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Motivation (1)

• Consider loss reserving on the basis of a 

conventional triangular data set

– e.g. paid losses, incurred losses, etc.

• A model often used is the chain ladder

– This involves a very simple model structure

– It will be inadequate for the capture of certain 

claim data characteristics from the real world 

(illustrated later)
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Motivation (2)

• When such features are present, they may be modelled 

by means of a Generalized Linear Model (GLM)

(McGuire, 2007; Taylor & McGuire, 2004, 2016)

• But construction of this type of model requires many 

hours (perhaps a week) of a highly skilled analyst

– Time-consuming

– Expensive

• Objective is to consider more automated modelling that 

produces a similar GLM but at much less time and 

expense
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Regularized regression: in general

• Consider a standard (multivariate) linear regression problem, 

expressed in vector and matrix form:

𝑦 = 𝑋𝛽 + 𝜀, 𝜀~𝑁 0, 𝜎2

• Estimation of parameter vector 𝛽 by  𝛽

– OLS loss function is

𝑦 − 𝑋  𝛽
𝑇

𝑦 − 𝑋  𝛽 = 𝑦 − 𝑋  𝛽
2

2
[least squares]

where • 𝑝 denotes the 𝒑-norm: 𝑧 𝑝 =  𝑗 𝑧𝑗
𝑝  1 𝑝

– regularized regression loss function is

𝑦 − 𝑋  𝛽
2

2
+ 𝜆  𝛽

𝑝

𝑝

Penalty for poor fit Tuning constant 

(𝜆 ≥ 𝟎)

Penalty for additional 

parameters

http://www.taylorfry.com.au/
http://www.taylorfry.com.au/


7

Regularized regression: the lasso

• Regularized regression loss function (previous slide)

𝑦 − 𝑋  𝛽
2

2
+ 𝜆  𝛽

𝑝

𝑝

• Special cases

o 𝑝 = 0: OLS regression (no penalty)

o 𝑝 = 2: Ridge regression

o 𝒑 = 𝟏: Lasso (Least Absolute Shrinkage and Selection 

Operator)

• Adaptation to Generalized Linear Models (GLM)

– GLM takes form

𝑦 = ℎ−1 𝑋𝛽 + 𝜀

– Regularized regression loss function becomes

−2ℓ 𝑦; 𝑋,  𝛽 + 𝜆  𝛽
𝑝

𝑝

Link function

Stochastic error 

(EDF)

Log-likelihood
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Formal derivations of the GLM lasso

• Constrained parameters

– Fit GLM by MLE subject to parameter 

constraint  𝛽
1

=  𝑗 𝛽𝑗 ≤ 𝑐𝑜𝑛𝑠𝑡.

• Random effects GLM

– MAP (maximum a posteriori) estimation of 𝛽
when parameters subject to random effects 

with independent Laplace distributed priors:

𝑝𝑑𝑓 𝑜𝑓 𝛽𝑗 = 𝑒𝑥𝑝 ½𝜆 𝛽𝑗
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Application of GLM lasso

• Regularized GLM regression loss function (earlier slide)

−2ℓ 𝑦; 𝑋,  𝛽 + 𝜆  𝛽
𝑝

𝑝

• Lasso version (𝑝 = 1)

−2ℓ 𝑦; 𝑋,  𝛽 + 𝜆  

𝑗

𝛽𝑗

• The second member of the loss function tends to force parameters 

to zero

o 𝜆 → 0: model approaches conventional GLM

o 𝜆 → ∞: all parameter estimates approach zero

o Intermediate values of 𝜆 control the complexity of the model 

(number of non-zero parameters)
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Loss reserving framework and notation (1)

• Experimental simulated data sets

– Incremental quarterly paid claim triangles (40x40)

• Notation

 𝑘 = accident quarter

 𝑗 = development quarter

 𝑡 = 𝑘 + 𝑗 − 1 = payment quarter

 𝑌𝑘𝑗 = incremental paid losses in (𝑘, 𝑗) cell

 𝜇𝑘𝑗 = 𝐸 𝑌𝑘𝑗 , 𝜎𝑘𝑗
2 = 𝑉𝑎𝑟 𝑌𝑘𝑗

 Assumed that 𝑙𝑛 𝜇𝑘𝑗 = 𝛼𝑘 + 𝛽𝑗 + 𝛾𝑡 (generalized chain 

ladder)

 The 𝜎𝑘𝑗
2 are selected throughout to be consistent with the 

Mack formulation of the chain ladder model
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Loss reserving framework and notation (2)

• It is necessary to decide the set of regressors to be 

included in the model, i.e. the rows of the design matrix 

𝑋

• Each regressor is some function of 𝑘, 𝑗

• The present application includes all of the following 

regressors (“basis functions”)

– All unit step functions of 𝑘, 𝑗 or 𝑡
• Various locations of the step

– All unit gradient ramp functions of 𝑘, 𝑗 or 𝑡
• Various locations of the start and end of the ramp

• Combinations of these (linear splines) can approximate 

smooth curves

– (later) interactions between the step basis functions
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Application of lasso to loss reserving

• 4 data sets with different underlying model structures (of 

𝜇𝑘𝑗) considered

– In increasing order of stress to the model

– Lasso applied to each dataset

• Once the tuning constant 𝜆 selected, models are self-

assembling

– Interest in examination of the extent to which the 

model self-assembles the structures concealed in the 

data

– Also compare model forecasts with those from the 

chain ladder
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Data set 1: set-up

• Recall 𝑙𝑛 𝜇𝑘𝑗 = 𝛼𝑘 + 𝛽𝑗 + 𝛾𝑡

• Observations (both past and future, whole square, not just triangle) 

simulated according to 𝑌𝑘𝑗~𝑂𝐷𝑃(𝜇𝑘𝑗 , 𝜙)

– Assumed that the 𝑌𝑘𝑗 are in constant dollar values (inflation 

corrected)

• Any calendar quarter trend represents superimposed inflation 

(“SI”)

– Upper triangle forms training data set

– Lower triangle forms test data set

• Assume

 𝛽𝑗 follows Hoerl curve as function of 𝑗

 𝛾𝑡=0 (no payment year effect)

 𝛼𝑘 appears as in diagram

http://www.taylorfry.com.au/
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Data set 1: model selection

• The number of basis functions (regressors) was 2,380

• Model fitted to the training data set for a large number of values of 

tuning constant 𝜆

– As 𝜆 increases, number of non-zero parameters decreases

• Model performance (for any given 𝜆) measured by:

– AIC

– Training error [sum of (actual-fitted)2/fitted values for training 

data set]

– Test error [sum of (actual-fitted)2/fitted values for test data set] 

(N.B. unobservable in practice)

– 8-fold cross-validation error based on training data set

http://www.taylorfry.com.au/
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Data set 1: model selection (cont’d)

• Model selected to 

minimize CV error

– Other 

approaches are 

possible to 

reduce model 

complexity

• Selected model 

contains 152 non-

zero parameters
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Data set 1: results

• AQ tracking

• Tracking appears 

reasonable

• DQ tracking
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Data set 1: results (cont’d)

• Loss reserve by AQ

• Lasso forecast appears 

satisfactory
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• Distribution of total loss 

reserve

• Lasso forecast tighter than 

chain ladder 
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Data set 2: set-up and model selection

• Recall 𝑙𝑛 𝜇𝑘𝑗 = 𝛼𝑘 + 𝛽𝑗 + 𝛾𝑡

• Assume

 𝛼𝑘 as for data set 1

 𝛽𝑗 as for data set 1

 𝛾𝑡 appears as in diagram

• Model includes:

– about 3,200 basis functions

• Experimentation suggests inclusion of an unpenalized

constant SI term (𝛾𝑡 = 𝑡) in regression

– 84 non-zero parameters

http://www.taylorfry.com.au/
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Data set 2: results

• CQ tracking : at DQ 5

• Tracking again appears 

reasonable

• CQ tracking : at DQ 15
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Data set 2: results (cont’d)
• Loss reserve by AQ

• Chain ladder now based on last 

8 calendar quarters

• Lasso CQ trends stopped at last 

diagonal

– Hence lasso biased 

downward relative to CL

• Total loss reserve

• Chain ladder highly 

volatile
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Data set 3: set-up and model selection

• This time 𝑙𝑛 𝜇𝑘𝑗 = 𝛼𝑘 + 𝛽𝑗 + 𝛾𝑡 + 𝒊𝒏𝒕𝒆𝒓𝒂𝒄𝒕𝒊𝒐𝒏 𝒕𝒆𝒓𝒎

• Assume

 𝛼𝑘 as for data sets 1 & 2

 𝛽𝑗 as for data sets 1 & 2

 𝛾𝑡 as for data set 2

 Interaction between AQ and DQ

 For 𝑘 > 16, 𝛽𝑗 increases by 0.3 for 𝑗 > 20

 Difficult to detect: affects only 6 cells in the triangle of 820 cells

• Model includes:

– about 3,200 basis functions

– 103 non-zero parameters

𝒌 > 𝟏𝟔

𝒋 > 𝟐𝟎

http://www.taylorfry.com.au/
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Data set 3: results

• DQ tracking at AQ 25

• DQ tracking 

surprisingly accurate

• AQ tracking at DQ 25

• Though under-

estimation of tail at 

higher AQs
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Data set 3: results (cont’d)
• Loss reserve by AQ

• Chain ladder now based on last 8 

calendar quarters

• CL and lasso both under-estimate

– But CL under-estimation greater

• Total loss reserve

• Chain ladder highly volatile
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Data set 3: results (cont’d)
• The AQxDQ interaction 

has been penalized like all 

other regressors

• In practice, one might be 

able to anticipate the 

change

– e.g. a legislated benefit 

change, taking effect in 

AQ 17

• In this case, one could 

apply no penalty to the 

interaction

• Loss reserve by AQ
– Interaction unanticipated

– Interaction anticipated
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Data set 4: set-up and model selection

• This time 𝑙𝑛 𝜇𝑘𝑗 = 𝛼𝑘 + 𝛽𝑗 + 𝝀𝒋𝛾𝑡

• Assume

 𝛼𝑘 as for data sets 1-3

 𝛽𝑗 as for data sets 1-3

 𝛾𝑡 as for data sets 2 & 3

 𝜆𝑗 (multiplier that varies SI with 𝑗)

• Model includes:

– about 3,200 basis functions

– 87 non-zero parameters

DQ
40
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Data set 4: results

• DQ tracking at AQ 10 • DQ tracking at AQ 25
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Data set 4: results (cont’d)

• AQ tracking at DQ 10 • AQ tracking at DQ 25
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Data set 4: results (cont’d)

• CQ tracking at DQ 5 • CQ tracking at DQ 15
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Data set 4: results (cont’d)
• Total loss reserve

• Chain ladder comparable with 

lasso but with some outlying 

forecasts

• Loss reserve by AQ

• Lasso more efficient predictor 

of individual accident quarters
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Further testing and development

• Examination of additional scenarios

– Particularly those likely to stress the chain ladder

• Different basis functions

– e.g. Hoerl curve basis functions for DQ effects

• Consideration of future SI

– How well adapted to extrapolation is the lasso?

• Robustification

• Multi-line reserving (with dependencies)

• Adaptive reserving

– How might the lasso be adapted as a dynamic 

model?
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Conclusion

• The lasso appears promising as a platform for self-assembling 

models

– The model calibration procedure follows a routine and is 

relatively quick

• Perhaps 30 minutes for routine calibration and examination of 

diagnostics

• Perhaps an hour if one or two ad hoc changes require formulation 

and implementation

– e.g. superimposed inflation, legislative change

• The lasso appears to track eccentric features of the data reasonably 

well

– Including in scenarios where the chain ladder has little hope of 

an accurate forecast

• Some further experimentation required before full confidence can be 

invested in it as an automated procedure
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