA NA
2012 325 NA NA NA
> library(ChainLadder)
> delta <- CLFMdelta(Triangle = triangle,
+ selected = c(3.202, 1.628, 1.28))
> MackChainLadder(triangle,
+ alpha = 2 - delta,
+ est.sigma = "Mack",
+ mse.method = "Independence")
```


- Note that the default Mack M ethod using weighted average link ratios results in a CV of 0.09 , which is 25% less than the CV indicated by the actual selected factors
- As of this writing, ChainLadder's S.E. calculation
- limits alpha to the range [-4, 8]
- does not yet reflect the PSI function adjustment

Possible questions for discussion

1. Under what circumstances might it be reasonable to expect the standard error of cumulative developed losses to be inversely proportional to the beginning value of loss $(\alpha<0)$?
2. What is the difference between the Chain Ladder method and the Loss Development method?
3. [per $2^{\text {nd }}$ post on slide 1]

Is it appropriate to carry out the England and Verrall bootstrap method given a triangle and an arbitrary set of selected link ratios? Why or why not?

Thanks

- To my co-authors M anolis and Ali M ajidi for being the brains behind our paper
- To the many reviewers for their time, patience, and constructive comments, and their dedication to the

