

#### **CLRS Meeting — Chicago**

September 19-20, 2016

Beyond the Chain-Ladder Framework: Generalized Linear Models for Reserving

By: Manolis Bardis

 $\textcircled{\sc c}$  2016 Willis Towers Watson. All rights reserved.

WillisTowers Watson IIIIIII

#### **Overview**

#### Today's presentation will cover the following:

#### **Aggregate Generalized Linear Models**

- I. General Introduction to Method
- II. GLM Basics
- III. GLM Reserving Example
- IV. Conclusion

#### Individual Claim Reserving

- V. Predictive Modeling Overview
- VI. Traditional Reserving Development Methods
- VII. Reserving with Predictive Modeling
- VIII. Aggregate Reserving Methods
- IX. Individual Claim Reserving Methods

### **Aggregate Generalized Linear Models**

I. General Introduction to Method

#### **Actuarial Reserving in a Nutshell**

 Traditional actuarial reserving methods has been conceptually described as a process of squaring up a triangle:



 The GLM Reserve method is no different. Estimate future results based on information from historical.

#### Why GLM ?

 Traditional Chain Ladder method focuses on the development Lag dimension to derive estimates:



 Each future estimate can be derived based on the selected development factors.

#### Why GLM ?

- However, one major limitation with chain ladder is that it does not adjust for accident or calendar year effects
- Examples include:
  - New claims handling process
  - Changing settlement pattern
  - Legislative/Regulatory changes
- GLM Reserving allows us to introduce two additional dimensions
  - Dimension 1: Accident Year
  - Dimension 2: Development Lag
  - Dimension 3: Calendar Year

#### **Case Study Example**

- Let's quickly go through an illustrative example to demonstrate the impact of calendar year effects using a chain ladder method vs GLM reserving method
- Case Study introduces a calendar year trend in the most recent periods



#### **Case Study Example**

Comparing results for GLM Reserving vs. Chain Ladder



#### **Case Study Example**

 Impact can be *significant*. In this example, the difference from unpaid is only 4% for GLM Method versus -22% difference for Chain Ladder



Improved estimates

## Aggregate Generalized Linear Models

#### **II. GLM Basics**

#### **Section Introduction**

- Overview of Predictive Models
- Explaining the GLM Framework
- Basic GLM Example

Before going into the GLM Reserve Method, we will cover some basic GLM concepts that will help us down the road...

#### **Predictive Models**

 Multivariate statistical model to predict a response variable using a series of explanatory variables



 We will use the explanatory variables to try and explain the behavior of incremental losses

#### Practical User Considerations Selecting a Link Function & Error Structure

#### **Options for Error Structure**

#### **Normal or Gamma**

- Normal distribution assumes that all observations have the same fixed variance
- Gamma distribution assumes that the variance increases with the square power of the expected value of each observation

#### **Poisson Scale Free**

- A.k.a. "Over-dispersed Poisson" Distribution
- Mean =  $\lambda$
- Variance = λ x Scale factor
- Allows variance to be lesser/greater than the mean

#### Poisson – Scale = 1

- Strict definition of Poisson distribution is applied, mean must equal the variance
- It assumes that the variance increases with the expected value of each observation



# GLM Building Blocks y = h(Linear Combination of Parameters) + Error

**Linear Combination of Parameters** 

Accident Year Parameters  $\beta_{14}, \beta_{13}, \beta_{12}, ..., \beta_{05}$ 

Development Lag Parameters  $\beta_{12m}, \beta_{24m}, \beta_{36m}, ..., \beta_{120m}$ 

Calendar Year Parameters  $\beta_{CY14}, \beta_{CY13}, \beta_{CY12}, \dots, \beta_{CY05}$ 

### **Aggregate Generalized Linear Models**

#### III. GLM Reserving Example

#### **Section Introduction**

#### In this section, we will cover the following:

- Start with 2-dimensional approach
- Show all years volume weighted average vs GLM
- Show how any cell in the historical triangle is linear combination of beta parameters

- In order to "demystify" the GLM reserve model, we will walk through a basic example and show how future estimates are calculated:
  - Start with building a 2 dimensional GLM reserve model:
    - Dimension 1 = Accident Year
    - Dimension 2 = Development Lag
  - Show that results are comparable to Chain Ladder Method using all years volume weighted average

Incremental Paid Loss Triangle

| Accident Year | 12m | 24m | 36m | 48m | 60m | 72m | 84m | 96m | 108m | 120m |
|---------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|
| 2005          | 92  | 265 | 47  | 24  | 14  | 7   | 5   | 5   | 6    | 3    |
| 2006          | 95  | 273 | 49  | 25  | 12  | 8   | 6   | 6   | 7    |      |
| 2007          | 98  | 281 | 50  | 22  | 14  | 9   | 7   | 7   |      |      |
| 2008          | 100 | 290 | 46  | 24  | 15  | 10  | 8   |     |      |      |
| 2009          | 103 | 288 | 51  | 27  | 17  | 11  |     |     |      |      |
| 2010          | 72  | 321 | 57  | 30  | 19  |     |     |     |      |      |
| 2011          | 80  | 357 | 64  | 33  |     |     |     |     |      |      |
| 2012          | 89  | 397 | 71  |     |     |     |     |     |      |      |
| 2013          | 98  | 441 |     |     |     |     |     |     |      |      |
| 2014          | 110 |     |     |     |     |     |     |     |      |      |

 GLM reserve method is based on predicting the response variable, incremental losses.



Incremental Paid Loss Triangle

| Accident Year | 12m | 24m | 36m | 48m | 60m | 72m | 84m | 96m | 108m | 120m |
|---------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|
| 2005          | 92  | 265 | 47  | 24  | 14  | 7   | 5   | 5   | 6    | 3    |
| 2006          | 95  | 273 | 49  | 25  | 12  | 8   | 6   | 6   | 7    |      |
| 2007          | 98  | 281 | 50  | 22  | 14  | 9   | 7   | 7   |      |      |
| 2008          | 100 | 290 | 46  | 24  | 15  | 10  | 8   |     |      |      |
| 2009          | 103 | 288 | 51  | 27  | 17  | 11  |     |     |      |      |
| 2010          | 72  | 321 | 57  | 30  | 19  |     |     |     |      |      |
| 2011          | 80  | 357 | 64  | 33  |     |     |     |     |      |      |
| 2012          | 89  | 397 | 71  |     |     |     |     |     |      |      |
| 2013          | 98  | 441 |     |     |     |     |     |     |      |      |
| 2014          | 110 |     |     |     |     |     |     |     |      |      |

- Any cell in the historical triangle is linear combination of "beta" parameters
- Incremental losses are related to explanatory variables multiplicatively
- Resulting model gives exactly the same forecast as the chain ladder model

|                    |               | β <sub>12</sub> | β <sub>24</sub> | β <sub>36</sub> | β <sub>48</sub> | β <sub>60</sub> | β <sub>72</sub> | β <sub>84</sub> | β <sub>96</sub> | β <sub>108</sub> | β <sub>120</sub> |
|--------------------|---------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|
|                    | Accident Year | 12m             | 24m             | 36m             | 48m             | 60m             | 72m             | 84m             | 96m             | 108m             | 120m             |
| $\beta_{05}$       | 2005          | 92              | 265             | 47              | 24              | 14              | 7               | 5               | 5               | 6                | 3                |
| β <sub>06</sub>    | 2006          | 95              | 273             | 49              | 25              | 12              | 8               | 6               | 6               | 7                |                  |
|                    | 2007          | 98              | 281             | 50              | 22              | 14              | 9               | 7               | 7               |                  |                  |
|                    | 2008          | 100             | 290             | 46              | 24              | 15              | 10              | 8               |                 |                  |                  |
| β <sub>09</sub>    | 2009          | 103             | 288             | 51              | 27              | 17              | 11              |                 |                 |                  |                  |
| _β <sub>10</sub> _ | 2010          | 72              | 321             | 57              | 30              | 19              |                 |                 |                 |                  |                  |
| β <sub>11</sub>    | 2011          | 80              | 357             | 64              | 33              |                 |                 |                 |                 |                  |                  |
|                    | 2012          | 89              | 397             | 71              |                 |                 |                 |                 |                 |                  |                  |
| β <sub>13</sub>    | 2013          | 98              | 441             |                 |                 |                 |                 |                 |                 |                  |                  |
| B <sub>14</sub>    | 2014          | 110             |                 |                 |                 |                 |                 |                 |                 |                  |                  |

#### Begin with a Base Parameter, $\beta_0$

We will choose Accident Year 2005, Development Lag 12 months as the base parameter

#### Why use a Base Parameter?

Needed to allow for model convergence

Setting a base parameter reduces the number of variables by 1

|                    | Accident Year | 12m | 24m | 36m | 48m | 60m | 72m | 84m | 96m | 108m | 120m |
|--------------------|---------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|
|                    | 2005          | 92  | 265 | 47  | 24  | 14  | 7   | 5   | 5   | 6    | 3    |
| β <sub>06</sub>    | 2006          | 95  | 273 | 49  | 25  | 12  | 8   | 6   | 6   | 7    |      |
|                    | 2007          | 98  | 281 | 50  | 22  | 14  | 9   | 7   | 7   |      |      |
|                    | 2008          | 100 | 290 | 46  | 24  | 15  | 10  | 8   |     |      |      |
| β <sub>09</sub>    | 2009          | 103 | 288 | 51  | 27  | 17  | 11  |     |     |      |      |
| _β <sub>10</sub> _ | 2010          | 72  | 321 | 57  | 30  | 19  |     |     |     |      |      |
| $\beta_{11}$       | 2011          | 80  | 357 | 64  | 33  |     |     |     |     |      |      |
|                    | 2012          | 89  | 397 | 71  |     |     |     |     |     |      |      |
| β <sub>13</sub>    | 2013          | 98  | 441 |     |     |     |     |     |     |      |      |
| B <sub>14</sub>    | 2014          | 110 |     |     |     |     |     |     |     |      |      |

Explanatory Variables Dimension 1 = Accident Year

 $\beta_{11}$  = Multiplicative parameter that describes accident year 2011  $Y_{11,DL} = EXP(\beta_0 + \beta_{11} + \beta_{DL}) + \epsilon$ 

|               |     | β <sub>24</sub> | β <sub>36</sub> | β <sub>48</sub> | β <sub>60</sub> | β <sub>72</sub> | β <sub>84</sub> | β <sub>96</sub> | β <sub>108</sub> | β <sub>120</sub> |
|---------------|-----|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|------------------|------------------|
| Accident Year | 12m | 24m             | 36m             | 48m             | 60m             | 72m             | 84m             | 96m             | 108m             | 120m             |
| 2005          | 92  | 265             | 47              | 24              | 14              | 7               | 5               | 5               | 6                | 3                |
| 2006          | 95  | 273             | 49              | 25              | 12              | 8               | 6               | 6               | 7                |                  |
| 2007          | 98  | 281             | 50              | 22              | 14              | 9               | 7               | 7               |                  |                  |
| 2008          | 100 | 290             | 46              | 24              | 15              | 10              | 8               |                 |                  |                  |
| 2009          | 103 | 288             | 51              | 27              | 17              | 11              |                 |                 |                  |                  |
| 2010          | 72  | 321             | 57              | 30              | 19              |                 |                 |                 |                  |                  |
| 2011          | 80  | 357             | 64              | 33              |                 |                 |                 |                 |                  |                  |
| 2012          | 89  | 397             | 71              |                 |                 |                 |                 |                 |                  |                  |
| 2013          | 98  | 441             |                 |                 |                 |                 |                 |                 |                  |                  |
| 2014          | 110 |                 |                 |                 |                 |                 |                 |                 |                  |                  |

Explanatory Variables Dimension 2 = Development Lag

 $\beta_{48m}$  = Multiplicative parameter that describes development lag 48 months  $Y_{AY,48m} = EXP(\beta_0 + \beta_{AY} + \beta_{48m}) + \epsilon$ 

|                 | Accident Year | 12m               | 24m | 36m | 48m | 60m | 72m | 84m | 96m | 108m | 120m |
|-----------------|---------------|-------------------|-----|-----|-----|-----|-----|-----|-----|------|------|
|                 | 2005          | β <sub>0 32</sub> | 265 | 47  | 24  | 14  | 7   | 5   | 5   | 6    | 3    |
| β <sub>06</sub> | 2006          | 95                | 273 | 49  | 25  | 12  | 8   | 6   | 6   | 7    |      |
|                 | 2007          | 98                | 281 | 50  | 22  | 14  | 9   | 7   | 7   |      |      |
|                 | 2008          | 100               | 290 | 46  | 24  | 15  | 10  | 8   |     |      |      |
| β <sub>09</sub> | 2009          | 103               | 288 | 51  | 27  | 17  | 11  |     |     |      |      |
| β <sub>10</sub> | 2010          | 72                | 321 | 57  | 30  | 19  |     |     |     |      |      |
| $\beta_{11}$    | 2011          | 80                | 357 | 64  | 33  |     |     |     |     |      |      |
|                 | 2012          | 89                | 397 | 71  | ??_ |     |     |     |     |      |      |
| β <sub>13</sub> | 2013          | 98                | 441 |     |     |     |     |     |     |      |      |
| B <sub>14</sub> | 2014          | 110               |     |     |     |     |     |     |     |      |      |

Here's another example.

Example 1.  $Y_{12,36m} = EXP(\beta_0 + \beta_{12} + \beta_{36m}) + \epsilon$ Example 2.  $Y_{12,48m} = EXP(\beta_0 + \beta_{12} + \beta_{48m}) + \epsilon$ 

| Accident Year<br>Parameter | Value |
|----------------------------|-------|
| β <sub>2005</sub>          | n/a   |
| β <sub>2006</sub>          | 0.029 |
| β <sub>2007</sub>          | 0.056 |
| β <sub>2008</sub>          | 0.082 |
| β <sub>2009</sub>          | 0.105 |
| β <sub>2010</sub>          | 0.124 |
| β <sub>2011</sub>          | 0.225 |
| β <sub>2012</sub>          | 0.325 |
| β <sub>2013</sub>          | 0.424 |
| β <sub>2014</sub>          | 0.338 |

| Development<br>Lag Parameter | Value   |
|------------------------------|---------|
| β <sub>12m</sub>             | n/a     |
| β <sub>24m</sub>             | 1.260   |
| β <sub>36m</sub>             | (0.485) |
| β <sub>48m</sub>             | (1.177) |
| β <sub>60m</sub>             | (1.704) |
| β <sub>72m</sub>             | (2.244) |
| β <sub>84m</sub>             | (2.533) |
| β <sub>96m</sub>             | (2.612) |
| β <sub>108m</sub>            | (2.470) |
| β <sub>120m</sub>            | (3.143) |

| Base<br>Parameter | Value |
|-------------------|-------|
| β <sub>0</sub>    | 4.358 |
|                   |       |

#### Example 1:

 $Y_{12,36m} = EXP(\beta_0 + \beta_{12} + \beta_{36m})$ = EXP (4.358 + 0.325 - 0.485) = 67 (vs actual 71)

### Example 2: $Y_{12,48m} = EXP(\beta_0 + \beta_{12} + \beta_{48m})$ = EXP (4.358 + 0.325 - 1.177)

= 33

| Accident Year | 2-D GLM<br>Unpaid | Chain<br>Ladder<br>Unpaid | Difference |
|---------------|-------------------|---------------------------|------------|
| Prior         | 470               | 470                       | 0          |
| 2008          | 484               | 484                       | 0          |
| 2009          | 497               | 497                       | 0          |
| 2010          | 510               | 510                       | 0          |
| 2011          | 522               | 522                       | 0          |
| 2012          | 532               | 532                       | 0          |
| 2013          | 589               | 589                       | 0          |
| 2014          | 651               | 651                       | 0          |
| Total         | 5,632             | 5,632                     | 0          |

 When excluding the calendar year dimension, as we did in this example, the results are the same as chain ladder method using all year volume weighted average

#### **Incorporating the Calendar year effect**

$$log(\mu_{ij}) = \eta_{ij}$$

$$\eta_{ij} = c + \sum_{i} a_i + \sum_{j} b_j + r\tau$$

$$Linear predictor$$

$$\tau = i + j - 2$$

$$Calendar time$$

Problem:

The model is now over-parameterised – there is a relationship between origin, development and calendar time, one dimension is a linear combination of the other two. A unique solution is not identifiable.

#### **The Optimal Model**

- Use stepwise procedures to reduce the number of parameters and find the optimal model
- Several optimisation schemes could be proposed
  - Optimise backward iteratively tests each parameter and removes the ones that are not statistically significant
  - Optimise forward Iteratively tests each parameter and adds in the ones that are statistically significant
  - Optimise backward/forward Optimise backward first and Optimise forward second

## **Aggregate Generalized Linear Models**

IV. Conclusion

#### Conclusions

- Model Limitations
  - Still working with limited set of data points; i.e. a 10 x 10 triangle only has 55 data points
    - Run the risk of "Overfitting" if too many parameters included Model explains historical experience but poor future predictive value
- Origin, development and calendar period effects are interlinked, so it can be very difficult to interpret the parameters
- When calendar period effects are included, it is always necessary to extrapolate in the calendar period direction
  - The results will be sensitive to the assumptions regarding extrapolation
  - A model that fits the observed data well may not be good for forecasting!

### **Individual Claim Reserving**

#### Agenda

- Predictive Modeling Overview
  - Applications
    - Reserving
    - Claims Triage
- Traditional Reserving Development Methods
  - Key Points
  - Challenges
- Reserving with Predictive Modeling
  - Advantages
- Aggregate Reserving Methods
  - Aggregate Incremental Paid Method
  - Calendar Year Method
- Individual Claim Reserving Methods
  - Incremental Paid Method
  - Claim Closure Rate Method
  - Open Claim Method
  - Frequency/Severity Method

### Individual Claim Reserving

V. Predictive Modeling Overview

### **Predictive Models**

Application

Predictive modeling can help integrate all aspects of insurance operations and help identify the value of all customers



### **Individual Claim Reserving**

#### VI. Traditional Reserving Development Methods

#### **Traditional Development Methods**

Traditional methods **aggregate** all claims in each cell within the historical triangle on a **cumulative** basis

| Claim      | 12  | 24    | 36    | 48    |
|------------|-----|-------|-------|-------|
| 000001     | 0   | 1,000 | 1,000 | 5,000 |
| 000021     | 50  | 50    | 50    | 50    |
| 000060     | 0   | 0     | 0     | 250   |
| 000124     | 300 | 500   | 500   | 750   |
| 000328     | 125 | 400   | 400   | 400   |
| 000443     | 0   | 0     | 100   | 2,000 |
| 2002 Total | 475 | 1,950 | 2,050 | 8,450 |

#### Accident Year 2002

#### **Individual Claim Reserving**

VII. Reserving with Predictive Modeling

#### **Predictive Modeling Reserving Methods**

- Multiple methodologies exist under a predictive modeling framework
  - Aggregate Data
  - Individual Claim Data
- Advantage: The incorporation of additional variables beyond the traditional two-dimensional model using "year" and "lag" enable us to identify patterns and trends that otherwise would be masked in the data:
  - Can address the inconsistency weakness in traditional methods
  - Provides insights into the drivers of claim cost
    - How much does age affect the cost of WC claims?
    - What is the impact of opioid usage on the cost of claims?
    - How much did reform measures impact claim costs?
  - Enables us to establish consistent and more accurate case reserves

#### **Traditional Loss Development Methods**

Repeat the process for each year until entire triangle is populated

![](_page_37_Figure_2.jpeg)

#### **Traditional Loss Development Methods**

Goal is to square up the triangle using link ratios

![](_page_38_Figure_2.jpeg)

### **Traditional Development Methods**

Key Points

- Aggregated Data
  - Forfeit almost all information unique to each claim
  - Paid, case, reported, open, closed
- Evaluates across only two dimensions: Year and Lag
- Estimates IBNER and pure IBNR together
- Accuracy hinges on consistency
  - Claim closure rate
  - Case reserve adequacy
  - Inflation
  - Reinsurance
- Traditional development methods work quite well when the historical data is consistent, reasonably credible and contains sufficient history

### **Traditional Development Methods** Challenges

- Challenge is dealing with inconsistency
  - Can consistency/inconsistency be measured?
    - Few cells within triangle make it challenging to measure
    - Small changes are oftentimes masked by random volatility but can impact indications significantly
    - Especially difficult with low frequency/high severity business
  - When measurable, can historical data be adjusted to be consistent?
    - Traditional adjustment approaches tend to produce patterns that are difficult to interpret

![](_page_40_Figure_9.jpeg)

#### **Individual Claim Reserving**

VIII. Aggregate Reserving Methods

A traditional aggregate loss development method can be replicated in a GLM framework

Difference is that GLM triangle is set to an incremental basis

| Claim      | 12  | 24    | 36    | 48    |
|------------|-----|-------|-------|-------|
| 000001     | 0   | 1,000 | 1,000 | 5,000 |
| 000021     | 50  | 50    | 50    | 50    |
| 000060     | 0   | 0     | 0     | 250   |
| 000124     | 300 | 500   | 500   | 750   |
| 000328     | 125 | 400   | 400   | 400   |
| 000443     | 0   | 0     | 100   | 2,000 |
| 2002 Total | 475 | 1,950 | 2,050 | 8,450 |
|            |     |       |       |       |
| 2002 Incr  | 475 | 1,475 | 100   | 6,400 |

#### Accident Year 2002

Goal in GLM is the same: square up the triangle using parameters from the model

![](_page_43_Figure_2.jpeg)

Goal in GLM is the same: square up the triangle using parameters from the model

![](_page_44_Figure_2.jpeg)

#### **Aggregate Incremental Paid Method — GLM Structure**

![](_page_45_Figure_1.jpeg)

Key Points

- Aggregated Data
  - Forfeit almost all information unique to each claim
  - Paid, case, reported, open, closed
- Evaluates across only two dimensions: Year and Lag
- Estimates IBNER and pure IBNR together
- Accuracy hinges on consistency
  - Claim closure rate
  - Case reserve adequacy
  - Inflation
  - Reinsurance
- Replicates a traditional paid loss development method using volume weighted average link ratios

#### **Calendar Year Method**

![](_page_47_Picture_1.jpeg)

- As the name implies, this method incorporates a third dimension into the modeling process, calendar year
  - Can be applied to aggregate or individual claim data
- Advantage
  - To be able to incorporate changes in inflation/claim cost into the reserve estimation process
- Challenge
  - Squaring up the triangle requires extrapolation of calendar year into the future

![](_page_47_Picture_8.jpeg)

#### Calendar Year Method — GLM Structure

![](_page_48_Figure_1.jpeg)

#### **Individual Claim Reserving**

IX. Individual Claim Reserving Methods

#### **Individual Claim Reserving Methods**

Now that the data is configured by claim instead of in aggregate, we can introduce additional explanatory variables that are unique to each claim:

![](_page_50_Figure_2.jpeg)

### Individual Claim Reserving Methods WC Data Utilized

![](_page_51_Figure_1.jpeg)

#### **Incremental Paid Method**

While previous examples used aggregated data, GLM's also work with individual claim data

| Claim      | 12  | 24    | 36  | 48    |
|------------|-----|-------|-----|-------|
| 000001     | 0   | 1,000 | 0   | 4,000 |
| 000021     | 50  | 0     | 0   | 0     |
| 000060     | 0   | 0     | 0   | 250   |
| 000124     | 300 | 200   | 0   | 250   |
| 000328     | 125 | 275   | 0   | 0     |
| 000443     | 0   | 0     | 100 | 1,900 |
| 2002 Total | 475 | 1,475 | 100 | 6,400 |

#### **Incremental 2002 Claims**

#### **Incremental Paid Method**

Goal: square up the triangle with respect to each individual claim

![](_page_53_Figure_2.jpeg)

#### Incremental Paid Method — GLM Structure

![](_page_54_Figure_1.jpeg)

#### Incremental Paid Method Key Points

- Aggregate incremental paid method blends the estimation of IBNER and pure IBNR into one single estimate
- Individual Incremental Paid method models individual claim data and as a result focuses solely on forecasting IBNER
  - Pure IBNR must be estimated separately
    - Model to predict the frequency of IBNR claims
    - Model to predict the severity of IBNR claims
- Individual claim characteristics used as explanatory variables must be static or known throughout the forecasted periods
  - Med-only/Lost-time
  - Open/Closed

#### **Claim Closure Rate Method**

![](_page_56_Picture_1.jpeg)

- Models closed claim data and expands on the Calendar Year method by adding a fourth dimension:
  - Year
  - Lag
  - Calendar Year
  - Claim Closure Rate
- Discussed in a paper by Greg Taylor and Grianne McGuire
- Advantages
  - Ideal for high frequency / low severity business where minor changes in claim closure rate affect aggregate methods
  - Estimates total IBNR
- Challenge
  - Method for forecasting future closed claims restricts ability to incorporate unique claim characteristics

#### **Open Claim Method**

![](_page_57_Figure_1.jpeg)

- Open Claim method builds a series of models that takes advantage of all information known about the claims, including:
  - Calendar year builds upon previous method
  - Latest paid/incurred to date
  - Individual claim characteristics
- Models reserves for each open claim
- Advantage
  - Claim information is not limited to being static or known
- Challenge
  - Multiple models need to be built
  - Credibility concerns can occur in the tail

#### **Open Claim Method**

- Advantages
  - Useful for lines of business with robust claim information

#### Personal Lines

- Policy
- Claim

– Amount

- Status: Open/Closed

- Age
- Gender \_
- Marital Status \_
- Territory —
- Accident history —
- Credit \_
- Vehicle \_
- Miles driven \_
- Etc... \_

## **Commercial Lines**

- Policy
  - Class code
  - Ex-mod \_

Age - Gender

Claim

\_

- AWW \_
- Injury type \_
- Nature of injury —
- Attorney involved? \_
- Geography —
- Medical treatments
- Etc... \_

#### **Frequency / Severity Method**

- Aggregate ultimate severity by year estimated through traditional approaches
- Robust severity model is built using all available claim information and latest known information
  - Development is normalized across data
- Ultimate Severity x Severity Model applied to known and IBNR claims individually to produce ultimate
- Advantages
  - Ideal for low frequency / high severity business where aggregate loss development methods are volatile

![](_page_59_Picture_7.jpeg)

#### **Questions and Discussion**

![](_page_60_Picture_1.jpeg)