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CAS Antitrust Notice

= The Casualty Actuarial Society is committed to adhering strictly
to the letter and spirit of the antitrust laws. Seminars conducted
under the auspices of the CAS are designed solely to provide a
forum for the expression of various points of view on topics
described in the programs or agendas for such meetings.

Under no circumstances shall CAS seminars be used as a
means for competing companies or firms to reach any
understanding — expressed or implied — that restricts
competition or in any way impairs the ability of members to
exercise independent business judgment regarding matters
affecting competition.

It is the responsibility of all seminar participants to be aware of
antitrust regulations, to prevent any written or verbal discussions
that apé)ear to violate these laws, and to adhere in every respect
to the CAS antitrust compliance policy.
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Usual Reserve Triangle Problem

Forecast
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Usual Reserve Triangle Problem

= Set up some formula or recipe to describe the entire rectangle
— Chain Ladder: cumulative for year i at age j = factor at age j-1 x
cumulative for year i at age j-1
Bornhuetter Ferguson: cumulative for year i after age j = a-priori for
year i x (1 — percent emerged at age j)
Berquist-Sherman: incremental average for year i at age j =
incremental average for year 1 at age j x i years of trend
- Etc.
= Use historical data to derive estimates of unknown amounts
(parameters)
= Use estimated parameters to fill in future forecasts or “square
the triangle”
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Usual Reserve Triangle Problem

= Some basic observations:
- Final outcome most likely will be different than any one forecast
— Each method has strengths and weaknesses
- In general methods assume future will mirror the past

- Traditional approaches typically use a variety of approaches to
identify differences between method assumptions and actual data

= In fact ASOP No. 43 says:

The actuary should consider the use of multiple methods or models appropriate to
the purpose, nature and scope of the assignment and the characteristics of the
claims unless, in the actuary’s professional judgment, reliance upon a single method
or model is reasonable given the circumstances. If for any material component of the
unpaid claim estimate the actuary does not use multiple methods or models, the
actuary should disclose and discuss the rationale for this decision in the actuarial
communication.
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Enter Probability & Statistics

= Probability is a way to talk about events with uncertain
outcomes

= For discrete events that exhaust all possibilities a probability of
an event can be thought of as the likelihood of that particular
event occurring. As a corollary the sum of all probabilities is 1
(or 100%).

= Simple example — the flip of a fair coin. Here there are only two
possible outcomes, often called H or T, each with equal chance,
or probability of 0.50 (50%).

= Discrete events do not necessarily have to be finite in number,
consider the Poisson distribution. Here events are positive
integers k and Pr(X=k) = A< e / kl.
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Enter Probability & Statistics

= Reserves usually concern dollars and cents. Though discrete
amounts (you cannot have a claim settle for $0.005), there are
so many, and the various events are so “close” together they
are often thought of as outcomes of a continuous, not a discrete
process

You can talk about continuous probabilities, but immediately find
out that very often the probability of a specific amount is 0, but
the probability for an interval containing that amount is positive,
no matter how small that interval is.

Odd, isn’'tit. Well, as John von Neumann said “Young man, in

mathematics you don't understand things. You just get used to
them.”
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Enter Probability & Statistics

= Probability gives us a way to talk about uncertainty

= Many times probability distributions can be expressed in terms
of a relatively small number of parameters
— Poisson in prior example, only one
— Gaussian, lognormal, Gamma, and many others have two
— Mixture of exponentials can have as many as you would like

= The trick is to find the right distribution for a problem at hand
and then derive estimates of the parameters

= Sometimes the right distribution is pretty obvious, e.g. binomial
for tosses of a coin

= Sometimes it is not so obvious as in reserves
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Looking at Uncertainty

= Let's go back to coin toss problem
= There are only two possible states of the world possible, H or T
= What is the outcome of the next toss?

= Given the information provided here how likely are you to be
correct in your answer to the previous question?

= If you answered anything but “| haven't a clue” to the last
question you are fooling yourself

= | have not given you enough information yet

= If | told you it was a fair coin, then your likelihood of being right
would be 50%

= In no event, though for a fair coin would you be certain of the
outcome of the next single toss (process uncertainty)

. L) Milliman
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Looking at Uncertainty

= Now | will tell you the coin is possibly biased. In other words the
chance of H is p with the possibility that p is not 0.50

= How would you answer the prior two questions?

= How would you get some comfort with your answer? Experiment
= I'll give you the coin to toss a number of times

= Would that help?

= Here you have a model and some data (the outcomes of a
number of experiments)

= Suppose you toss the coin n times and come up with x heads,
what would your guess at p be? x / n?

= |s this guess any good? Are there better guesses?
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The Statistics in Probability & Statistics

= In this example the amount x / n is a statistic derived from the
sample tosses and you think it should be a decent estimate of
the unknown parameter p

= Notice we have derived this from the frequent repetition of an
experiment. This is termed a “frequentist” approach to
estimating the parameter p

= What is a “good” estimate? What is the characteristic of a “best”
or “efficient” estimate.

= Well a “good” estimate will eventually (with a large number of
trials) will tend toward what we are trying to estimate

= An “efficient” estimate will have smaller uncertainty (variance)
than other estimates.
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Maximum Likelihood

= |f we assume all flips are independent, the chance of seeing x
heads in N tosses is the likelihood function

(paear

= One estimate we could take for p would be that value that gives
the largest chance of observing x heads in N tosses

= |n this case that value is x / n, the observed proportion of heads
in our “experiment”
= The value of a parameter that maximizes the likelihood of the

observed outcome of a particular experiment is called the
maximum likelihood estimator (MLE) of that parameter
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Some Properties of MLEs

= As the number of observations in an experiment gets large the
resulting MLE is
— Asymptotically unbiased (is expected to converge to the parameter)
- Asymptotically efficient (no other estimator has lower variance)
— Asymptotically normal

= Define the Fisher information matrix as the expected value of
the Hessian matrix (matrix of second partial derivatives with
respect to the parameters) of the negative log-likelihood function

= The variance-covariance matrix of the limiting Gaussian
distribution is the inverse of the Fisher information matrix
typically evaluated at the parameter estimates
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MLE Example

= |n this coin example the negative log likelihood is

:(m:—ln'[/';'Jp'(l—p)

N-x

:(x—N)In(l—p')—xInp—InﬂN\J
/ \X,

= With derivatives

= Thus the MLE for p, p, = x/N is asymptotically normal with
variance approximately equal to py(1 - py)/N.
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Ultimate Frequentist Method — Bootstrap

= Bootstrap is a non-parametric method to assess volatility in a
model fit that essentially assumes that observed values are
completely representative of the distribution of interest

Typical a statistical model assumes the data follows some sort
of pattern (often called signal), with some random variation

(often called noise)

Approaches like MLE will use statistical principals to assess the
noise given a particular underlying statistical model that usually
includes an assumption about the nature of the noise
Bootstrap assumes that the distribution of noise can be

completely modeled by sampling with replacement from the
observed errors
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Ultimate Frequentist Method — Bootstrap

= In our coin example we would be interested only in the noise
(that is no specific underlying “signal” model)

= |f we have 3 observed heads in 3 tosses then the bootstrap
simulation of the noise would be approximated by sampling with
replacement from the 3 observations

= In the case of 3 out of 3 heads the bootstrap would imply there
is no chance of tails

= |If the sample size is large and completely representative then
bootstrap can be a very powerful tool, particularly if the true
error structure is difficult to estimate of simulate
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Are We Frequentists?

= Let’'s do a thought experiment

= | offer you a game where | will pay you $0.90 if the toss of a coin
comes up heads and you pay me $1.10 if it comes up tails

= | let you toss the coin 3 times and it comes up heads all three
times

= Will you play the game?

= A true frequentist would only believe the result of the 3 throws,
other information is irrelevant.

= With only heads coming out the true frequentist would
undoubtedly play (and with a fair coin) lose in the long run.

= Would any of you take this game?
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Frequentist or Other?

= Would you like to know where | got the coin we use?

= |If | said “In change at the grocery store” you might be pretty sure
that p = 0.50

= |If you said “Joe gave it to me” you might still guess p = 0.50 but
not be as certain

= If Joe was well-known to be a prankster your uncertainty would
be probably be substantially greater

= In all these situations you do not restrict yourself to simply the
observed data but consider prior experience with the situation or
similar ones

= If you believe your past experience is worth considering then
you might just be a Bayesian

- L) Milliman
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Frequentist or Bayesian

= The frequentist essentially assumes that the parameter(s) of the
distribution of interest are fixed but unknown, to be “divined”
from the data observed.

= MLE is often used by frequentists since for large independent
samples the MLE for a parameter tends to the “true” value of the
parameter

= Note that the MLE is determined only by the observed data and
(assumed) model structure

= This is fine for experiments that can be repeated so we can get
“large enough” samples

= Also assumes samples are independent and all from the same
distribution
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The Bayesian Point of View

= The Bayesian has a different view of the world

= As the Frequentist, the Bayesian assumes that a parameter is
unknown. But unlike the Frequentist the Bayesian does not
believe there is a single “true” value of the unknown parameter
to be “divined” but rather that the parameter itself has its own
distribution which is also unknown

= This unknown distribution is usually called the “prior distribution”
of the parameter

= The Bayesian will use observed data to modify or “evolve” the
assumed distribution of the parameter

= This conditioned distribution is know as the “posterior
distribution” conditioned by the data
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Why is it Called Bayesian?

= Bayesian analysis makes extensive use of Bayes Theorem,
which for discrete probabilities may be written as

P(BlA):P(AlB)?(B)

P(A)

= Generally our stochastic models will assume a certain
distribution of observations given the value of an unknown
parameter. What is of interest though is how a set of
observations will change the assessment of the distribution of
the parameter

= Bayes Theorem gives a way to do this

= Then given a revised assessment of the distribution of the
parameter (messy) calculus gives the distribution of values
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Look at the Bayesian Take on the Coin

= If the Bayesian has no prior experience with coins (s)he might
have a prior distribution of the parameter p that is as likely to be
any value on the unit interval as any other, i.e. a “uniform prior”

= After 3 tosses come up heads the Bayesian would modify this
distribution to be a Beta distribution, B(4,1). Where the
frequentist might say the p parameter is 1.00 with certainty, the
Bayesian allows for considerable uncertainty, though the
expected value is 0.80.

= The Bayesian can easily adapt to the other situations presented
as well
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Look at the Bayesian Take on the Coin

= In the case of the coin from the grocery store the prior would be
highly concentrated around 0.50 since our experience is that a
random coin is very close to fair, say represented by a beta
B(1000,1000).

= |n this case the three heads changes the expected value of the
probability of heads parameter from 0.50 to 0.5007

= With Joe the trickster we might have a different view, still with an
expected value of 0.50 but less uncertainty, say a beta B(10,10)

= In this case the 3 heads changes the expected value of the
probability of heads parameter to 0.5652.

= Sounds a whole lot like what actuaries do in practice
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What is the Sound Of One Point Clapping?

= Suppose you have only one data point and one parameter
= What can that tell you from a frequentist point of view?
= Not a heck of a lot — pretty much useless

= Suppose you have two data points and two parameters — again
not much

= How about 2 data points and 3 parameters — now you really are
in trouble from a frequentist point of view

= How about to a Bayesian?
= ANY data is useful

= Sparse data may not change the prior much, but is reflected in
the posterior
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Computational Considerations — MLEs

= Many situations result in MLEs that can be expressed in closed
form in terms of the data observations

= This was the limit of early use of MLEs to “well behaved”
situations including linear and generalized linear models

= Computational advances, particularly in optimization routines in
packages like R, MATLAB and others provide a useful tool in
moving MLEs beyond (generalized) linear models

= However whether linear or generalized linear, MLEs only have
the desirable properties “asymptotically” or for “large samples”
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Computational Considerations — Bayesian

= |t turns out that if you have a Bernoulli distribution with
probability p which is unknown but assumed to have a Beta
distribution B(a,8) and then observe x heads in n tosses of the
coin then the posterior distribution for p is beta B(a + x,8 + n -
X).

= The number of distributions where we can get a closed form
posterior is rather limited

= The calculus required in most other situations gets difficult to
impossible very quickly

= As with MLEs technology now has come to the rescue in the
form of Markov Chain Monte Carlo (MCMC) methods

= Essentially MCMC uses Monte Carlo sampling to approximate
the posterior distribution
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Reserves in a Stochastic World

= At a point in time (valuation date) there is a range of possible
outcomes for a book of (insurance) liabilities. Some possible
outcomes may be more likely than others

= Range of possible outcomes along with their corresponding

probabilities are the distribution of outcomes for the book of
liabilities — i.e. reserves are a distribution

= The distribution of outcomes may be complex and not
completely understood

= Uncertainty in predicting outcomes comes from
— Process (pure randomness)
— Parameters (model parameters uncertain)
— Model (selected model is not perfectly correct)
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Basic Traditional Actuarial Methods

= Traditional actuarial methods are simplifications of reality
— Chain ladder
— Bornhuetter-Ferguson or it's close relative Cape Cod
Berquist-Sherman Incremental Average
— Others
Usually quite simple thereby “easy” to explain
Traditional reserve approaches rely on a number of methods —
model uncertainty explicitly addressed
= Practitioner “selects” an “estimate” based on results of several
traditional methods

= No explicit probabilistic component
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Stochastic Models

= In the actuarial context a stochastic model could be considered
as a mathematical simplification of an underlying loss process
with an explicit statement of underlying probabilities

= Two main features
— Simplified Statement
— Explicit probabilistic statement

= In terms of sources of uncertainty two of three sources may be
addressed
— Process
— Parameter

= Within a single model, the third source (model uncertainty)
usually not explicitly addressed
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Reserving Context — Usual Triangles

= In reserving we are faced with the problem of “squaring the
triangle”

= Suppose C;is the amount paid for accident year i during year j,
counting from the start of the accident year

= Keeping things simple, if we have 10 years of experience at
annual valuations, we “see” 55 historical points C;, for i running
from 1 to 10, and j running from 1 to 10 —j + 1

* Name of the game is to estimate the remaining 45 values of C;
for j running from 10 —j to 10
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10 Stochastic Reserving Today (Beyond Bootstrap)




Traditional Methods

= Traditionally actuaries have relied on a number of methods to
“square the triangle”

= Essentially the Bornhuetter-Ferguson method assumes C;= aj;
with restrictions on some parameter values to keep the problem
well posed, leading to 19 parameters for a 10 x 10 triangle

= The Berquist-Sherman is a special case of the Bornhuetter-
Ferguson with a smooth trend, C;= a, 7' 8;and a total of 11
parameters for a 10 x 10 triangle

= The chain ladder can be seen as another special case of the
Bornhuetter-Ferguson, imposing the requirement that expected
totals to date match historical total to date which can be
parameterized with 9 parameters.
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Stochastic Versions of Traditional Methods

= Note that in each of the traditional methods each of the
incremental amounts C; can be written as a function g;(8) of
some parameter vector 8

= Other methods can also be written down in a similar fashion, not
just the usual simple traditional methods

= This is the first step — a simplified view of reality

= To make this a stochastic problem we need to make some
statement about the distribution of the C;amounts, for example
that they have probability density functions that may themselves
depend on additional parameters say f;(x|8,y)
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MLE in Reserve Applications

= In this framework, the negative log likelihood function for the
values observed in the triangle becomes

10 10-i+1

(e, lv) =2 2. Infy(c;fe.v)
i=1 j=1
= |f we find values of the parameter vectors 8 and y that minimize
this negative log likelihood (equivalent to maximizing the
likelihood itself) we have estimates for the parameters for the
model

= |f we are willing to assume we have sufficient “replications” to
bring in the asymptotic properties of MLEs we can also say
something about the distribution of those parameters
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Forecast Distributions with MLEs

= Once we have (estimates of) parameters the model selected
gives us distributions in each cell, past and forecast

= Can use Monte Carlo simulation to estimate process uncertainty
in projections

= Assuming asymptotic normality of the MLEs we can also
estimate distribution of the parameters, (multivariate) normal
with mean (vector) equal to the MLE and variance (-covariance)
matrix derived from information matrix

= Can use the latter to simulate parameters and then the
parameters to estimate outcome distribution

= As the shampoo label says, “rinse, repeat.”

= In contrast to bootstrap, values outside observed range possible

" L3 Milliman

Example Commercial Auto Liab. Paid Data

Cumulalive Assrege: Pald Loss & Defancs & Cosd Contsinment Expancas: par Estimabsd Liltimade Cialm

Monthe of Deweloprment. Count
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2805 3445 3850 41481
3078 4382
3004 3881
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Results

[Model [ _Expected Reserves (000,000)

Berquist Incremental Severity $480
Cape Cod 391
Wright Model 388
Generalized Hoerl Curve 474
Chain Ladder 393

= Some difference in expected reserves
= |s the difference random?

= |s the difference significant?

= How do you know?

= Stochastic models help answer these questions
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Process vs. Parameter Uncertainty

Total Reserve Process Total Reserve Total
Std. Dev. (000) Std. Dev. (000)

Berquist Incremental

Severity $15,998 $29,090
Cape Cod 9,435 20,298
Wright Model 10,029 20,375
Generalized Hoerl Curve 16,115 29,728
Chain Ladder 9,448 15,704
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Reserve Forecasts by Model

Aggregate Reserves

CapeCod Berquist Wright ~———Hoerl === Chain
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What Happened?

Standardized Residuals
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Chain Ladder
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Berquist-Sherman, Bayesian Style

= Now for a different take on things.
= Keep the same basic model that we used for the MLE estimates
= Instead of using a Frequentist approach assume we have do not
have much prior information about the parameters and assume
- The incremental averages by age are uniform on (-5000,10000)
— The trend is uniform on (-0.25,0.25)
— The kappa (variance constant) is uniform on (0,100), and
— The variance power is uniform on (0,5)
We can now estimate of the distribution of reserves without any
additional data (with @ representing all parameters and = the
distribution of parameters)
g(x)=[f(x|8)z(6)de
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Bayesian Berquist-Sherman

= In the prior slice f(x|6) denotes the distribution of the reserves
given values for the parameter (vector) 6.

= Suppose we have observations for the C; values.

= If (@) denotes the prior assumed distribution of the parameter
(vector) then the distribution conditioned on observing the C;
values then we can use Bayes Theorem to conclude

/z(.elCu)xf(Cu.le)/r(O)

= We now can use this refined estimate of our parameter
uncertainty to get a refined estimate of our reserve distribution

g(xlc,)= [f(xI@)z(8lc,)do
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Enter MCMC

= Once we know the distribution we can get any statistic we want
to consider about reserves, their expected value, median,
percentiles, etc.

= However we are faced with the problem that this last integral is
easy to write down but not that easy to calculate

= This is were Markov Chain Monte Carlo methods can help out

= The integral is the expected value of a function (f) given a
probability distribution ()

= What MCMC does is to sample from the distribution = and use
that sample to approximate the value of the integral of interest

= Although complex there are a number of tools to do this in
practice (WinBugs, JAGS, etc.)

“ L) Milliman
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Berquist-Sherman — MLE vs. MCMC

Aggregate Reserves

600
Millions.
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Berquist-Sherman — MLE vs. MCMC

Percentile MLE
0.5%
1.0%
2.5%
5.0%

10.0%
25.0%
50.0%
75.0%
90.0%
95.0%
97.5%
99.0%
99.5%
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Berquist-Sherman Trend - MCMC

00038 00062 00162 00262 0.0 0.0462 00562 00662 00762

" terior Prior
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Berquist-Sherman — MLE vs. MCMC

= The two methods are reasonably close

= In general MCMC seems to have a slightly broader distribution
of results than the MLE approach
Some possible explanations
MLE results assume sufficient data for asymptotic properties to
come into play. There is no assurance that is the case
MLE assumes the parameters are jointly normal
MCMC starts with a pretty broad diffuse prior

Closer comparison of parameter estimates show more variation in
the “tail” where data are sparse. Bayesian methods are not as
strongly influenced by sparsity of data as MLE methods.

= Thanks to Glenn Meyers for the MCMC results here.
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Hoerl — MLE vs. MCMC

60 80 100

Hoerl MCMC Hoerl MLE
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Wright — MLE vs. MCMC

Wright MCMC Wiight MLE
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Cape Cod — MLE vs. MCMC
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Other Models — MLE vs. MCMC

= The indicated distributions for both MLE and MCMC for the
Hoerl Curve and Wright models are both reasonably close

= There is a marked difference in the Cape Cod model

= This is the model with the most parameters (21 in the case of
the 10 x 10 triangle) and many estimated using very few points

= Here the question of whether or not there is sufficiently large
sample size for the MLE’s asymptotic properties to come into
play is probably greatest

= As one might expect the MCMC distribution is noticeably wider
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MCMC Summary

MCMC Comparison

e

40 60 80 100 120 140

Hoerl Wright  ~——Cape Cod Berquist
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Some Observations

= The data imply that the variance for payments in a cell are
roughly proportional to the mean to the 0.85 power for both
Cape Cod and Chain Ladder, roughly to the mean for the Hoerl
model and to the mean to the 1.30 power for the Berquist
model.

= Total standard deviation well above process, often more than
double, meaning parameter uncertainty is significant

= Comparison of forecasts among models underlines the
importance of model uncertainty

= Still more work to be done to get a handle on model uncertainty
— possibly greater than the other two
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More Observations

= We chose a relatively simple models for the expected value

= Nothing in this approach makes special use of the structure of
the models

= Models do not need to be linear nor do they need to be
transformed to linear by a function with particular properties

= Variance structure is selected to parallel stochastic chain ladder
approaches (overdispersed Poisson, etc.) and allow the data to
select the power

= The general approach is also applicable to a wide range of
models

= This allows us to consider a richer collection of models than
simply those that are linear or linearizable
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Some Cautions

= MODEL UNCERATINTY STILL NEEDS TO BE CONSIDERED
thus distributions are distributions of outcomes und pecific
models and must not be confused with the actual distribution of
outcomes for the loss process

= An evolutionary Bayesian approach can help address model
uncertainty
— Apply a collection of models and judgmentally weight (a subjective

prior)

- Observe results for next year and reweight using Bayes Theorem

= We are using asymptotic properties, no guarantee we are far
enough in the limit to assure these are close enough

= Actuarial “experiments” not repeatable so frequentist approach
(MLE) may not be appropriate

5 L) Milliman
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APPENDIX

= The following slides, not formally presented provide details
behind the models used in this presentation.

= The models used here will be presented in greater detail in “A
Flexible Framework for Stochastic Reserving Models,” in
Volume 7, Issue 2 of Variance scheduled to be published late
2013 or early 2014.

= See also the CAS Monograph STOCHASTIC LOSS
RESERVING USING BAYESIAN MCMC MODELS by Glenn
\EYEES
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A Stochastic Framework

= Instead of incremental paid, consider incremental average A; =
CilE;

= The amounts are averages of a (large?) sample, assumed from
the same population

= Law of large numbers would imply, if variance is finite, that
distribution of the average is asymptotically normal

= Thus assume the averages have Gaussian distributions (next
step in stochastic framework)

= Note here we have not specified which of the above traditional
methods we are considering
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A Stochastic Incremental Model — Cont.

= Now that we have an assumption about the distribution
(Gaussian) and expected value all needed to specify the model
is the variance in each cell

= |n stochastic chain ladder frameworks the variance is assumed
to be a fixed (known) power of the mean

Var(CU):a-E(CU)k

= We will follow this general structure, however allowing the
averages to be negative and the power to be a parameter fit
from the data, reflecting the sample size for the various sums

var(4,)=e"* (E(4, )2),,

5 L) Milliman
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An Observation on the Methods

= Each of the five traditional methods can be expressed as a
function of a number of parameters

C;=9,(9)
= Here 0 represents a vector of the parameters with different

lengths for different models

= Instead of specifying a particular method now we will talk in
terms of a general method where the incremental amounts can
be expressed as a function of a vector of parameters

= For the stochastic version we assume

E(A"l") :gr/(e)
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Parameter Estimation

= Number of approaches possible

= If we have an a-priori estimate of the distribution of the
parameters we could use Bayes Theorem to refine those
estimates given the data

= Maximum likelihood is another approach

= In this case the negative log likelihood function of the
observations given a set of parameters is given by

0(An Ay, A8 K, p)=
2 26" (gﬁ (8 )p
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Distribution of Outcomes Under Model
= Since we assume incremental averages are independent once

we have the parameter estimates we have estimate of the
distribution of future outcomes given the parameters

i jen-is2

= This is the estimate for the average future forecast payment per
unit of exposure, multiplying by exposures

= This assumes parameter estimates are correct — does not
account for parameter uncertainty

5 L) Milliman
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The Information Matrix

= Key to calculating the variance-covariance matrix for the
parameter estimates is calculating the Fisher Information Matrix

= Recall the negative log likelihood function is a function of the
parameters 6, k, and p.

"(,AmAu,-..,Am;O,/;,p)=
c—e +l '2 ) o)’ g o .
5 9,(0))

= So the Hessian and hence its expected value is a function of the
parameters k and p, as well as the partial derivatives of g; with
respect to the 6 parameters otherwise independent of g;

w0 L3 Milliman

Incorporating Parameter Uncertainty

= If we assume
— The parameters have a multi-variate Gaussian distribution with
mean equal to the maximum likelihood estimators and variance-
covariance matrix equal to the inverse of the Fisher information
matrix
- For fixed parameters the losses have a Gaussian distribution with
the mean and variance the given functions of the parameters
= The posterior distribution of outcomes is rather complex

= Can be easily simulated:
— First randomly select parameters from a multi-variate Gaussian
Distribution
— For these parameters simulate losses from the appropriate
Gaussian distributions

o ) Milliman

Parameterization — Cape Cod

= Simple parameterization for the Cape Cod above overspecifies the
model

= We use the following (similar to England & Verall)
0,ifi=j=1

i=landj>1

6,60, ifi>landj>1

mj-1

= 0, is the upper left corner incremental

= 6, fori=2, ..., nis change in incremental from accident year i-1 to age i

= g, fori=n+1, ..., m+n-1is change from age / — n to accident year i — n +1

o L) Milliman
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Parameterization — Berquist-Sherman

= Actually a special case of the Cape Cod
= Replace the accident year change parameters by trend

9; (9) = (grerﬂm

= g, forj=1, ..., nis the accident year 0 average incremental cost
at age j
= 0,., is the natural log of the annual trend in the data
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Parameterization — Wright & Hoerl Models

= Actually a special cases of the Cape Cod
= For Wright replace the development year parameters by a curve

9,(8)=exp(0,+0,.,j+0,,*+0,..n(j)),i=1,...,m,j=1,...,n

m+ 'm

= g, fori=1, ..., m sets the accident year loss level
= Emergence defined by 3-parameter curve

= Hoerl model replaces separate accident year levels with trend
from above

9,(8)=exp(6,+6,j+0, +6,In(j)+i6; )
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Parameterization — Chain Ladder

= Basic requirements for expected values
- Ratio of cumulative averages from one age to the next same for all
accident years
- The expected amount to date (on the diagonal) is observed amount
to date
= In our parameterization we label the amount to date for accident
year i as P; and the age of accident year j to date as n;

= Also in our parameterization we can think of the parameters 6;
as the portion of the total amounts emerging at age j

= The incremental percentages can be negative or larger than 1

= We force the percentage for the last age to be the complement
of the remainder resulting in n — 1 parameters.
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Parameterization — Chain Ladder (Continued)

PO, ifj<nandi=1

N
Pl[l—Zé?A ifj=nandi=1

k=1

Ry

ifj<nandi#1

n-1
£ 1—Zﬁk)ifj:n andi®1

k=1
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