

Dave Otto

16 September 2014

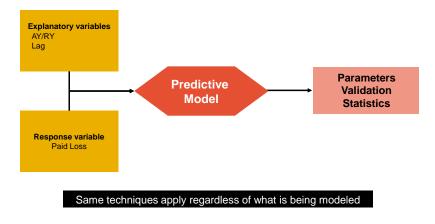
© 2013 Towers Watson. All rights reserved.

TOWERS WATSON

Agenda

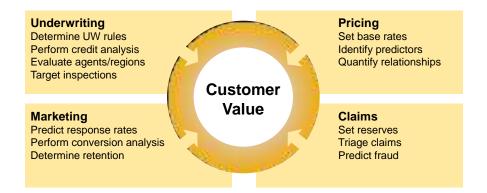
- Predictive Modeling Overview
 - Applications
 - Reserving
 - Claims Triage
- Traditional Reserving Development Methods
 - Key Points
 - Challenges
- Reserving with Predictive Modeling
 - Advantages
- Aggregate Reserving Methods
 - Aggregate Incremental Paid Method
 - Calendar Year Method
- Individual Claim Reserving Methods
 - Incremental Paid Method
 - Claim Closure Rate Method
 - Open Claim Method

towerswatson.com


Frequency/Severity Method

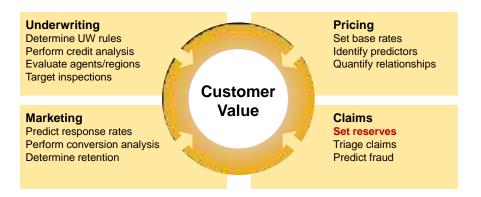
© 2013 Towers Watson All rights reserved. Proprietary and Confidential. For Towers Watson and Towers Watson client use on

Predictive Models


Definition: Statistical model to predict a response variable using a series of explanatory variables

Predictive Models

Application


Predictive modeling can help integrate all aspects of insurance operations and help identify the value of all customers

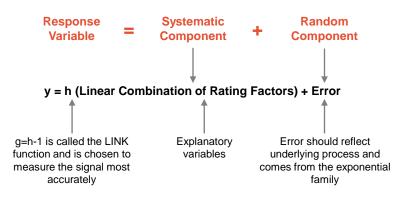
Predictive Models

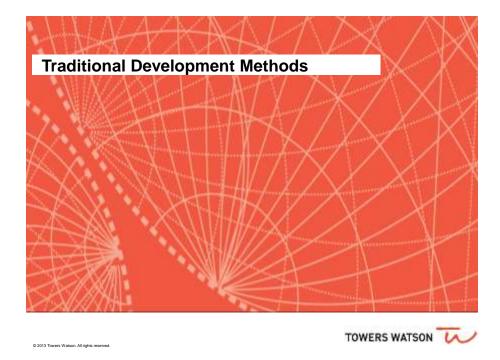
Application

Predictive modeling can help integrate all aspects of insurance operations and help identify the value of all customers

5

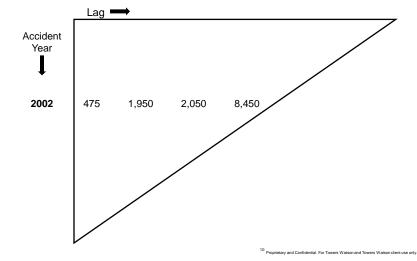
Predictive Models


Application


Predictive modeling can help integrate all aspects of insurance operations and help identify the value of all customers

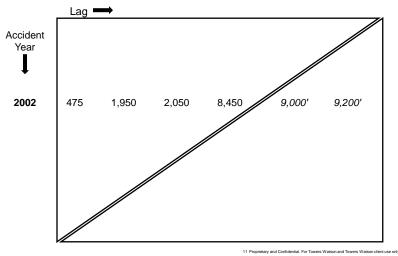
Generalized Linear Models (GLMs)

GLMs are a flexible and sophisticated predictive modeling technique



Traditional Development Methods

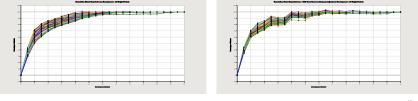
Traditional methods **aggregate** all claims in each cell within the historical triangle on a **cumulative** basis


Accident Year 2002							
Claim	12	24	36	48			
000001	0	1,000	1,000	5,000			
000021	50	50	50	50			
000060	0	0	0	250			
000124	300	500	500	750			
000328	125	400	400	400			
000443	0	0	100	2,000			
2002 Total	475	1,950	2,050	8,450			

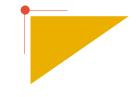
Traditional Loss Development Methods

Repeat the process for each year until entire triangle is populated

Traditional Loss Development Methods


Goal is to square up the triangle using link ratios

Traditional Development Methods Key Points


- Aggregated Data
 - Forfeit almost all information unique to each claim
 - Paid, case, reported, open, closed
- Evaluates across only two dimensions: Year and Lag
- Estimates IBNER and pure IBNR together
- Accuracy hinges on consistency
 - Claim closure rate
 - Case reserve adequacy
 - Inflation
 - Reinsurance
- Traditional development methods work quite well when the historical data is consistent, reasonably credible and contains sufficient history

Traditional Development Methods Challenges

- Challenge is dealing with inconsistency
 - Can consistency/inconsistency be measured?
 - Few cells within triangle make it challenging to measure
 - Small changes are oftentimes masked by random volatility but can impact indications significantly
 - Especially difficult with low frequency/high severity business
 - When measurable, can historical data be adjusted to be consistent?
 - Traditional adjustment approaches tend to produce patterns that are difficult to interpret

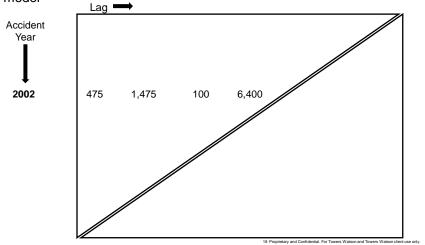
© 2013 Towers Watson All rights reserved. Proprietary and Confidential. For Towers Watson and Towers Watson client

Predictive Modeling Reserving Methods

- Multiple methodologies exist under a predictive modeling framework
 - Aggregate Data
 - Individual Claim Data
- Advantage: The incorporation of additional variables beyond the traditional two-dimensional model using "year" and "lag" enable us to identify patterns and trends that otherwise would be masked in the data:
 - Can address the inconsistency weakness in traditional methods
 - · Provides insights into the drivers of claim cost
 - How much does age affect the cost of WC claims?
 - What is the impact of opioid usage on the cost of claims?
 - How much did reform measures impact claim costs?
 - Enables us to establish consistent and more accurate case reserves

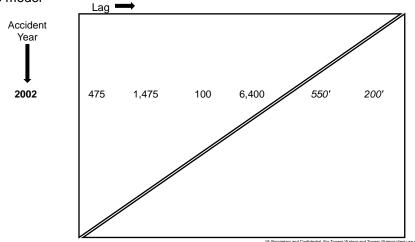
Aggregate Incremental Paid Method

A traditional aggregate loss development method can be **replicated** in a GLM framework

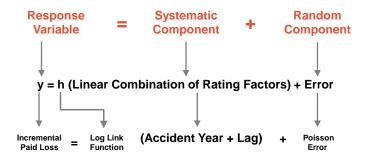

Difference is that GLM triangle is set to an incremental basis

Accident Year 2002							
Claim	12	24	36	48			
000001	0	1,000	1,000	5,000			
000021	50	50	50	50			
000060	0	0	0	250			
000124	300	500	500	750			
000328	125	400	400	400			
000443	0	0	100	2,000			
2002 Total	475	1,950	2,050	8,450			
2002 Incr	475	1,475	100	6,400			

¹⁷ Proprietary and Confidential. For Towers Watson and Towers Watson client use only.


Aggregate Incremental Paid Method

Goal in GLM is the same: square up the triangle using parameters from the model



Aggregate Incremental Paid Method

Goal in GLM is the same: square up the triangle using parameters from the model

Aggregate Incremental Paid Method — GLM Structure

Aggregate Incremental Paid Method Key Points

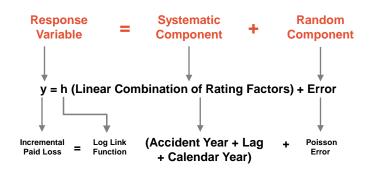
- Aggregated Data
 - · Forfeit almost all information unique to each claim
 - · Paid, case, reported, open, closed
- · Evaluates across only two dimensions: Year and Lag
- Estimates IBNER and pure IBNR together
- Accuracy hinges on consistency
 - Claim closure rate
 - Case reserve adequacy
 - Inflation

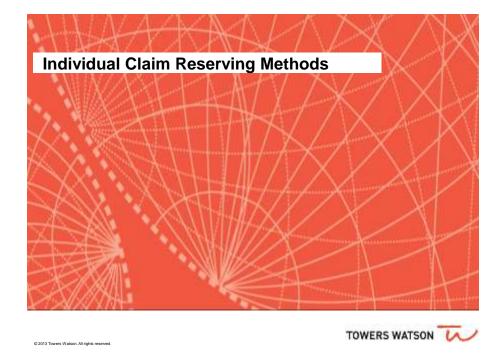
towerswatson.com

- Reinsurance
- Replicates a traditional paid loss development method using volume weighted average link ratios

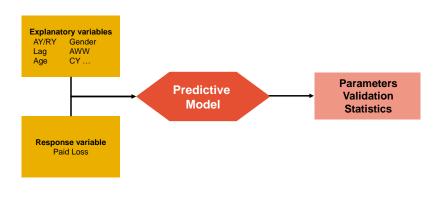
21 © 2013 Towers Watson All rights reserved. Proprietary and Confidential. For Towers Watson and Towers Watson client use only.

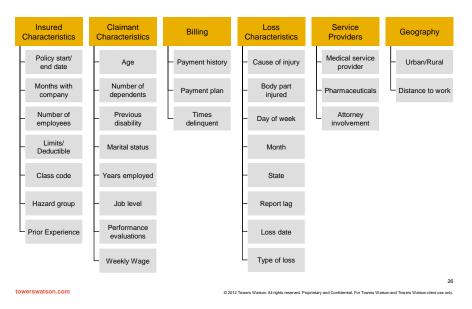
Calendar Year Method




ary and Confidential. For Towers Watson and Towers Watson client use only

- As the name implies, this method incorporates a third dimension into the modeling process, calendar year
 - Can be applied to aggregate or individual claim data
- Advantage
 - To be able to incorporate changes in inflation/claim cost into the reserve estimation process
- Challenge
 - Squaring up the triangle requires extrapolation of calendar year into the future

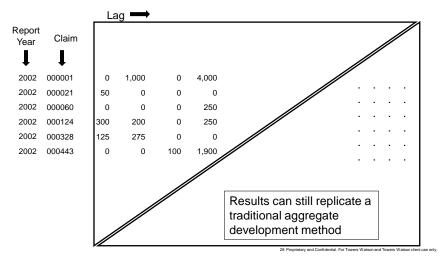

Calendar Year Method — GLM Structure



Individual Claim Reserving Methods

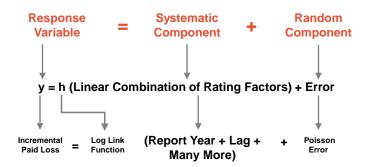
 Now that the data is configured by claim instead of in aggregate, we can introduce additional explanatory variables that are unique to each claim:

Individual Claim Reserving Methods WC Data Utilized



Incremental Paid Method

While previous examples used aggregated data, GLM's also work with individual claim data

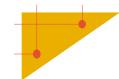

Incremental 2002 Claims							
Claim	12	24	36	48			
000001	0	1,000	0	4,000			
000021	50	0	0	0			
000060	0	0	0	250			
000124	300	200	0	250			
000328	125	275	0	0			
000443	0	0	100	1,900			
2002 Total	475	1,475	100	6,400			

Incremental Paid Method

Goal: square up the triangle with respect to each individual claim

Incremental Paid Method — GLM Structure

Incremental Paid Method Key Points


- Aggregate incremental paid method blends the estimation of IBNER and pure IBNR into one single estimate
- Individual Incremental Paid method models individual claim data and as a result focuses solely on forecasting IBNER
 - Pure IBNR must be estimated separately
 - Model to predict the frequency of IBNR claims
 - Model to predict the severity of IBNR claims
- Individual claim characteristics used as explanatory variables must be static or known throughout the forecasted periods
 - Med-only/Lost-time
 - Open/Closed

© 2013 Towers Watson All rights reserved. Proprietary and Confidential. For Towers Watson and Towers Watson client use only

Claim Closure Rate Method

- Models closed claim data and expands on the Calendar Year method by adding a fourth dimension:
 - Year
 - Lag
 - Calendar Year
 - Claim Closure Rate
- Discussed in a paper by Greg Taylor and Grianne McGuire
- Advantages
 - Ideal for high frequency / low severity business where minor changes in claim closure rate affect aggregate methods
 - Estimates total IBNR
- Challenge
 - Method for forecasting future closed claims restricts ability to incorporate unique claim characteristics

Open Claim Method

32 Proprietary and Confidential. For Towers Watson and Towers Watson client use only

- Open Claim method builds a series of models that takes advantage of all information known about the claims, including:
 - Calendar year builds upon previous method
 - Latest paid/incurred to date
 - Individual claim characteristics
- Models reserves for each open claim
- Advantage
 - Claim information is not limited to being static or known
- Challenge
 - Multiple models need to be built
 - Credibility concerns can occur in the tail

Frequency / Severity Method

- Aggregate ultimate severity by year estimated through traditional approaches
- Robust severity model is built using all available claim information and latest known information
 - Development is normalized across data
- Ultimate Severity x Severity Model applied to known and IBNR claims individually to produce ultimate
- Advantages
 - Ideal for low frequency / high severity business where aggregate loss development methods are volatile

hank y