

USE OF GLM TO SMOOTH AND EXTRAPOLATE DEVELOPMENT PATTERNS

David R. Clark, Terry Fang

Casualty Actuaries of the Mid-Atlantic Region (CAMAR)

October 9, 2014

Agenda

- 1. GLM Background
- 2. GLM in Reserving
- 3. Methods for Smoothing and Extrapolating Patterns

GLM background

The birth of GLM came in 1972 with the paper "Generalized Linear Models" by J. A. Nelder and R. W. M. Wedderburn (Journal of the Royal Statistical Society).

Their insight was that several types of existing regression models shared common elements and could be solved with the same – very efficient – algorithm.

Normal Regression (least squares): $y \in (-\infty, +\infty)$

Poisson Regression (for counts): $y \in [0, 1, 2, 3, \dots]$

Logistic Regression (binary): $y \in [0, 1]$

GLM Background

Common Elements:

- All are members of the "exponential family" of distributions
- All use Maximum Likelihood Estimation for the parameters
- All include a linear function of explanatory variables X-β

Normal:
$$E(y_i) = \sum x_{ij} \cdot \beta_i$$
 $Var(y_i) = \sigma^2$

Poisson:
$$E(y_i) = exp(\sum x_{ij} \cdot \beta_i)$$
 $Var(y_i) = E(y_i)$

Logistic:
$$E(y_i) = \left[1 + exp\left(\sum x_{ij} \cdot \beta_j\right)\right]^{-1}$$
 $Var(y_i) = E(y_i) - E(y_i)^2$

The link functions and variance structures can be mixed and matched!

GLM Background

Actuaries begin using GLMs:

For Ratemaking:

- "Minimum Bias With Generalized Linear Models" Brown, Robert PCAS 1988
- "A Systematic Relationship Between Minimum Bias and Generalized Linear Models" Mildenhall, Stephen J.; PCAS 1999

For Reserving:

- "A Stochastic Method for Claims Reserving in General Insurance," Wright, Tom S.; Journal of the Institute of Actuaries 1990
- "A Stochastic Model Underlying the Chain-Ladder Technique" Renshaw, A.E.;
 Verrall, Richard; B.A.J. 1998

Incremental Paid Loss Development Triangle

	12	24	36	48	60	72	84	96
AY 1	1,505,051	1,005,474	1,119,085	588,359	877,344	923,280	510,300	66,491
AY 2	1,807,245	643,161	984,398	610,562	879,658	835,344	393,825	
AY3	874,882	542,660	1,154,021	891,272	929,420	623,740		
AY 4	1,163,296	595,137	1,259,306	694,994	792,775			
AY 5	768,573	1,186,021	944,448	714,014				
AY 6	1,703,433	595,596	935,374					
AY 7	1,304,653	1,747,887						
AY 8	1,351,247							

	eta_{12}	eta_{24}	eta_{36}	eta_{48}	eta_{60}	eta_{72}	eta_{84}	eta_{96}
α_1	$\alpha_1 \cdot \beta_{12}$	$\alpha_1 \cdot \beta_{24}$	$\alpha_1 \cdot \beta_{36}$	$\alpha_1 \cdot \beta_{48}$	$\alpha_1 \cdot \beta_{60}$	$\alpha_1 \cdot \beta_{72}$	$\alpha_1 \cdot \beta_{84}$	$\alpha_1 \cdot \beta_{96}$
$lpha_2$	$\alpha_2 \cdot \beta_{12}$	$\alpha_2 \cdot \beta_{24}$	$\alpha_2 \cdot \beta_{36}$	$\alpha_2 \cdot \beta_{48}$	$\alpha_2 \cdot \beta_{60}$	$\alpha_2 \cdot \beta_{72}$	$\alpha_2 \cdot \beta_{84}$	
α_3	$\alpha_3 \cdot \beta_{12}$	$\alpha_3 \cdot \beta_{24}$	$\alpha_3 \cdot \beta_{36}$	$\alpha_3 \cdot \beta_{48}$	$\alpha_3 \cdot \beta_{60}$	$\alpha_3 \cdot \beta_{72}$		
$lpha_4$	$\alpha_4 \cdot \beta_{12}$	$\alpha_4 \cdot eta_{24}$	$\alpha_4 \cdot \beta_{36}$	$lpha_4\cdoteta_{48}$	$\alpha_4 \cdot \beta_{60}$			
$lpha_5$	$\alpha_5 \cdot \beta_{12}$	$\alpha_5 \cdot \beta_{24}$	$\alpha_5 \cdot \beta_{36}$	$\alpha_5 \cdot \beta_{48}$				
α_6	$\alpha_6 \cdot \beta_{12}$	$\alpha_6 \cdot \beta_{24}$	$\alpha_6 \cdot \beta_{36}$					
$lpha_7$	$\alpha_7 \cdot \beta_{12}$	$\alpha_7 \cdot \beta_{24}$						
$lpha_8$	$\alpha_8 \cdot \beta_{12}$							

Let the incremental paid loss in the triangle be set as the cross product of an accident year (AY) factor and a development age factor.

Expected Incremental Loss
$$(Y_{i,j}) = \alpha_{AYi} \cdot \beta_{Agej}$$

If we use a GLM with a "log-link" and a Poisson variance structure, then the resulting parameters reproduce the familiar chain ladder reserve.

$$E(Y_{i,j}) = exp(In(\alpha_{AYi}) + In(\beta_{Agej}))$$
 [log-link]

$$Var(Y_{i,j}) = \phi \cdot E(Y_{i,j})$$
 [Poisson variance]

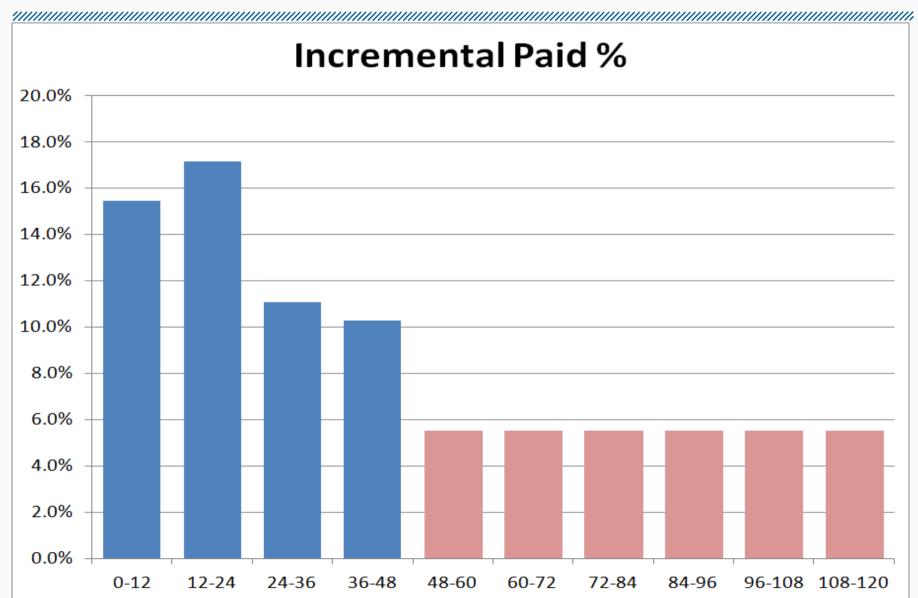
GLM for Loss Development-Design Matrix

RESPONSE		DESIGN MATRIX (X)													
Incr. Paid	Υn	Yr2	Yr3	Үг4	Yr5	Yr6	Υι7	12	24	36	48	60	72	84	96
1,505,051	1	0	0	0	0	0	0	1	0	0	0	0	0	0	0
1,807,245	0	1	0	0	0	0	0	1	0	0	0	0	0	0	0
874,882	0	0	1	0	0	0	0	1	0	0	0	0	0	0	0
1,163,296	0	0	0	1	0	0	0	1	0	0	0	0	0	0	0
768,573	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0
1,703,433	0	0	0	0	0	1	0	1	0	0	0	0	0	0	0
1,304,653	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0
	سل														
						_									
923,280	1	0	0	0	0	0	0	0	0	0	0	0	1	0	0
835,344	0	1	0	0	0	0	0	0	0	0	0	0	1	0	0
623,740	0	0	1	0	0	0	0	0	0	0	0	0	1	0	0
510,300	1	0	0	0	0	0	0	0	0	0	0	0	0	1	0
393,825	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0
66,491	1 1	0	0	0	0	0	o	0	0	0	0	0	0	0	1

For a ten year development triangle we need to estimate ten development period parameters:

$$\beta_{12}, \beta_{24}, \beta_{36}, \beta_{48}, \beta_{60}, \beta_{72}, \beta_{84}, \beta_{96}, \beta_{108}, \beta_{120}$$

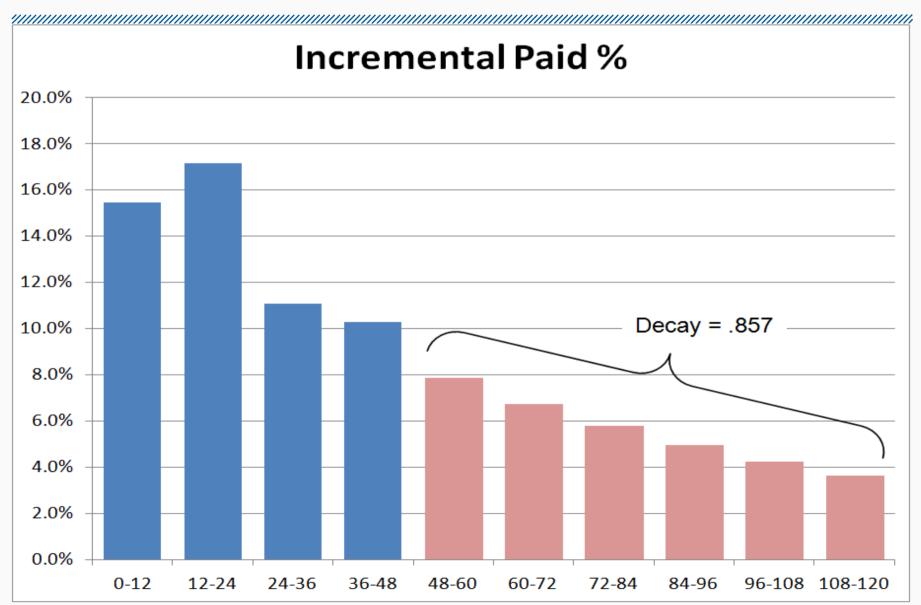
Can we reduce the number of parameters?


Proposal #1: make all later development periods equal

$$\beta_{60} + \beta_{60} = \beta_{72} = \beta_{84} = \beta_{96} = \beta_{108} = \beta_{120}$$
 $\beta_{12}, \beta_{24}, \beta_{36}, \beta_{48}, \beta_{60+}$

When in development period 60-120:

$$E(Y_{i,j}) = \exp(\ln(\alpha_i) + \ln(\beta_{60+}))$$



	β_{12}	eta_{24}	β_{36}	eta_{48}		β	60	
α_1	$\alpha_1 \cdot \beta_{12}$	$\alpha_1 \cdot \beta_{24}$	$\alpha_1 \cdot \beta_{36}$	$\alpha_1 \cdot \beta_{48}$	$\alpha_1 \cdot \beta_{60}$	$\alpha_1 \cdot \beta_{60}$	$\alpha_1 \cdot \beta_{60}$	$\alpha_1 \cdot \beta_{60}$
α_2	$\alpha_2 \cdot \beta_{12}$	$\alpha_2 \cdot \beta_{24}$	$\alpha_2 \cdot \beta_{36}$	$\alpha_2 \cdot \beta_{48}$	$\alpha_2 \cdot \beta_{60}$	$\alpha_2 \cdot \beta_{60}$	$\alpha_2 \cdot \beta_{60}$	
α_3	$\alpha_3 \cdot \beta_{12}$	$\alpha_3 \cdot \beta_{24}$	$\alpha_3 \cdot \beta_{36}$	$\alpha_3 \cdot \beta_{48}$	$\alpha_3 \cdot \beta_{60}$	$\alpha_3 \cdot \beta_{60}$		
$lpha_4$	$\alpha_4 \cdot \beta_{12}$	$lpha_4 \cdot eta_{24}$	$\alpha_4 \cdot \beta_{36}$	$lpha_4\cdoteta_{48}$	$\alpha_4 \cdot eta_{60}$			
$lpha_5$	$\alpha_5 \cdot \beta_{12}$	$\alpha_5 \cdot \beta_{24}$	$\alpha_5 \cdot \beta_{36}$	$\alpha_5 \cdot \beta_{48}$				
α_6	$\alpha_6 \cdot \beta_{12}$	$\alpha_6 \cdot \beta_{24}$	$\alpha_6 \cdot \beta_{36}$					
α_7	$\alpha_7 \cdot \beta_{12}$	$\alpha_7 \cdot eta_{24}$						
α_8	$\alpha_8 \cdot eta_{12}$							

RESPONSE						DESK	SN MA	TRIX	(X)			
												60 8
Incr. Paid	_Yr1	Yr2	Yr3	Үг4	Yr5	Уг6	Yr7	12	24	36	48	above
1,505,051	1	0	0	0	0	0	0	1	0	0	0	(
1,807,245	0	1	0	0	0	0	0	1	0	0	0	(
874,882	0	0	1	0	0	0	0	1	0	0	0	(
1,163,296	0	0	0	1	0	0	0	1	0	0	0	(
768,573	0	0	0	0	1	0	0	1	0	0	0	(
1,703,433	0	0	0	0	0	1	0	1	0	0	0	(
1,304,653	0	0	0	0	0	0	1	1	0	0	0	(
	1											
						_						
877,344		0	0	0	0	\	0	0	0	0	___\	1
877,344 879,658		0	0	0	0	/ 00	0 0	0	0	0	/	1
	1 0 0	_										1 1
879,658	_	1	0	0	0	0	0	0	0	0	0	1 1 1
879,658 929,420 792,775	0	1 0	0 1	0 0	0 0	0 0	0	0 0	0	0	0	1 1 1
879,658 929,420 792,775 923,280	0	1 0 0	0 1 0	0 0 1	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	1 1 1 1
879,658 929,420 792,775 923,280 835,344	0 0 1	1 0 0 0	0 1 0 0	0 0 1 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	0 0 0	1 1 1 1
879,658 929,420 792,775 923,280 835,344 623,740	0 0 1	1 0 0 0	0 1 0 0	0 0 1 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	0 0 0 0	1 1 1 1
879,658 929,420 792,775 923,280 835,344	0 0 1 0	1 0 0 0 1	0 1 0 0 0	0 0 1 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	0 0 0 0	0 0 0 0 0	1 1 1 1 1 1 1

Proposal #2: Exponential Decay

$$\beta_{72} = \beta_{60} \cdot D$$
 $\beta_{84} = \beta_{60} \cdot D^2$ $\beta_{96} = \beta_{60} \cdot D^3$
 $\beta_{108} = \beta_{60} \cdot D^4$ $\beta_{120} = \beta_{60} \cdot D^5$

$$\beta_{12}$$
, β_{24} , β_{36} , β_{48} , β_{60} , D

When in development period 60-120:

$$E(Y_{i,j}) = \exp(\ln(\alpha_i) + \ln(\beta_{60}) + \ln(D) \cdot t)$$

	eta_{12}	eta_{24}	eta_{36}	eta_{48}	eta_{60} , D						
α_1	$\alpha_1 \cdot \beta_{12}$	$\alpha_1 \cdot \beta_{24}$	$\alpha_1 \cdot \beta_{36}$	$\alpha_1 \cdot \beta_{48}$	$\alpha_1 \cdot \beta_{60}$	$\alpha_1 \beta_{60} D$	$\alpha_1 \beta_{60} D^2$	$\alpha_1 \beta_{60} D^3$			
α_2	$\alpha_2 \cdot \beta_{12}$	$\alpha_2 \cdot \beta_{24}$	$\alpha_2 \cdot \beta_{36}$	$\alpha_2 \cdot \beta_{48}$	$\alpha_2 \cdot \beta_{60}$	$\alpha_2\beta_{60}D$	$\alpha_2 \beta_{60} D^2$				
α_3	$\alpha_3 \cdot \beta_{12}$	$\alpha_3 \cdot \beta_{24}$	$\alpha_3 \cdot \beta_{36}$	$\alpha_3 \cdot \beta_{48}$	$\alpha_3 \cdot \beta_{60}$	$\alpha_3 \beta_{60} D$					
$lpha_4$	$\alpha_4 \cdot eta_{12}$	$lpha_4\cdoteta_{24}$	$\alpha_4 \cdot \beta_{36}$	$lpha_4\cdoteta_{48}$	$\alpha_4 \cdot eta_{60}$						
α_5	$\alpha_5 \cdot \beta_{12}$	$\alpha_5 \cdot \beta_{24}$	$\alpha_5 \cdot \beta_{36}$	$\alpha_5 \cdot \beta_{48}$							
α_6	$\alpha_6 \cdot \beta_{12}$	$\alpha_6 \cdot \beta_{24}$	$\alpha_6 \cdot \beta_{36}$								
α_7	$\alpha_7 \cdot eta_{12}$	$\alpha_7 \cdot eta_{24}$									
$lpha_8$	$\alpha_8 \cdot \beta_{12}$										

Proposal #3: Pareto-ish Decay (inverse power, heavy-tail)

$$\beta_{72} = \beta_{60} / 2^{\theta}$$
 $\beta_{84} = \beta_{60} / 3^{\theta}$

$$\beta_{84} = \beta_{60} / 3^{\theta}$$

$$\beta_{96} = \beta_{60} / 4^{\theta}$$

$$\beta_{108} = \beta_{60} / 5^{\theta}$$
 $\beta_{120} = \beta_{60} / 6^{\theta}$

$$\beta_{120} = \beta_{60} / 6^{\theta}$$

$$\beta_{12}, \beta_{24}, \beta_{36}, \beta_{48}, \beta_{60}, \theta$$

When in development period 60-120:

$$E(Y_{i,j}) = \exp(\ln(\alpha_i) + \ln(\beta_{60}) - \theta \cdot \ln(1+t))$$

	β_{12}	B24	Bac	Bao		Bea		
α_1	$egin{array}{c} eta_{12} \ &lpha_1\cdoteta_{12} \ &lpha_2\cdoteta_{12} \ &lpha_3\cdoteta_{12} \ &lpha_5\cdoteta_{12} \ &lpha_6\cdoteta_{12} \ &lpha_7\cdoteta_{12} \ &lpha_8\cdoteta_{12} \ \end{array}$	$\alpha_1 \cdot \beta_{24}$	$\alpha_1 \cdot \beta_{36}$	$\alpha_1 \cdot \beta_{48}$	$\alpha_1 \cdot \frac{eta_{60}}{1^{ heta}}$	$\alpha_1 \cdot \frac{\beta_{60}}{2^{\theta}}$	$\alpha_1 \cdot \frac{\beta_{60}}{3^{\theta}}$	$\alpha_1 \cdot \frac{\beta_{60}}{4^{\theta}}$
$lpha_2$	$\alpha_2 \cdot \beta_{12}$	$\alpha_2 \cdot \beta_{24}$	$\alpha_2 \cdot \beta_{36}$	$\alpha_2 \cdot \beta_{48}$	$\alpha_2 \cdot \frac{\beta_{60}}{1^{\theta}}$	$\alpha_2 \cdot \frac{\beta_{60}}{2^{\theta}}$	$\alpha_2 \cdot \frac{\beta_{60}}{3^{\theta}}$	
$lpha_3$	$\alpha_3 \cdot \beta_{12}$	$\alpha_3 \cdot \beta_{24}$	$\alpha_3 \cdot \beta_{36}$	$\alpha_3 \cdot \beta_{48}$	$\alpha_3 \cdot \frac{\beta_{60}}{1^{\theta}}$	$\alpha_3 \cdot \frac{\beta_{60}}{2^{\theta}}$		
$lpha_4$	$\alpha_4 \cdot eta_{12}$	$lpha_4\cdoteta_{24}$	$\alpha_4 \cdot \beta_{36}$	$lpha_4\cdoteta_{48}$	$\alpha_4 \cdot \frac{eta_{60}}{1^{ heta}}$			
$lpha_5$	$lpha_5\cdoteta_{12}$	$\alpha_5 \cdot \beta_{24}$	$\alpha_5 \cdot \beta_{36}$	$\alpha_5 \cdot \beta_{48}$				
$lpha_6$	$\alpha_6 \cdot \beta_{12}$	$\alpha_6 \cdot \beta_{24}$	$\alpha_6 \cdot \beta_{36}$					
$lpha_7$	$\alpha_7 \cdot \beta_{12}$	$\alpha_7 \cdot \beta_{24}$						
$lpha_8$	$\alpha_8 \cdot \beta_{12}$							

LIVE EXAMPLE(S)

[switch to excel]

Conclusions – Advantages of GLM

- GLM with log-link can be used to smooth and extrapolate development factors
- Shape of smoothing can include
 - Exponential decay
 - Pareto tail (inverse power)
 - Other forms such as benchmark patterns
- Easy to select period over which smoothing is performed
- Standard error of the fits can be use to evaluate the model
- Results can be transformed back into age-to-age factors if needed

Dave Clark daveclark@munichreamerica.com

Terry Fang TFang@munichreamerica.com

© Copyright 2014 Munich Reinsurance America, Inc. All rights reserved. "Munich Re" and the Munich Re logo are internationally protected registered trademarks. The material in this presentation is provided for your information only, and is not permitted to be further distributed without the express written permission of Munich Reinsurance America, Inc. or Munich Re. This material is not intended to be legal, underwriting, financial, or any other type of professional advice. Examples given are for illustrative purposes only. Each reader should consult an attorney and other appropriate advisors to determine the applicability of any particular contract language to the reader's specific circumstances.

