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Antitrust Notice

 The Casualty Actuarial Society is committed to adhering strictly to the letter and spirit of the 
antitrust laws.  Seminars conducted under the auspices of the CAS are designed solely to 
provide a forum for the expression of various points of view on topics described in the 
programs or agendas for such meetings.  

 Under no circumstances shall CAS seminars be used as a means for competing companies 
or firms to reach any understanding – expressed or implied – that restricts competition or in 
any way impairs the ability of members to exercise independent business judgment regarding 
matters affecting competition.  

 It is the responsibility of all seminar participants to be aware of antitrust regulations, to prevent 
any written or verbal discussions that appear to violate these laws, and to adhere in every 
respect to the CAS antitrust compliance policy.
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Overview

Participants should read this BEFORE attending AR-6.

The session assumes some prior knowledge about a number of stochastic 
reserving concepts, which have been grouped under the following headings for 
this set of review slides: 

Part I – Triangle GLMs

Part II – Trend Models

Part III – Reserve Projections

Part IV – Stochastic Reserve Ranges
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Part I – Triangle GLMs



Part I – Triangle GLMs

Learning Objectives.

Readers should (re-)familiarize themselves with the following concepts: 

2d model for triangles (levels for exposure and development periods)

Aliasing with 2d (need to drop one level for unique parameterization) 

Parameters vs. modeled values (equivalent parameterizations)

Linearizing multiplicative model (taking the logarithm)

2d+1 model for triangles (adding levels for payment periods)

Aliasing with 2d+1 (need to drop three levels for unique parameterization)

Reference levels (flexibility for setting up models for incomplete triangles)

Design matrix (linear algebra representation of model)
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Part I – Triangle GLMs

2d Multiplicative Model.

𝝁𝒊𝒋 = 𝒂𝒊 ⋅ 𝒃𝒋
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𝒂𝟏 ⋅ 𝒃𝟏 𝒂𝟏 ⋅ 𝒃𝟐 𝒂𝟏 ⋅ 𝒃𝟑 𝒂𝟏 ⋅ 𝒃𝟒 𝒂𝟏 ⋅ 𝒃𝟓

𝒂𝟐 ⋅ 𝒃𝟏 𝒂𝟐 ⋅ 𝒃𝟐 𝒂𝟐 ⋅ 𝒃𝟑 𝒂𝟐 ⋅ 𝒃𝟒

𝒂𝟑 ⋅ 𝒃𝟏 𝒂𝟑 ⋅ 𝒃𝟐 𝒂𝟑 ⋅ 𝒃𝟑

𝒂𝟒 ⋅ 𝒃𝟏 𝒂𝟒 ⋅ 𝒃𝟐

𝒂𝟓 ⋅ 𝒃𝟏

Generally we are interested in the class of models that have one parameter 
for each row and column. The 𝝁𝒊𝒋 represent the expected amounts for cells 

of the development triangle.



Part I – Triangle GLMs

Aliasing with 2d.

𝝁𝒊𝒋 = 𝒂𝒊 ⋅ 𝒃𝒋,

where 𝒂𝟐 = 𝟏.
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𝒂𝟏 ⋅ 𝒃𝟏 𝒂𝟏 ⋅ 𝒃𝟐 𝒂𝟏 ⋅ 𝒃𝟑 𝒂𝟏 ⋅ 𝒃𝟒 𝒂𝟏 ⋅ 𝒃𝟓

𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒

𝒂𝟑 ⋅ 𝒃𝟏 𝒂𝟑 ⋅ 𝒃𝟐 𝒂𝟑 ⋅ 𝒃𝟑

𝒂𝟒 ⋅ 𝒃𝟏 𝒂𝟒 ⋅ 𝒃𝟐

𝒂𝟓 ⋅ 𝒃𝟏

As it turns out we do not lose any generality by requiring that one of the 
parameters is equal to 1. Hence, for an 𝒏 × 𝒏 triangle, the degree of 
freedom for the 2d model is 𝟐𝒏 − 𝟏.



Part I – Triangle GLMs

Parameters vs. Modeled Values
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𝒂𝟏 ⋅ 𝒃𝟏 𝒂𝟏 ⋅ 𝒃𝟐 𝒂𝟏 ⋅ 𝒃𝟑 𝒂𝟏 ⋅ 𝒃𝟒 𝒂𝟏 ⋅ 𝒃𝟓

𝒃𝟏 𝒃𝟐 𝒃𝟑 𝒃𝟒

𝒂𝟑 ⋅ 𝒃𝟏 𝒂𝟑 ⋅ 𝒃𝟐 𝒂𝟑 ⋅ 𝒃𝟑

𝒂𝟒 ⋅ 𝒃𝟏 𝒂𝟒 ⋅ 𝒃𝟐

𝒂𝟓 ⋅ 𝒃𝟏

Different sets of parameters can 
represent the same set of modelled 
values 𝝁𝒊𝒋. Note that all these sets of 

parameters have the same degree of 
freedom.

𝒂𝟏 𝒂𝟏 ⋅ 𝒃𝟐 𝒂𝟏 ⋅ 𝒃𝟑 𝒂𝟏 ⋅ 𝒃𝟒 𝒂𝟏 ⋅ 𝒃𝟓

𝒂𝟐 𝒂𝟐 ⋅ 𝒃𝟐 𝒂𝟐 ⋅ 𝒃𝟑 𝒂𝟐 ⋅ 𝒃𝟒

𝒂𝟑 𝒂𝟑 ⋅ 𝒃𝟐 𝒂𝟑 ⋅ 𝒃𝟑

𝒂𝟒 𝒂𝟒 ⋅ 𝒃𝟐

𝒂𝟓

𝒂𝟏 ⋅ 𝒃𝟏 ⋅ 𝒄 𝒂𝟏 ⋅ 𝒄 𝒂𝟏 ⋅ 𝒃𝟑 ⋅ 𝒄 𝒂𝟏 ⋅ 𝒃𝟒 ⋅ 𝒄 𝒂𝟏 ⋅ 𝒃𝟓 ⋅ 𝒄

𝒃𝟏 ⋅ 𝒄 𝒄 𝒃𝟑 ⋅ 𝒄 𝒃𝟒 ⋅ 𝒄

𝒂𝟑 ⋅ 𝒃𝟏 ⋅ 𝒄 𝒂𝟑 ⋅ 𝒄 𝒂𝟑 ⋅ 𝒃𝟑 ⋅ 𝒄

𝒂𝟒 ⋅ 𝒃𝟏 ⋅ 𝒄 𝒂𝟒 ⋅ 𝒄

𝒂𝟓 ⋅ 𝒃𝟏 ⋅ 𝒄



Part I – Triangle GLMs

Linearizing Multiplicative Model.
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𝜶𝟏 + 𝜷𝟏 𝜶𝟏 + 𝜷𝟐 𝜶𝟏 + 𝜷𝟑 𝜶𝟏 + 𝜷𝟒 𝜶𝟏 + 𝜷𝟓

𝜶𝟐 + 𝜷𝟏 𝜶𝟐 + 𝜷𝟐 𝜶𝟐 + 𝜷𝟑 𝜶𝟐 + 𝜷𝟒

𝜶𝟑 + 𝜷𝟏 𝜶𝟑 + 𝜷𝟐 𝜶𝟑 + 𝜷𝟑

𝜶𝟒 + 𝜷𝟏 𝜶𝟒 + 𝜷𝟐

𝜶𝟓 + 𝜷𝟏

𝜼𝒊𝒋 = log 𝝁𝒊𝒋 = 𝜶𝒊 + 𝜷𝒋

Taking the logarithm converts all multiplications to additions. Using this 
log-link function is the reason why many stochastic reserving models only 
work for positive incremental amounts.



Part I – Triangle GLMs

Linearizing Multiplicative Model.
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𝜶𝟏 + 𝜷𝟏 𝜶𝟏 𝜶𝟏 + 𝜷𝟑 𝜶𝟏 + 𝜷𝟒 𝜶𝟏 + 𝜷𝟓

𝜶𝟐 + 𝜷𝟏 𝜶𝟐 𝜶𝟐 + 𝜷𝟑 𝜶𝟐 + 𝜷𝟒

𝜶𝟑 + 𝜷𝟏 𝜶𝟑 𝜶𝟑 + 𝜷𝟑

𝜶𝟒 + 𝜷𝟏 𝜶𝟒

𝜶𝟓 + 𝜷𝟏

𝜼𝒊𝒋 = 𝜶𝒊 + 𝜷𝒋,

where 𝜷𝟐 = 𝟎.

Aliasing is still an issue. Since 𝐥𝐧 𝟏 = 𝟎, the multiplicative parameters that 
are set to 𝟏, become 𝟎 and are therefore “dropped” from the model. The 
degree of freedom is still 𝟐𝒏 − 𝟏.



Part I – Triangle GLMs

2d+1 Linear Model.
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𝜸𝟏 𝜷𝟐 𝜷𝟑 + 𝜸𝟑 𝜷𝟒 + 𝜸𝟒 𝜷𝟓 + 𝜸𝟓

𝜶𝟐 𝜶𝟐 + 𝜷𝟐 + 𝜸𝟑 𝜶𝟐 + 𝜷𝟑 + 𝜸𝟒 𝜶𝟐 + 𝜷𝟒 + 𝜸𝟓

𝜶𝟑 +𝜸𝟑 𝜶𝟑 + 𝜷𝟐 + 𝜸𝟒 𝜶𝟑 + 𝜷𝟑 + 𝜸𝟓

𝜶𝟒 + 𝜸𝟒 𝜶𝟒 + 𝜷𝟐 + 𝜸𝟓

𝜶𝟓 + 𝜸𝟓

𝜼𝒊𝒋 = 𝜶𝒊 + 𝜷𝒋 + 𝜸𝒊+𝒋−𝟏,

where 𝜶𝟏 = 𝜷𝟏 = 𝜸𝟐 = 𝟎.

We add parameters for payment periods. Aliasing is more complicated 
since the payment period can be calculated from the exposure and 
development period. The degree of freedom for the 2d+1 model is 𝟑𝒏 − 𝟑.



Part I – Triangle GLMs

Reference Levels.
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𝜷𝟑 𝜷𝟒 + 𝜸𝟒 𝜷𝟓 + 𝜸𝟓

𝜶𝟐 + 𝜷𝟐 𝜶𝟐 + 𝜷𝟑 + 𝜸𝟒 𝜶𝟐 + 𝜷𝟒 + 𝜸𝟓

𝜶𝟑 𝜶𝟑 + 𝜷𝟐 + 𝜸𝟒 𝜶𝟑 + 𝜷𝟑 + 𝜸𝟓

𝜶𝟒 + 𝜸𝟒 𝜶𝟒 + 𝜷𝟐 + 𝜸𝟓

𝜶𝟓 + 𝜸𝟓

𝜼𝒊𝒋 = 𝜶𝒊 + 𝜷𝒋 + 𝜸𝒊+𝒋−𝟏,

where 𝜶𝟏 = 𝜷𝟏 = 𝜸𝟑 = 𝟎.

We can choose which parameters to drop, provided that the reference 
levels do NOT coincide in the same triangle cell. Changing the reference 
level can become necessary if we are dealing with incomplete triangles. In 
this example we cannot drop 𝜸𝟐, since the 2nd diagonal does not exist.



Part I – Triangle GLMs

Design Matrix.

The computational methods for fitting 
GLMs heavily rely on linear algebra. 
The information about the structure of 
the model is encoded in a design 
matrix. The matrix on the right encodes 
all the information about the linear 
predictor on the previous slide. In linear 
algebra notation the equation becomes

𝜼𝒊𝒋 = 𝑿 ⋅ 𝝅,

where 𝑿 is the design matrix, and 𝝅 is 
the vector of parameters.
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𝜶𝟐 𝜶𝟑 𝜶𝟒 𝜶𝟓 𝜷𝟐 𝜷𝟑 𝜷𝟒 𝜷𝟓 𝜸𝟒 𝜸𝟓

(1,3) 0 0 0 0 0 1 0 0 0 0

(1,4) 0 0 0 0 0 0 1 0 1 0

(1,5) 0 0 0 0 0 0 0 1 0 1

(2,2) 1 0 0 0 1 0 0 0 0 0

(2,3) 1 0 0 0 0 1 0 0 1 0

(2,4) 1 0 0 0 0 0 1 0 0 1

(3,1) 0 1 0 0 0 0 0 0 0 0

(3,2) 0 1 0 0 1 0 0 0 1 0

(3,3) 0 1 0 0 0 1 0 0 0 1

(4,1) 0 0 1 0 0 0 0 0 1 0

(4,2) 0 0 1 0 1 0 0 0 0 1

(5,1) 0 0 0 1 0 0 0 0 0 1



Part II – Trend Models



Part II – Trend Models

Learning Objectives.

Readers should (re-)familiarize themselves with the following concepts: 

Trend parameters (first differences: change from level to level)

Recovering level parameters (cumulating from reference levels) 

Parameters vs. modeled values (equivalent parameterizations)

Trend parameters almost unique (constant shift when changing ref level)
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Part II – Trend Models & Reserve Projections

Trend parameters.

Level parameter for “each” period:

𝜼𝒊𝒋 = 𝜶𝒊 + 𝜷𝒋 + 𝜸𝒊+𝒋−𝟏,

where 𝜶𝒓 = 𝜷𝒔 = 𝜸𝒕 = 𝟎.

Note that there are 𝒏 − 𝟏 non-zero 
values for the 𝜶𝒊, the 𝜷𝒋, and the 𝜸𝒌, 
while 𝟏 ≤ 𝒊, 𝒋, 𝒌 ≤ 𝒏. 
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Period-to-period trend parameters:

 𝜶ℓ = 𝜶ℓ+𝟏 − 𝜶ℓ
 𝜷ℓ = 𝜷ℓ+𝟏 − 𝜷ℓ
 𝜸ℓ = 𝜸ℓ+𝟏 − 𝜸ℓ

where 𝟏 ≤ ℓ ≤ 𝒏 − 𝟏.

Note that none of the  𝜶ℓ, the  𝜷ℓ, and 
the  𝜸ℓ are identically zero.



Part II – Trend Models & Reserve Projections

Recovering level parameters.

The formulas for the level parameters in terms of the trend parameters can 
be read off from the following expression for the linear predictor:

𝜼𝒊𝒋 =

− 
𝒊

𝒓−𝟏

 𝜶ℓ

+ 
𝒓

𝒊−𝟏

 𝜶ℓ

+

− 
𝒋

𝒔−𝟏
 𝜷𝓵

+ 
𝒔

𝒋−𝟏
 𝜷𝓵

+

− 
𝒊+𝒋−𝟏

𝒕−𝟏

 𝜸𝓵

+ 
𝒕

𝒊+𝒋−𝟐

 𝜸𝓵

.

The curly left braces serve as a reminder that for each of the stacked 
summations only one will actually contribute terms.
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Part II – Trend Models & Reserve Projections

Trend parameters almost unique.

When changing reference levels from 𝒓, 𝒔, 𝒕 to 𝒓′, 𝒔′, 𝒕′ all parameter values 
are shifted by the same value, 𝜹. The transformations are given by

 𝜶𝓵
′ =  𝜶𝓵 − 𝜹,  𝜷𝓵

′ =  𝜷𝓵 − 𝜹,  𝜸𝓵
′ =  𝜸𝓵 + 𝜹,

and 𝜹 is give by

𝟎 = 𝒓′ + 𝒔′ − 𝒕′ − 𝟏 𝜹 +
− 

𝒓

𝒓′−𝟏

 𝜶𝓵

+ 
𝒓′

𝒓−𝟏

 𝜶𝓵

+
− 

𝒔

𝒔′−𝟏
 𝜷𝓵

+ 
𝒔′

𝒔−𝟏
 𝜷𝓵

+
− 

𝒕

𝒕′−𝟏

 𝜸𝓵

+ 
𝒕′

𝒕−𝟏

 𝜸𝓵

.
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Part III – Reserve 
Projections



Part III – Reserve Projections

Learning Objectives.

Readers should (re-)familiarize themselves with the following concepts:

Reserve projection with 2d model (extend triangle using fitted parameters)

Snag with 2d+1 model (need future payment period parameters)

Extrapolating trend parameters (make sure weights add up to one)
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Part III – Reserve Projections

Reserve projection with 2d model.

21

𝜶𝟏 + 𝜷𝟏 𝜶𝟏 𝜶𝟏 + 𝜷𝟑 𝜶𝟏 + 𝜷𝟒 𝜶𝟏 + 𝜷𝟓

𝜶𝟐 + 𝜷𝟏 𝜶𝟐 𝜶𝟐 + 𝜷𝟑 𝜶𝟐 + 𝜷𝟒

𝜶𝟑 + 𝜷𝟏 𝜶𝟑 𝜶𝟑 + 𝜷𝟑

𝜶𝟒 + 𝜷𝟏 𝜶𝟒

𝜶𝟓 + 𝜷𝟏

𝜼𝒊𝒋 = 𝜶𝒊 + 𝜷𝒋,

where 𝜷𝟐 = 𝟎.

Start with fitting a GLM to the triangle to get the parameters, …



Part III – Reserve Projections

Reserve projection with 2d model.
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𝜶𝟏 + 𝜷𝟏 𝜶𝟏 𝜶𝟏 + 𝜷𝟑 𝜶𝟏 + 𝜷𝟒 𝜶𝟏 + 𝜷𝟓

𝜶𝟐 + 𝜷𝟏 𝜶𝟐 𝜶𝟐 + 𝜷𝟑 𝜶𝟐 + 𝜷𝟒 𝜶𝟐 + 𝜷𝟓

𝜶𝟑 + 𝜷𝟏 𝜶𝟑 𝜶𝟑 + 𝜷𝟑 𝜶𝟑 + 𝜷𝟒 𝜶𝟑 + 𝜷𝟓

𝜶𝟒 + 𝜷𝟏 𝜶𝟒 𝜶𝟒 + 𝜷𝟑 𝜶𝟒 + 𝜷𝟒 𝜶𝟒 + 𝜷𝟓

𝜶𝟓 + 𝜷𝟏 𝜶𝟓 𝜶𝟓 + 𝜷𝟑 𝜶𝟓 + 𝜷𝟒 𝜶𝟓 + 𝜷𝟓

𝜼𝒊𝒋 = 𝜶𝒊 + 𝜷𝒋,

where 𝜷𝟐 = 𝟎.

… and extend the triangle using the fitted parameters. The reserve is the 
sum of all expected values in the bottom half of the “squared” triangle.



Part III – Reserve Projections

Snag with 2d+1 model.
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𝜷𝟑 𝜷𝟒 + 𝜸𝟒 𝜷𝟓 + 𝜸𝟓

𝜶𝟐 + 𝜷𝟐 𝜶𝟐 + 𝜷𝟑 + 𝜸𝟒 𝜶𝟐 + 𝜷𝟒 + 𝜸𝟓 𝜶𝟐 + 𝜷𝟓 + 𝜸𝟔

𝜶𝟑 𝜶𝟑 + 𝜷𝟐 + 𝜸𝟒 𝜶𝟑 + 𝜷𝟑 + 𝜸𝟓 𝜶𝟑 + 𝜷𝟒 + 𝜸𝟔 𝜶𝟑 + 𝜷𝟓 + 𝜸𝟕

𝜶𝟒 + 𝜸𝟒 𝜶𝟒 + 𝜷𝟐 + 𝜸𝟓 𝜶𝟒 + 𝜷𝟑 + 𝜸𝟔 𝜶𝟒 + 𝜷𝟒 + 𝜸𝟕 𝜶𝟒 + 𝜷𝟓 + 𝜸𝟖

𝜶𝟓 + 𝜸𝟓 𝜶𝟓 + 𝜷𝟐 + 𝜸𝟔 𝜶𝟓 + 𝜷𝟑 + 𝜸𝟕 𝜶𝟓 + 𝜷𝟒 + 𝜸𝟖 𝜶𝟓 + 𝜷𝟓 + 𝜸𝟗

𝜼𝒊𝒋 = 𝜶𝒊 + 𝜷𝒋 + 𝜸𝒊+𝒋−𝟏,

where 𝜶𝟏 = 𝜷𝟏 = 𝜸𝟑 = 𝟎.

Want to extend triangle using fitted parameters as for 2d model …



Part III – Reserve Projections

Snag with 2d+1 model.

24

𝜷𝟑 𝜷𝟒 + 𝜸𝟒 𝜷𝟓 + 𝜸𝟓

𝜶𝟐 + 𝜷𝟐 𝜶𝟐 + 𝜷𝟑 + 𝜸𝟒 𝜶𝟐 + 𝜷𝟒 + 𝜸𝟓 𝜶𝟐 + 𝜷𝟓 + 𝜸𝟔

𝜶𝟑 𝜶𝟑 + 𝜷𝟐 + 𝜸𝟒 𝜶𝟑 + 𝜷𝟑 + 𝜸𝟓 𝜶𝟑 + 𝜷𝟒 + 𝜸𝟔 𝜶𝟑 + 𝜷𝟓 + 𝜸𝟕

𝜶𝟒 + 𝜸𝟒 𝜶𝟒 + 𝜷𝟐 + 𝜸𝟓 𝜶𝟒 + 𝜷𝟑 + 𝜸𝟔 𝜶𝟒 + 𝜷𝟒 + 𝜸𝟕 𝜶𝟒 + 𝜷𝟓 + 𝜸𝟖

𝜶𝟓 + 𝜸𝟓 𝜶𝟓 + 𝜷𝟐 + 𝜸𝟔 𝜶𝟓 + 𝜷𝟑 + 𝜸𝟕 𝜶𝟓 + 𝜷𝟒 + 𝜸𝟖 𝜶𝟓 + 𝜷𝟓 + 𝜸𝟗

𝜼𝒊𝒋 = 𝜶𝒊 + 𝜷𝒋 + 𝜸𝒊+𝒋−𝟏,

where 𝜶𝟏 = 𝜷𝟏 = 𝜸𝟑 = 𝟎.

Want to extend triangle using fitted parameters as for 2d model …
… but we don’t know the values of 𝜸𝟔, 𝜸𝟕, 𝜸𝟖, and 𝜸𝟗!



Part III – Reserve Projections

Extrapolating trend parameters. 
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𝜷𝟑 𝜷𝟒 + 𝜸𝟒 𝜷𝟓 + 𝜸𝟓

𝜶𝟐 + 𝜷𝟐 𝜶𝟐 + 𝜷𝟑 + 𝜸𝟒 𝜶𝟐 + 𝜷𝟒 + 𝜸𝟓 𝜶𝟐 + 𝜷𝟓 + 𝜸𝟔

𝜶𝟑 𝜶𝟑 + 𝜷𝟐 + 𝜸𝟒 𝜶𝟑 + 𝜷𝟑 + 𝜸𝟓 𝜶𝟑 + 𝜷𝟒 + 𝜸𝟔 𝜶𝟑 + 𝜷𝟓 + 𝜸𝟕

𝜶𝟒 + 𝜸𝟒 𝜶𝟒 + 𝜷𝟐 + 𝜸𝟓 𝜶𝟒 + 𝜷𝟑 + 𝜸𝟔 𝜶𝟒 + 𝜷𝟒 + 𝜸𝟕 𝜶𝟒 + 𝜷𝟓 + 𝜸𝟖

𝜶𝟓 + 𝜸𝟓 𝜶𝟓 + 𝜷𝟐 + 𝜸𝟔 𝜶𝟓 + 𝜷𝟑 + 𝜸𝟕 𝜶𝟓 + 𝜷𝟒 + 𝜸𝟖 𝜶𝟓 + 𝜷𝟓 + 𝜸𝟗

𝜼𝒊𝒋 = 𝜶𝒊 + 𝜷𝒋 + 𝜸𝒊+𝒋−𝟏,

where 𝜶𝟏 = 𝜷𝟏 = 𝜸𝟑 = 𝟎.

We can fix the “snag” using linear extrapolation with weights that 
add up to one:

where  𝜸𝒊 = 𝜸𝒊+𝟏 − 𝜸𝒊 for 𝒊 = 𝟏,… , 𝟒, and 

 𝜸𝒊 = 𝜿𝒊 + ℓ=𝟏
𝟒 𝝎𝒊ℓ ⋅  𝜸ℓ, for 𝒊 = 𝟓,… , 𝟖, and  ℓ=𝟏

𝟒 𝝎𝒊ℓ = 𝟏.

𝜸𝒌 = 
ℓ=𝟑

𝒌−𝟏

 𝜸𝓵
fitted

extrapolated

This is just the mechanics – the practical 
implications will be explored with hands-on 
examples during the concurrent session.
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Part IV - Stochastic Reserve Ranges

Learning Objectives.

Readers should (re-)familiarize themselves with the following concepts: 

Stochastic payment process (reserve outcome = estimated - actual)

Two components of variability (parameter & process) 

Model risk is not considered (all results are conditional on model structure)

Simulation of parameter variability (bootstrap & MV-normal approximation)

Simulation of process variability (template uses resampling)

This part is of interest to readers who want to understand the 
different bootstrap options offered by the VBA template used 
for this session. If you are less familiar with stochastic 
reserving you can skip this part.
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Part IV - Stochastic Reserve Ranges

Stochastic payment process.
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Expected Incremental Amounts Random Draw Reserve Outcome =  -39

250     400     200     100     50       237     439     140     134     48       

275     440     220     110     55       296     446     200     59       53       

300     480     240     120     60       310     472     172     188     64       

325     520     260     130     65       244     494     183     107     39       

375     600     300     150     75       411     582     312     135     93       

Expected Unpaid = 1,815 Estimated Unpaid = 1,716

Actual Paid = 1,755

Random Draw Reserve Outcome = -444 Random Draw Reserve Outcome = 244

221     440     164     97       30       200     399     203     99       26       

314     526     284     63       66       265     427     190     122     51       

315     441     189     191     23       327     484     345     119     68       

328     508     283     126     69       373     493     283     85       42       

336     599     304     138     89       421     543     326     141     74       

Estimated Unpaid = 1,443 Estimated Unpaid = 1,977

Actual Paid = 1,887 Actual Paid = 1,733



Part IV - Stochastic Reserve Ranges

Two components of variability.

In our example on the previous slide we know all the parameters of the 
underlying stochastic process. Therefore we can precisely calculated the 
true reserve (i.e. expected unpaid amounts).

In practice we need to estimate the model parameters from the random 
amounts observed in the triangle, …

… which leads to a complicated multivariate sampling distribution for the 
model parameters.

Parameter Risk
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Part IV - Stochastic Reserve Ranges

Two components of variability.

In our example on the previous slide we know all the parameters of the 
underlying stochastic process. Therefore we can precisely calculated the 
true reserve (i.e. expected unpaid amounts).

When it comes to actual future payments, however,  we still have to recon 
with the random nature of the stochastic process, …

… and we do not know what amount will be.

Process Risk
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Part IV - Stochastic Reserve Ranges

Model risk is not considered.

Most stochastic reserving models, including the methods implemented in 
the template used for this session, are conditional on the assumed model 
structure being correct.

While omitting model risk may be considered “state of the art,” 
practitioners should be aware of the limitation.
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Part IV - Stochastic Reserve Ranges

Simulation of parameter variability.

Most stochastic reserving models rely on Monte Carlo simulations to 
generate information about the distribution of reserve outcomes.

Bootstrapping is a resampling technique that uses observed residuals to 
approximate the error structure of the underlying stochastic process. 
Pseudo data is repeatedly generated, and the parameters are re-estimated 
from the pseudo data. This results in a Monte Carlo sample of reserve 
estimates.

There is no universally accepted way of resampling residuals. A commonly 
implemented approach, namely linear rescaling of Pearson residuals, often 
breaks down for real data, and the template used for this session offers two 
resampling methods that are more widely applicable.

Bootstrapping
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Part IV - Stochastic Reserve Ranges

Simulation of parameter variability.

Both bootstrapping methods use a parameter to define a minimum value
(% of expected) for resampled pseudo data.

Split-linear rescaling is the same as linear rescaling of Pearson residuals, if 
none of the rescaled residuals result in a resampling value below the 
minimum. If a resampling value drops below the minimum, the Pearson 
residuals are split into two sets with separate scaling factors in such a way 
that the resulting resampling distribution retains the assumed mean-
variance relationship.

Limited Pareto sampling is a computationally efficient parametric 
resampling method (not based on residuals) that ensures that the 
resampled values have the assumed mean-variance relationship.

Bootstrapping
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Part IV - Stochastic Reserve Ranges

Simulation of parameter variability.

GLM’s use maximum likelihood estimation, and there are asymptotic 
results for the parameter estimates. In particular, there is a generalization 
of the Mean Value Theorem which states, that for large data sets, the 
sampling distribution of the parameters approaches a multivariate normal 
distribution, with a known covariance structure.

This motivates a way of sidestepping the bootstrapping scheme altogether, 
and directly sampling parameters from the asymptotic multivariate normal 
distribution. Once the parameters have been sampled, the resulting reserve 
estimate can easily be calculated. Again we end up with a Monte Carlo 
sample of reserve estimates.

This method is computationally efficient, but the asymptotic distribution 
can differ from the actual sampling distribution of the parameters.

Asymptotic Approximation
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Part IV - Stochastic Reserve Ranges

Simulation of process variability.

All models supported by the template rely on the same semi-parametric 
assumptions about the structure of the underlying stochastic process: 
namely that we are dealing with a GLM where the mean-variance 
relationship is defined by the choice of variance function.

Consistent with these assumptions, the uncertainty of future payments is 
simulated using the expected values resulting from the original model fit, 
and the expected variances implied by the expected values.

For each of the bootstrapping methods, the same resampling or sampling 
technique is both for past and future payment amounts. For the asymptotic 
approximation, Limited Pareto sampling is employed for future payment 
amounts.
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Thank you
Thomas Hartl

Email: thomas.hartl@milliman, Phone: 781-213-6326


