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CAS Antitrust Notice

 The Casualty Actuarial Society is committed to adhering strictly 
to the letter and spirit of the antitrust laws.  Seminars conducted 
under the auspices of the CAS are designed solely to provide a 
forum for the expression of various points of view on topics 
described in the programs or agendas for such meetings.  

 Under no circumstances shall CAS seminars be used as a 
means for competing companies or firms to reach any 
understanding – expressed or implied – that restricts 
competition or in any way impairs the ability of members to 
exercise independent business judgment regarding matters 
affecting competition.  

 It is the responsibility of all seminar participants to be aware of 
antitrust regulations, to prevent any written or verbal discussions 
that appear to violate these laws, and to adhere in every respect 
to the CAS antitrust compliance policy.
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Usual Reserve Triangle Problem
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Usual Reserve Triangle Problem

 Set up some formula or recipe to describe the entire rectangle
– Chain Ladder:  cumulative for year i at age j = factor at age j-1 x 

cumulative for year i at age j-1

– Bornhuetter Ferguson: cumulative for year i after age j = a-priori for 
year i x (1 – percent emerged at age j)

– Berquist-Sherman: incremental average for year i at age j = 
incremental average for year 1 at age j x i years of trend

– Etc.

 Use historical data to derive estimates of unknown amounts 
(parameters)

 Use estimated parameters to fill in future forecasts or “square 
the triangle”
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Usual Reserve Triangle Problem

 Some basic observations:
– Final outcome most likely will be different than any one forecast

– Each method has strengths and weaknesses

– In general methods assume future will mirror the past

– Traditional approaches typically use a variety of approaches to 
identify differences between method assumptions and actual data

 In fact ASOP No. 43 says:
The actuary should consider the use of multiple methods or models appropriate to 
the purpose, nature and scope of the assignment and the characteristics of the 
claims unless, in the actuary’s professional judgment, reliance upon a single method 
or model is reasonable given the circumstances. If for any material component of the 
unpaid claim estimate the actuary does not use multiple methods or models, the 
actuary should disclose and discuss the rationale for this decision in the actuarial 
communication.
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Enter Probability & Statistics

 Probability is a way to talk about events with uncertain 
outcomes

 For discrete events that exhaust all possibilities a probability of 
an event can be thought of as the likelihood of that particular 
event occurring.  As a corollary the sum of all probabilities is 1 
(or 100%).

 Simple example – the flip of a fair coin.  Here there are only two 
possible outcomes, often called H or T, each with equal chance, 
or probability of 0.50 (50%).

 Discrete events do not necessarily have to be finite in number, 
consider the Poisson distribution.  Here events are positive 
integers k and Pr(X=k) = λk e-λ / k!.
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Enter Probability & Statistics

 Reserves usually concern dollars and cents.  Though discrete 
amounts (you cannot have a claim settle for $0.005), there are 
so many, and the various events are so “close” together they 
are often thought of as outcomes of a continuous, not a discrete 
process

 You can talk about continuous probabilities, but immediately find 
out that very often the probability of a specific amount is 0, but 
the probability for an interval containing that amount is positive, 
no matter how small that interval is.

 Odd, isn’t it.  Well, as John von Neumann said “Young man, in 
mathematics you don't understand things. You just get used to 
them.”
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Enter Probability & Statistics

 Probability gives us a way to talk about uncertainty

 Many times probability distributions can be expressed in terms 
of a relatively small number of parameters
– Poisson in prior example, only one

– Gaussian, lognormal, Gamma, and many others have two

– Mixture of exponentials can have as many as you would like

 The trick is to find the right distribution for a problem at hand 
and then derive estimates of the parameters

 Sometimes the right distribution is pretty obvious, e.g. binomial 
for tosses of a coin

 Sometimes it is not so obvious as in reserves
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Looking at Uncertainty

 Let’s go back to coin toss problem

 There are only two possible states of the world possible, H or T

 What is the outcome of the next toss?

 Given the information provided here how likely are you to be 
correct in your answer to the previous question?

 If you answered anything but “I haven’t a clue” to the last 
question you are fooling yourself

 I have not given you enough information yet

 If I told you it was a fair coin, then your likelihood of being right 
would be 50%

 In no event, though for a fair coin would you be certain of the 
outcome of the next single toss (process uncertainty)



4 Stochastic Reserving Today (Beyond Bootstrap)

9

Looking at Uncertainty

 Now I will tell you the coin is possibly biased.  In other words the 
chance of H is p with the possibility that p is not 0.50

 How would you answer the prior two questions?

 How would you get some comfort with your answer? Experiment

 I’ll give you the coin to toss a number of times

 Would that help?

 Here you have a model and some data (the outcomes of a 
number of experiments)

 Suppose you toss the coin n times and come up with x heads, 
what would your guess at p be? x / n?

 Is this guess any good?  Are there better guesses?
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The Statistics in Probability & Statistics

 In this example the amount x / n is a statistic derived from the 
sample tosses and you think it should be a decent estimate of 
the unknown parameter p

 Notice we have derived this from the frequent repetition of an 
experiment.  This is termed a “frequentist” approach to 
estimating the parameter p

 What is a “good” estimate?  What is the characteristic of a “best” 
or “efficient” estimate.

 Well a “good” estimate will eventually (with a large number of 
trials) will tend toward what we are trying to estimate

 An “efficient” estimate will have smaller uncertainty (variance) 
than other estimates.
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Maximum Likelihood

 If we assume all flips are independent, the chance of seeing x 
heads in N tosses is the likelihood function

 One estimate we could take for p would be that value that gives 
the largest chance of observing x heads in N tosses 

 In this case that value is x / n, the observed proportion of heads 
in our “experiment”

 The value of a parameter that maximizes the likelihood of the 
observed outcome of a particular experiment is called the 
maximum likelihood estimator (MLE) of that parameter
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Some Properties of MLEs

 As the number of observations in an experiment gets large the 
resulting MLE is
– Asymptotically unbiased (is expected to converge to the parameter)

– Asymptotically efficient (no other estimator has lower variance)

– Asymptotically normal

 Define the Fisher information matrix as the expected value of 
the Hessian matrix (matrix of second partial derivatives with 
respect to the parameters) of the negative log-likelihood function

 The variance-covariance matrix of the limiting Gaussian 
distribution is the inverse of the Fisher information matrix 
typically evaluated at the parameter estimates
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MLE Example

 In this coin example the negative log likelihood is

 With derivatives

       ln 1 ln 1 ln ln
N xx
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 Thus the MLE for p, p0 = x/N is asymptotically normal with 
variance approximately equal to p0(1 - p0)/N.
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Ultimate Frequentist Method – Bootstrap

 Bootstrap is a non-parametric method to assess volatility in a 
model fit that essentially assumes that observed values are 
completely representative of the distribution of interest

 Typical a statistical model assumes the data follows some sort 
of pattern (often called signal), with some random variation 
(often called noise)

 Approaches like MLE will use statistical principals to assess the 
noise given a particular underlying statistical model that usually 
includes an assumption about the nature of the noise

 Bootstrap assumes that the distribution of noise can be 
completely modeled by sampling with replacement from the 
observed errors  
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Ultimate Frequentist Method – Bootstrap

 In our coin example we would be interested only in the noise 
(that is no specific underlying “signal” model)

 If we have 3 observed heads in 3 tosses then the bootstrap 
simulation of the noise would be approximated by sampling with 
replacement from the 3 observations

 In the case of 3 out of 3 heads the bootstrap would imply there 
is no chance of tails

 If the sample size is large and completely representative then 
bootstrap can be a very powerful tool, particularly if the true 
error structure is difficult to estimate of simulate
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Are We Frequentists?

 Let’s do a thought experiment

 I offer you a game where I will pay you $0.90 if the toss of a coin 
comes up heads and you pay me $1.10 if it comes up tails

 I let you toss the coin 3 times and it comes up heads all three 
times

 Will you play the game?

 A true frequentist would only believe the result of the 3 throws, 
other information is irrelevant.

 With only heads coming out the true frequentist would 
undoubtedly play (and with a fair coin) lose in the long run.

 Would any of you take this game?
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Frequentist or Other?

 Would you like to know where I got the coin we use?

 If I said “In change at the grocery store” you might be pretty sure 
that p = 0.50

 If you said “Joe gave it to me” you might still guess p = 0.50 but 
not be as certain

 If Joe was well-known to be a prankster your uncertainty would 
be probably be substantially greater

 In all these situations you do not restrict yourself to simply the 
observed data but consider prior experience with the situation or 
similar ones

 If you believe your past experience is worth considering then 
you might just be a Bayesian
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Frequentist or Bayesian

 The frequentist essentially assumes that the parameter(s) of the 
distribution of interest are fixed but unknown, to be “divined” 
from the data observed.

 MLE is often used by frequentists since for large independent 
samples the MLE for a parameter tends to the “true” value of the 
parameter

 Note that the MLE is determined only by the observed data and 
(assumed) model structure

 This is fine for experiments that can be repeated so we can get 
“large enough” samples

 Also assumes samples are independent and all from the same 
distribution
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The Bayesian Point of View

 The Bayesian has a different view of the world

 As the Frequentist, the Bayesian assumes that a parameter is 
unknown. But unlike the Frequentist the Bayesian does not 
believe there is a single “true” value of the unknown parameter 
to be “divined” but rather that the parameter itself has its own 
distribution which is also unknown

 This unknown distribution is usually called the “prior distribution” 
of the parameter

 The Bayesian will use observed data to modify or “evolve” the 
assumed distribution of the parameter

 This conditioned distribution is know as the “posterior 
distribution” conditioned by the data

20

Why is it Called Bayesian?

 Bayesian analysis makes extensive use of Bayes Theorem, 
which for discrete probabilities may be written as

     
 

P | P
P |

P

A B B
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 Generally our stochastic models will assume a certain 
distribution of observations given the value of an unknown 
parameter.  What is of interest though is how a set of 
observations will change the assessment of the distribution of 
the parameter

 Bayes Theorem gives a way to do this

 Then given a revised assessment of the distribution of the 
parameter (messy) calculus gives the distribution of values
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Look at the Bayesian Take on the Coin

 If the Bayesian has no prior experience with coins (s)he might 
have a prior distribution of the parameter p that is as likely to be 
any value on the unit interval as any other, i.e. a “uniform prior”

 After 3 tosses come up heads the Bayesian would modify this 
distribution to be a Beta distribution, B(4,1).  Where the 
frequentist might say the p parameter is 1.00 with certainty, the 
Bayesian allows for considerable uncertainty, though the 
expected value is 0.80.

 The Bayesian can easily adapt to the other situations presented 
as well
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Look at the Bayesian Take on the Coin

 In the case of the coin from the grocery store the prior would be 
highly concentrated around 0.50 since our experience is that a 
random coin is very close to fair, say represented by a beta 
B(1000,1000).  

 In this case the three heads changes the expected value of the 
probability of heads parameter from 0.50 to 0.5007 

 With Joe the trickster we might have a different view, still with an 
expected value of 0.50 but less uncertainty, say a beta B(10,10)

 In this case the 3 heads changes the expected value of the 
probability of heads parameter to 0.5652.

 Sounds a whole lot like what actuaries do in practice
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What is the Sound Of One Point Clapping?

 Suppose you have only one data point and one parameter

 What can that tell you from a frequentist point of view?

 Not a heck of a lot – pretty much useless

 Suppose you have two data points and two parameters – again 
not much

 How about 2 data points and 3 parameters – now you really are 
in trouble from a frequentist point of view

 How about to a Bayesian?

 ANY data is useful

 Sparse data may not change the prior much, but is reflected in 
the posterior
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Computational Considerations – MLEs

 Many situations result in MLEs that can be expressed in closed 
form in terms of the data observations

 This was the limit of early use of MLEs to “well behaved” 
situations including linear and generalized linear models

 Computational advances, particularly in optimization routines in 
packages like R, MATLAB and others provide a useful tool in 
moving MLEs beyond (generalized) linear models

 However whether linear or generalized linear, MLEs only have 
the desirable properties “asymptotically” or for “large samples”
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Computational Considerations – Bayesian

 It turns out that if you have a Bernoulli distribution with 
probability p which is unknown but assumed to have a Beta 
distribution B(α,β) and then observe x heads in n tosses of the 
coin then the posterior distribution for p is beta B(α + x,β + n -
x).

 The number of distributions where we can get a closed form 
posterior is rather limited

 The calculus required in most other situations gets difficult to 
impossible very quickly

 As with MLEs technology now has come to the rescue in the 
form of Markov Chain Monte Carlo (MCMC) methods

 Essentially MCMC uses Monte Carlo sampling to approximate 
the posterior distribution

26

Reserves in a Stochastic World

 At a point in time (valuation date) there is a range of possible 
outcomes for a book of (insurance) liabilities.  Some possible 
outcomes may be more likely than others

 Range of possible outcomes along with their corresponding 
probabilities are the distribution of outcomes for the book of 
liabilities – i.e. reserves are a distribution

 The distribution of outcomes may be complex and not 
completely understood

 Uncertainty in predicting outcomes comes from
– Process (pure randomness)

– Parameters (model parameters uncertain)

– Model (selected model is not perfectly correct)
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Basic Traditional Actuarial Methods

 Traditional actuarial methods are simplifications of reality
– Chain ladder

– Bornhuetter-Ferguson or it’s close relative Cape Cod

– Berquist-Sherman Incremental Average

– Others

 Usually quite simple thereby “easy” to explain

 Traditional reserve approaches rely on a number of methods –
model uncertainty explicitly addressed

 Practitioner “selects” an “estimate” based on results of several 
traditional methods

 No explicit probabilistic component
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Stochastic Models

 In the actuarial context a stochastic model could be considered 
as a mathematical simplification of an underlying loss process 
with an explicit statement of underlying probabilities

 Two main features
– Simplified Statement

– Explicit probabilistic statement

 In terms of sources of uncertainty two of three sources may be 
addressed
– Process

– Parameter

 Within a single model, the third source (model uncertainty) 
usually not explicitly addressed
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Reserving Context – Usual Triangles

 In reserving we are faced with the problem of “squaring the 
triangle”

 Suppose Cij is the amount paid for accident year i during year j, 
counting from the start of the accident year

 Keeping things simple, if we have 10 years of experience at 
annual valuations, we “see” 55 historical points Cij, for i running 
from 1 to 10, and j running from 1 to 10 – i + 1

 Name of the game is to estimate the remaining 45 values of Cij

for j running from 10 – i to 10
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Traditional Methods

 Traditionally actuaries have relied on a number of methods to 
“square the triangle”

 Essentially the Bornhuetter-Ferguson method assumes Cij = αiβj 

with restrictions on some parameter values to keep the problem 
well posed, leading to 19 parameters for a 10 x 10 triangle

 The Berquist-Sherman is a special case of the Bornhuetter-
Ferguson with a smooth trend, Cij = α0 τi βj and a total of 11 
parameters for a 10 x 10 triangle

 The chain ladder can be seen as another special case of the 
Bornhuetter-Ferguson, imposing the requirement that expected 
totals to date match historical total to date which can be 
parameterized with 9 parameters.
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Stochastic Versions of Traditional Methods

 Note that in each of the traditional methods each of the 
incremental amounts Cij can be written as a function gij(θ) of 
some parameter vector θ

 Other methods can also be written down in a similar fashion, not 
just the usual simple traditional methods

 This is the first step – a simplified view of reality

 To make this a stochastic problem we need to make some 
statement about the distribution of the Cij amounts, for example 
that they have probability density functions that may themselves 
depend on additional parameters say fij(x|θ,γ)
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MLE in Reserve Applications

 In this framework, the negative log likelihood function for the 
values observed in the triangle becomes

 If we find values of the parameter vectors θ and γ that minimize 
this negative log likelihood (equivalent to maximizing the 
likelihood itself) we have estimates for the parameters for the 
model

 If we are willing to assume we have sufficient “replications” to 
bring in the asymptotic properties of MLEs we can also say 
something about the distribution of those parameters
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Forecast Distributions with MLEs

 Once we have (estimates of) parameters the model selected 
gives us distributions in each cell, past and forecast

 Can use Monte Carlo simulation to estimate process uncertainty 
in projections

 Assuming asymptotic normality of the MLEs we can also 
estimate distribution of the parameters, (multivariate) normal 
with mean (vector) equal to the MLE and variance (-covariance) 
matrix derived from information matrix

 Can use the latter to simulate parameters and then the 
parameters to estimate outcome distribution

 As the shampoo label says, “rinse, repeat.”

 In contrast to bootstrap, values outside observed range possible

34

Example Commercial Auto Liab. Paid Data 

35

Results

 Some difference in expected reserves

 Is the difference random?

 Is the difference significant?

 How do you know?

 Stochastic models help answer these questions

Model Expected Reserves (000,000)

Berquist Incremental Severity $480

Cape Cod 391

Wright Model 388

Generalized Hoerl Curve 474

Chain Ladder 393
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Process vs. Parameter Uncertainty

Model
Total Reserve Process 

Std. Dev. (000)
Total Reserve Total 

Std. Dev. (000)

Berquist Incremental 
Severity $15,998 $29,090

Cape Cod 9,435 20,298

Wright Model 10,029 20,375

Generalized Hoerl Curve 16,115 29,728

Chain Ladder 9,448 15,704
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Reserve Forecasts by Model

300 350 400 450 500 550 600

Millions

Aggregate Reserves

CapeCod Berquist Wright Hoerl Chain

38

What Happened?

Berquist Cape Cod

Hoerl Chain Ladder

Standardized Residuals
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Berquist-Sherman, Bayesian Style

 Now for a different take on things.

 Keep the same basic model that we used for the MLE estimates

 Instead of using a Frequentist approach assume we have do not 
have much prior information about the parameters and assume
– The incremental averages by age are uniform on (-5000,10000)

– The trend is uniform on (-0.25,0.25)

– The kappa (variance constant) is uniform on (0,100), and

– The variance power is uniform on (0,5)

 We can now estimate of the distribution of reserves without any 
additional data (with  representing all parameters and  the 
distribution of parameters)

     g f |x x d  θ θ θ
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Bayesian Berquist-Sherman

 In the prior slice f(x|) denotes the distribution of the reserves 
given values for the parameter (vector) .

 Suppose we have observations for the Cij values.

 If () denotes the prior assumed distribution of the parameter 
(vector) then the distribution conditioned on observing the Cij

values then we can use Bayes Theorem to conclude

     | f |ij ijC C θ θ θ

 We now can use this refined estimate of our parameter 
uncertainty to get a refined estimate of our reserve distribution

     g | f | |ij ijx C x C d  θ θ θ
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Enter MCMC

 Once we know the distribution we can get any statistic we want 
to consider about reserves, their expected value, median, 
percentiles, etc.

 However we are faced with the problem that this last integral is 
easy to write down but not that easy to calculate

 This is were Markov Chain Monte Carlo methods can help out

 The integral is the expected value of a function (f) given a 
probability distribution ()

 What MCMC does is to sample from the distribution  and use 
that sample to approximate the value of the integral of interest

 Although complex there are a number of tools to do this in 
practice (WinBugs, JAGS, etc.)
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Berquist-Sherman – MLE vs. MCMC

300 350 400 450 500 550 600

Millions

Aggregate Reserves

MCMC MLE
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Berquist-Sherman – MLE vs. MCMC

Percentile MLE MCMC
0.5% 409 397
1.0% 416 407
2.5% 425 422
5.0% 434 432

10.0% 443 444
25.0% 460 462
50.0% 480 482
75.0% 499 502
90.0% 518 522
95.0% 529 536
97.5% 540 547
99.0% 551 562
99.5% 559 575
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Berquist-Sherman Trend - MCMC

-0.0038 0.0062 0.0162 0.0262 0.0362 0.0462 0.0562 0.0662 0.0762

MCMC Posterior Prior
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Berquist-Sherman – MLE vs. MCMC

 The two methods are reasonably close

 In general MCMC seems to have a slightly broader distribution 
of results than the MLE approach

 Some possible explanations
– MLE results assume sufficient data for asymptotic properties to 

come into play.  There is no assurance that is the case

– MLE assumes the parameters are jointly normal

– MCMC starts with a pretty broad diffuse prior

– Closer comparison of parameter estimates show more variation in 
the “tail” where data are sparse.  Bayesian methods are not as 
strongly influenced by sparsity of data as MLE methods.

 Thanks to Glenn Meyers for the MCMC results here.
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Hoerl – MLE vs. MCMC

0 20 40 60 80 100 120 140

Hoerl MCMC Hoerl MLE

47

Wright – MLE vs. MCMC

0 10 20 30 40 50 60 70 80 90 100

Wright MCMC Wright MLE
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Cape Cod – MLE vs. MCMC

0 20 40 60 80 100 120

Cape Cod MCMC Cape Cod MLE

49

Other Models – MLE vs. MCMC

 The indicated distributions for both MLE and MCMC for the 
Hoerl Curve and Wright models are both reasonably close 

 There is a marked difference in the Cape Cod model

 This is the model with the most parameters (21 in the case of 
the 10 x 10 triangle) and many estimated using very few points

 Here the question of whether or not there is sufficiently large 
sample size for the MLE’s asymptotic properties to come into 
play is probably greatest

 As one might expect the MCMC distribution is noticeably wider

50

MCMC Summary

0 20 40 60 80 100 120 140

MCMC Comparison

Hoerl Wright Cape Cod Berquist
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Some Observations

 The data imply that the variance for payments in a cell are 
roughly proportional to the mean to the 0.85 power for both 
Cape Cod and Chain Ladder, roughly to the mean for the Hoerl
model and to the mean to the 1.30 power for the Berquist
model.  

 Total standard deviation well above process, often more than 
double, meaning parameter uncertainty is significant

 Comparison of forecasts among models underlines the 
importance of model uncertainty

 Still more work to be done to get a handle on model uncertainty 
– possibly greater than the other two

52

More Observations

 We chose a relatively simple models for the expected value

 Nothing in this approach makes special use of the structure of 
the models

 Models do not need to be linear nor do they need to be 
transformed to linear by a function with particular properties

 Variance structure is selected to parallel stochastic chain ladder 
approaches (overdispersed Poisson, etc.) and allow the data to 
select the power

 The general approach is also applicable to a wide range of 
models

 This allows us to consider a richer collection of models than 
simply those that are linear or linearizable

53

Some Cautions

 MODEL UNCERATINTY STILL NEEDS TO BE CONSIDERED
thus distributions are distributions of outcomes under a specific 
models and must not be confused with the actual distribution of 
outcomes for the loss process

 An evolutionary Bayesian approach can help address model 
uncertainty
– Apply a collection of models and judgmentally weight (a subjective 

prior)

– Observe results for next year and reweight using Bayes Theorem

 We are using asymptotic properties, no guarantee we are far 
enough in the limit to assure these are close enough

 Actuarial “experiments” not repeatable so frequentist approach 
(MLE) may not be appropriate
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APPENDIX

 The following slides, not formally presented provide details 
behind the models used in this presentation.

 The models used here will be presented in greater detail in “A 
Flexible Framework for Stochastic Reserving Models,” in 
Volume 7, Issue 2 of Variance scheduled to be published late 
2013 or early 2014.

 See also the CAS Monograph STOCHASTIC LOSS 
RESERVING USING BAYESIAN MCMC MODELS by Glenn 
Meyers
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A Stochastic Framework

 Instead of incremental paid, consider incremental average Aij = 
Cij/Eij

 The amounts are averages of a (large?) sample, assumed from 
the same population

 Law of large numbers would imply, if variance is finite, that 
distribution of the average is asymptotically normal

 Thus assume the averages have Gaussian distributions (next 
step in stochastic framework)

 Note here we have not specified which of the above traditional 
methods we are considering

56

A Stochastic Incremental Model – Cont.

 Now that we have an assumption about the distribution 
(Gaussian) and expected value all needed to specify the model 
is the variance in each cell

 In stochastic chain ladder frameworks the variance is assumed 
to be a fixed (known) power of the mean 

 We will follow this general structure, however allowing the 
averages to be negative and the power to be a parameter fit 
from the data, reflecting the sample size for the various sums

   Var E
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ij ijC C
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An Observation on the Methods

 Each of the five traditional methods can be expressed as a 
function of a number of parameters

 Here θ represents a vector of the parameters with different 
lengths for different models

 Instead of specifying a particular method now we will talk in 
terms of a general method where the incremental amounts can 
be expressed as a function of a vector of parameters

 For the stochastic version we assume

 ij ijC g θ

   E ij ijA g θ
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Parameter Estimation

 Number of approaches possible

 If we have an a-priori estimate of the distribution of the 
parameters we could use Bayes Theorem to refine those 
estimates given the data

 Maximum likelihood is another approach

 In this case the negative log likelihood function of the 
observations given a set of parameters is given by
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Distribution of Outcomes Under Model

 Since we assume incremental averages are independent once 
we have the parameter estimates we have estimate of the 
distribution of future outcomes given the parameters

 This is the estimate for the average future forecast payment per 
unit of exposure, multiplying by exposures

 This assumes parameter estimates are correct – does not 
account for parameter uncertainty
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The Information Matrix

 Key to calculating the variance-covariance matrix for the 
parameter estimates is calculating the Fisher Information Matrix

 Recall the negative log likelihood function is a function of the 
parameters θ, κ, and p.

 So the Hessian and hence its expected value is a function of the 
parameters κ and p, as well as the partial derivatives of gij with 
respect to the θ parameters otherwise independent of gij
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Incorporating Parameter Uncertainty

 If we assume 
– The parameters have a multi-variate Gaussian distribution with 

mean equal to the maximum likelihood estimators and variance-
covariance matrix equal to the inverse of the Fisher information 
matrix

– For fixed parameters the losses have a Gaussian distribution with 
the mean and variance the given functions of the parameters

 The posterior distribution of outcomes is rather complex

 Can be easily simulated:
– First randomly select parameters from a multi-variate Gaussian 

Distribution

– For these parameters simulate losses from the appropriate 
Gaussian distributions

62

Parameterization – Cape Cod

 Simple parameterization for the Cape Cod above overspecifies the 
model

 We use the following (similar to England & Verall)

 θ1 is the upper left corner incremental

 θi for i = 2, …, n is change in incremental from accident year i-1 to age i

 θi for i = n+1, …, m+n-1is change from age i – n to accident year i – n +1
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Parameterization – Berquist-Sherman

 Actually a special case of the Cape Cod

 Replace the accident year change parameters by trend

 θj  for j = 1, …, n is the accident year 0 average incremental cost 
at age j

 θn+1  is the natural log of the annual trend in the data

  1ni
ij jg e  θ
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Parameterization – Wright & Hoerl Models

 Actually a special cases of the Cape Cod

 For Wright replace the development year parameters by a curve

 θi for i = 1, …, m sets the accident year loss level

 Emergence defined by 3-parameter curve

 Hoerl model replaces separate accident year levels with trend 
from above

    2
1 2 3exp ln , 1, , , 1, ,ij i m m mg j j j i m j n          θ  

    2
1 2 3 4 5exp lnijg j j j i        θ
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Parameterization – Chain Ladder

 Basic requirements for expected values
– Ratio of cumulative averages from one age to the next same for all 

accident years

– The expected amount to date (on the diagonal) is observed amount 
to date 

 In our parameterization we label the amount to date for accident 
year i as Pi and the age of accident year i to date as ni

 Also in our parameterization we can think of the parameters θj

as the portion of the total amounts emerging at age j

 The incremental percentages can be negative or larger than 1

 We force the percentage for the last age to be the complement 
of the remainder resulting in n – 1 parameters.
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Parameterization – Chain Ladder (Continued)
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