Hierarchical Compartmental Models for Loss Reserving

Jake Morris 19 September 2016

Agenda

Overview

- Motivations

Methodology

- Single accident year

Case study

- Multiple accident years

Bayesian implementation

Conclusions

Overview *Motivations*

1. Interpretability & Extensibility

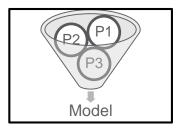
- meaningful parameters
- option to capture specific process features

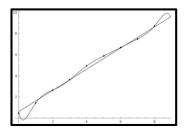
2. Parsimony

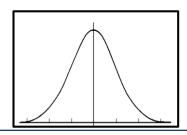
- extract signal from noise
- description of individual cohort vs. average

3. Quantification of reserve uncertainty

- incorporate multiple information sources
- isolate drivers of uncertainty







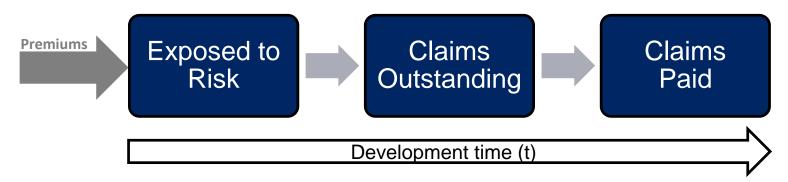
Overview *Features*

- Intuitive parameters including case reserve robustness measure
- Provides coherent measure of reserve uncertainty
- Supports negative development
- Can capture calendar effects
- Independent of DFM / BF
- Incorporates judgement

Models the claims generation *process*

Compartmental reserving model

Structural model

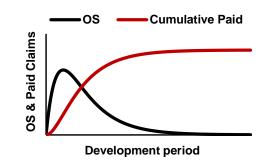


Compartmental reserving model

Structural model

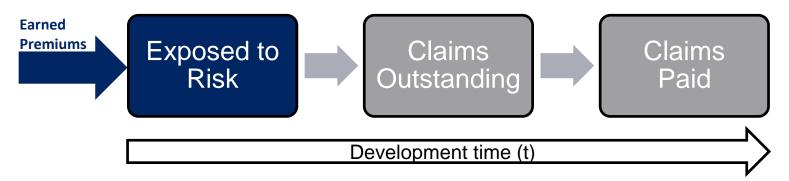
- Cash flows between compartments governed by ODEs*
- Fit to paid and outstanding triangles
 - Simultaneously
 - Explicitly estimating tails

Supports negative development



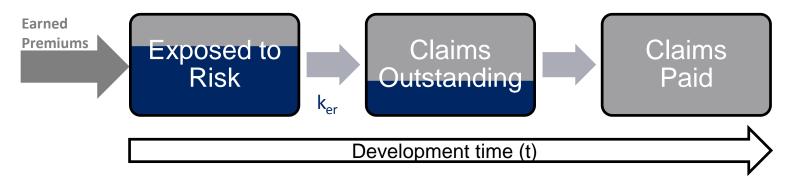
Parameters

Parameters have natural interpretations



Parameters

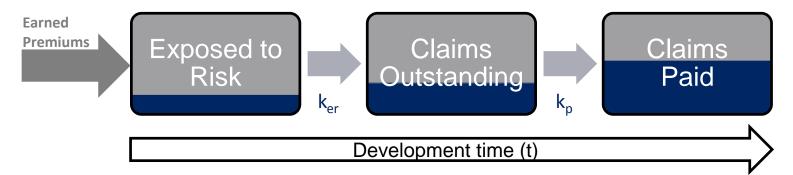
Parameters have natural interpretations



Rate of earning + reporting (" \mathbf{k}_{er} ")

Parameters

Parameters have natural interpretations

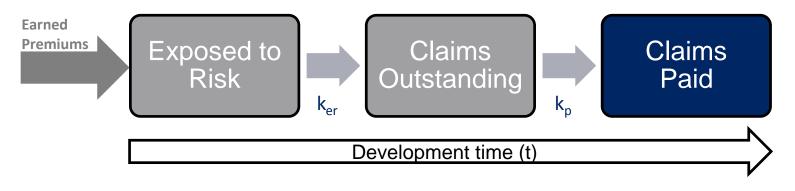


Rate of earning + reporting (" \mathbf{k}_{er} ")

Rate of payment ("**k**_p")

Parameters

Parameters have natural interpretations



Rate of earning + reporting (" k_{er} ") ULR = 100%

Rate of payment ("**k**_p")

Base model parameters for a single accident year

Parameters

Parameters have natural interpretations

Reported loss ratio ("RLR")

Rate of earning + reporting ("**k**_{er}")

```
Rate of payment ("k<sub>p</sub>")
```


Parameters

Parameters have natural interpretations

Reported loss ratio ("RLR")

Rate of earning + reporting ("**k**_{er}")

Reserve robustness factor ("RRF")

Rate of payment ("**k**_p")

Parameters

Parameters have natural interpretations

Reported loss ratio ("RLR")

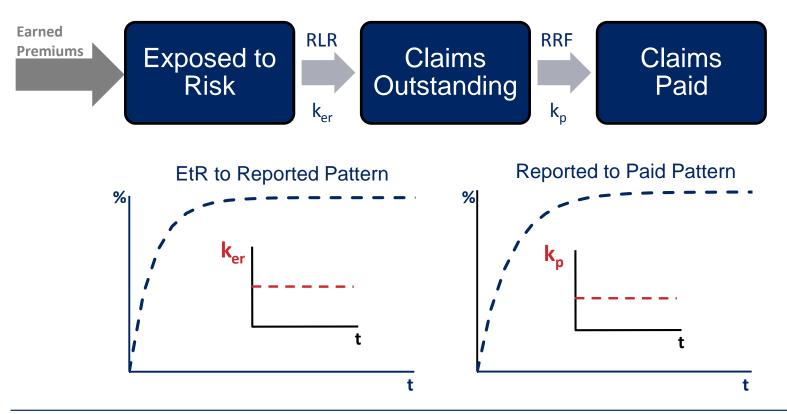
Rate of earning + reporting ("**k**_{er}")

Reserve robustness factor ("RRF")

Rate of payment ("**k**_p")

Rates → *Patterns*

Pattern % = $1 - e^{-rate^{t}}$



Rates → *Patterns*

Pattern % = $1 - e^{-\int rate(t)dt}$

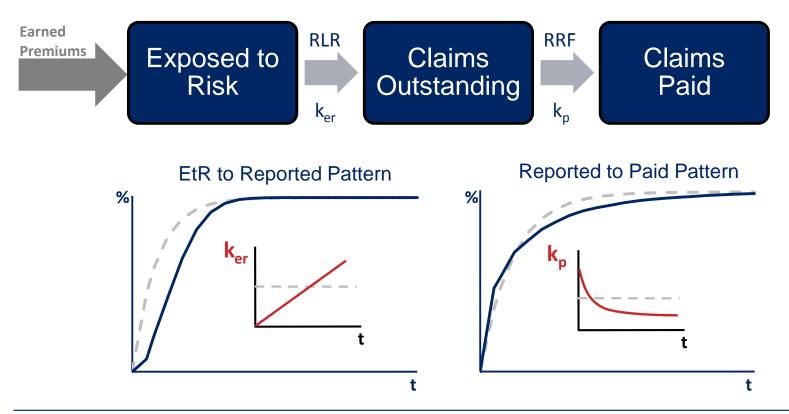
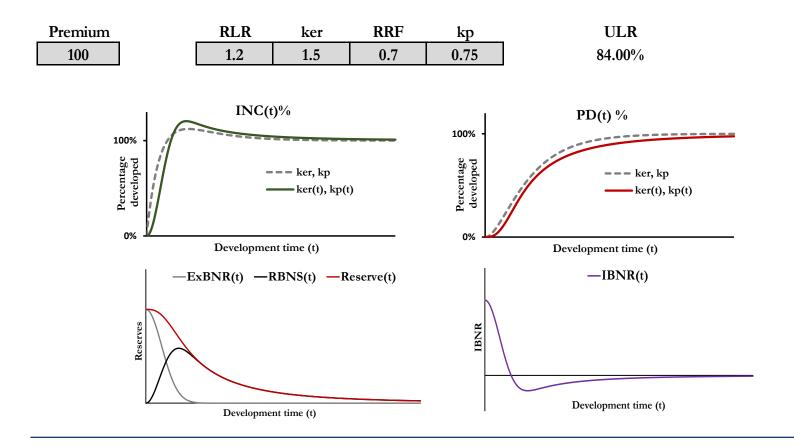


Illustration spreadsheet

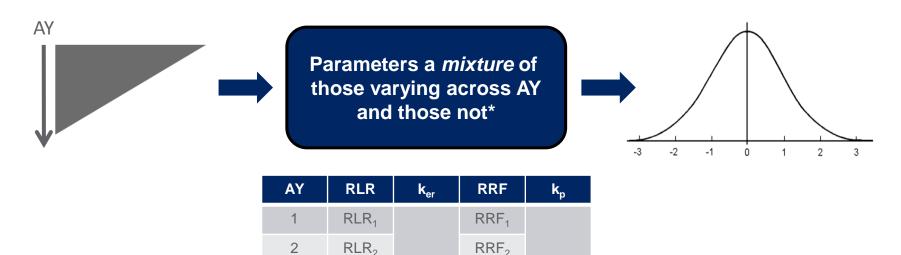
Discretized compartmental model



Multiple accident years

Hierarchical ("mixed-effects") models

Hierarchical compartmental models



Only estimate mean and s.d. of the variable parameters

 $\mathsf{RRF}_{\mathsf{N}}$

k_{er}

RLR_N

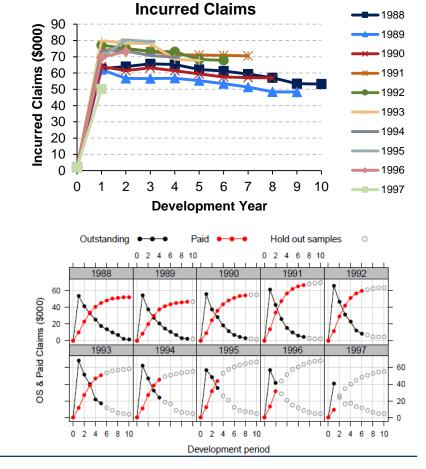
k_p

Ν

Case study Data & Objectives

Workers' Comp Schedule P data

- Accident year cohorts (1988 1997)
- Earned premiums
- Paid and incurred claims development

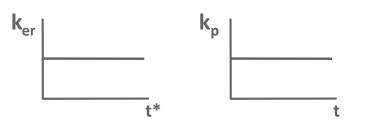


- Objectives
 - Fit frequentist compartmental model
 - Refine model and interpret parameters
 - Compare projections to lower triangles

Case study Model 1

Base model:

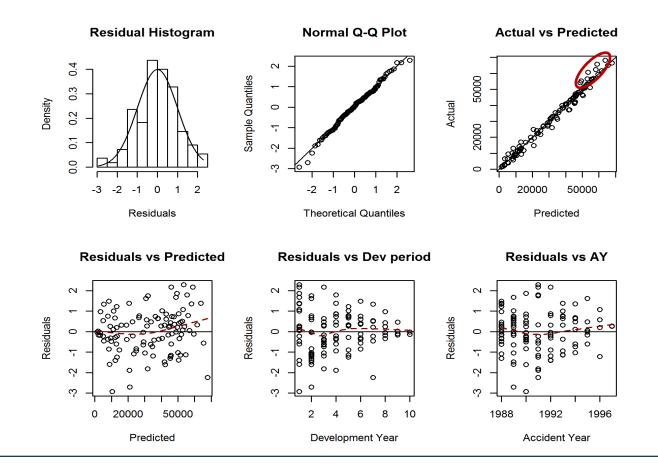
Constant rates

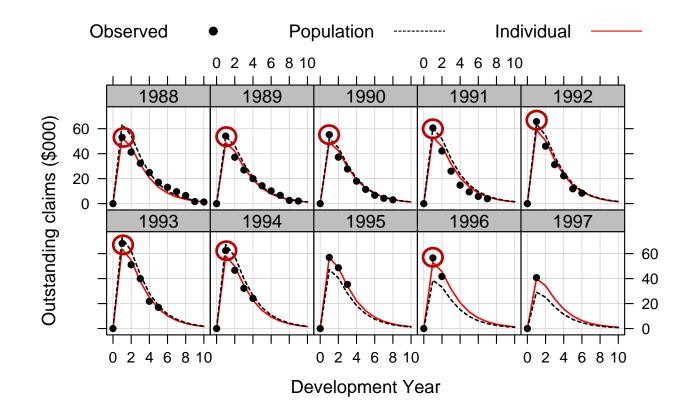


AY	RLR	k _{er}	RRF	k _p			
1988	RLR ₁	k _{er}	RRF_1				
1989	RLR_2		RRF_2	k			
				к _р			
1997	RLR ₁₀		RRF ₁₀				

2 random offects

Judgementally select parameter starting values



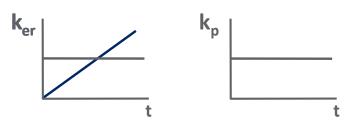


Case study

Model 2

Base model (extended):

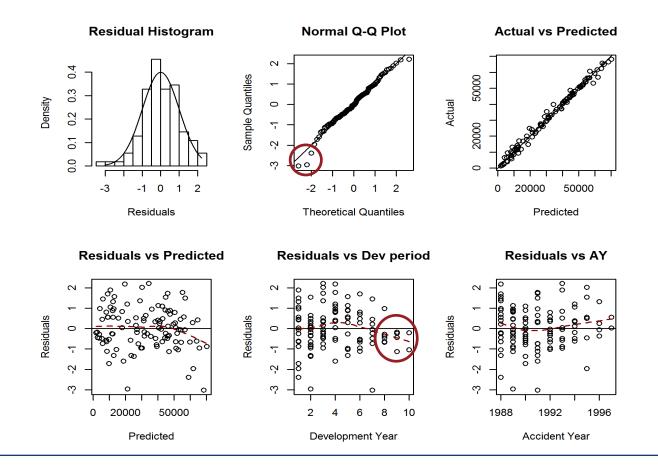
-Constant rates

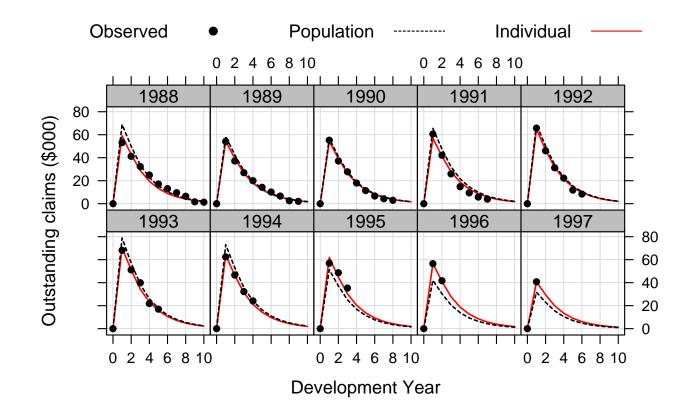


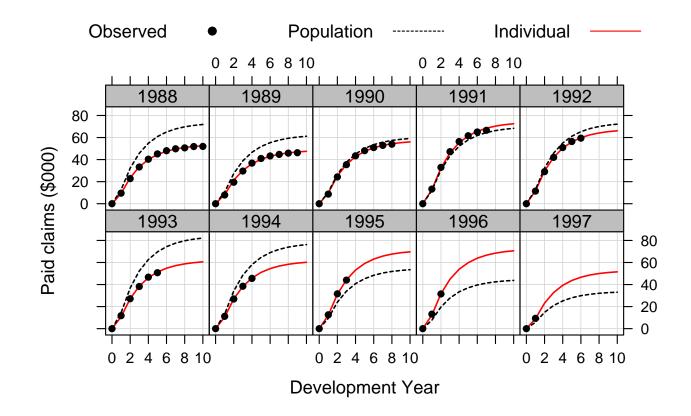
z random effects								
	AY	RLR	k _{er}	RRF	k _p			
	1988	RLR ₁	k _{er}	RRF ₁				
	1989	RLR ₂		RRF ₂	Ŀ			
					к _р			
	1997	RLR ₁₀		RRF ₁₀				

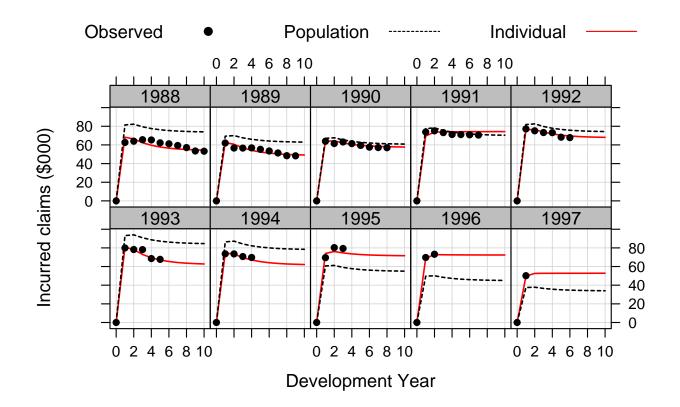
random offacto

Fit model and explore diagnostics...

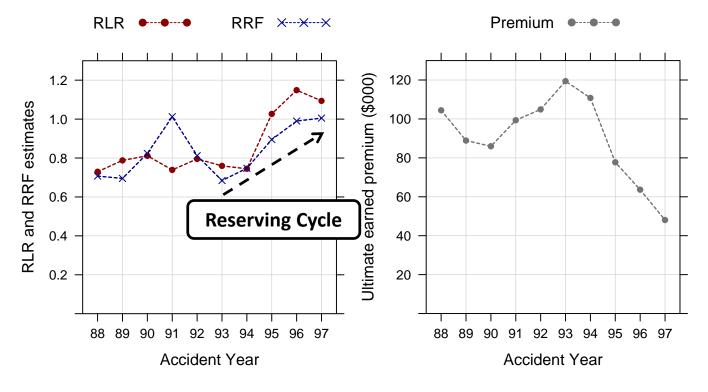






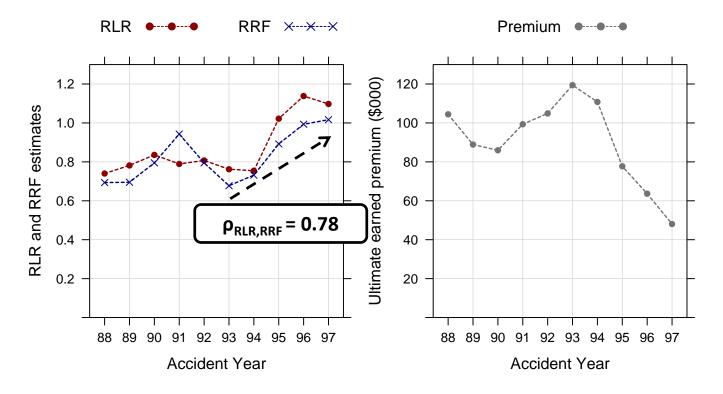


Case study Model 2 Parameter Estimates



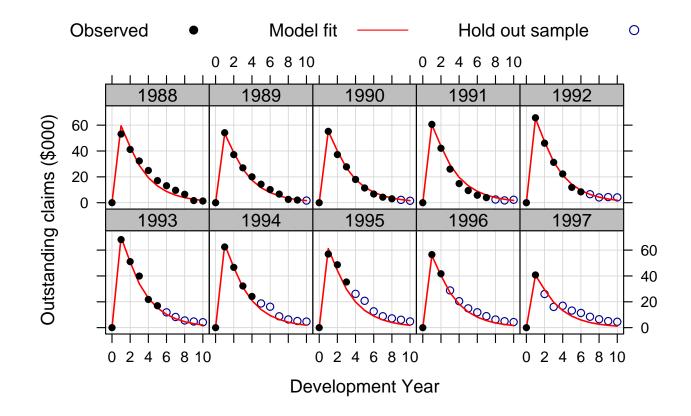
Update model to estimate correlation

Case study Model 3 Parameter Estimates

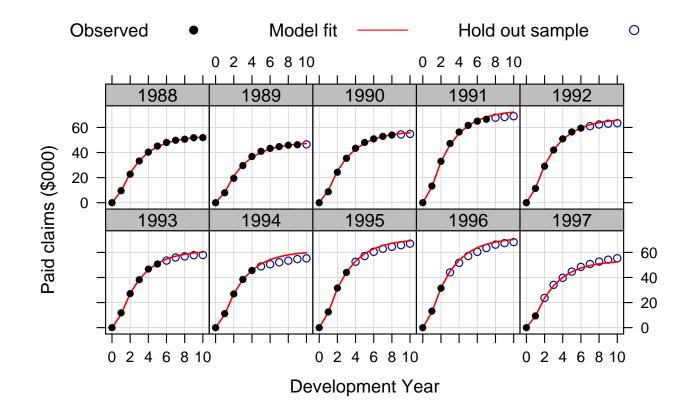


Compare model extrapolations to hold out samples...

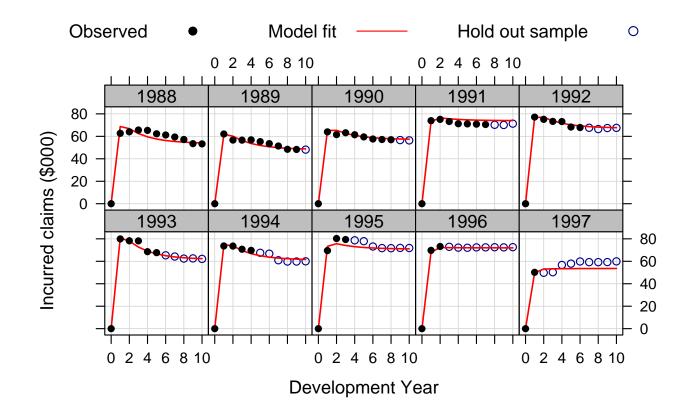
Case study Model 3 Extrapolations



Case study Model 3 Extrapolations



Case study Model 3 Extrapolations



Why bother?

Objective:

"Given any value (estimate of future payments) and our current state of knowledge, what is the probability that final payments will be no larger than the given value?"

> - Casualty Actuarial Society (2004) Working Party on Quantifying Variability in Reserve Estimates

Bayes' theorem:

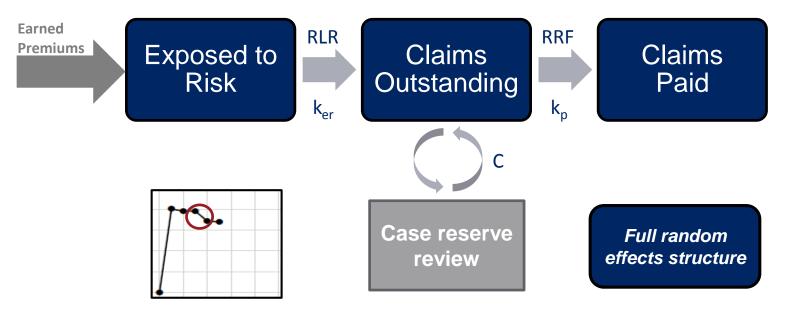
 $p(\theta \mid y) \propto L(\theta; y) p(\theta)$

Posterior ∝ Likelihood x Prior

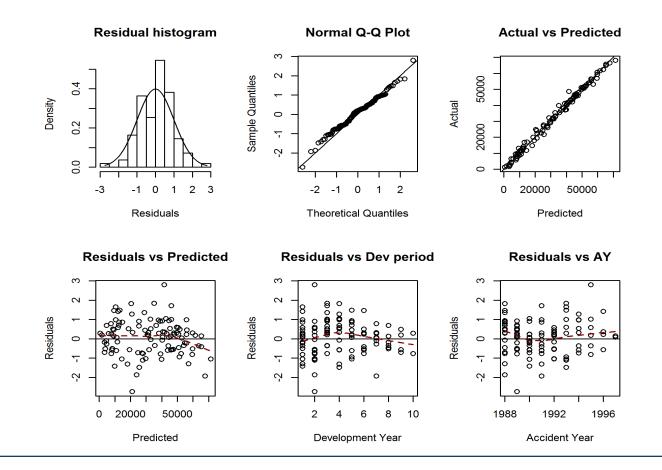
 $p(ULR | incurred) \propto L(ULR; incurred) p(ULR)$

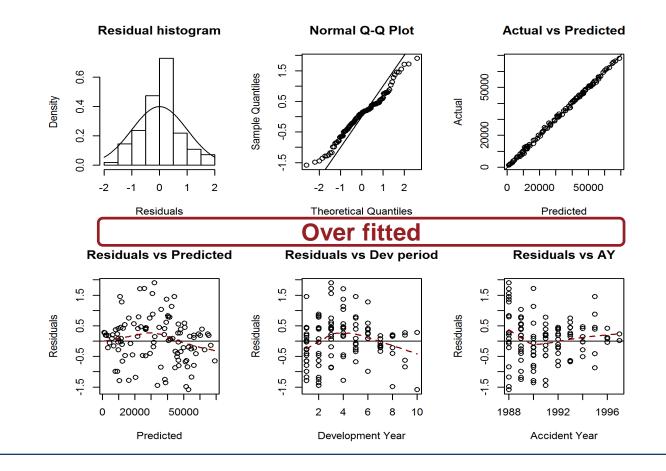
With added complexity...

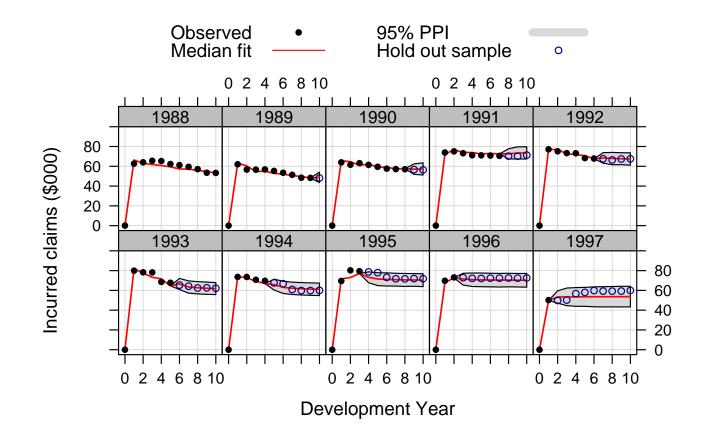
Explicitly model calendar shock (& autocorrelation):

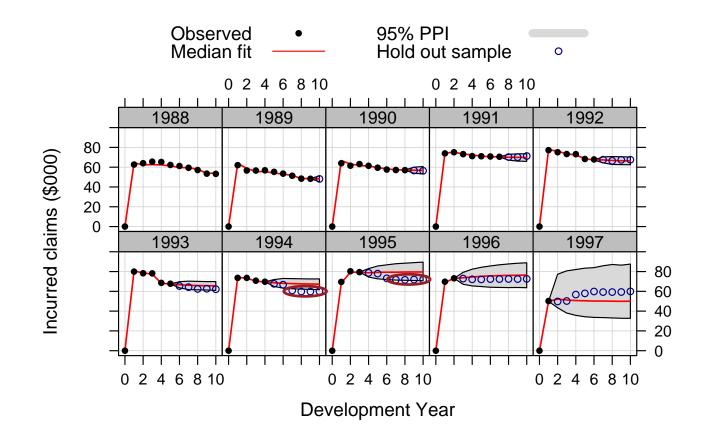


Estimate case reserve % increases/decreases





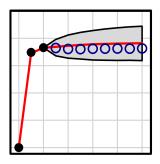




Conclusions

Hierarchical compartmental reserving

$p(ULR | incurred) \propto L(ULR; incurred) p(ULR)$



Conclusions

Hierarchical compartmental reserving

Strengths of compartmental reserving:

- Independent stochastic method
- Meaningful parameters
- Parsimonious yet extensible

Weaknesses of compartmental reserving:

- Model shape constraints with volatile data
- Sensitivity to starting values / priors
- Learning curve

Try it out for yourself!

supports negative incurred development including measure of reserve robustness can capture calendar effects

Liberty_ Specialty Markets

try SDEs? strength!

paper and materials...

The paper...

Full case study analysis

- Mathematics and assumptions
- MCL and BCL comparisons
- Data, R and OpenBUGS code

Reserve derivations

- ExBNR vs. RBNS
- Non-steady-state exposure
- Patterns of development
- Parameter starting value algorithm
- SDE exploration

Hierarchical Compartmental Models for Loss Reserving

Jake Morris 19 September 2016

