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Loss Development Blending

Reinsurance pricing problem:

We have a loss development triangle from our client:

• May be sparse, not fully credible

• No tail beyond latest age in triangle

We have “benchmark” pattern from other sources:

 ISO / RAA / Reserving / Peer Companies

 Uncertain estimation and relevance for this client

4



Loss Development Blending
(numbers for illustration only)
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Single Benchmark Example

12 24 36 48 60 72 84 96

1990 73 262 469 528 536 591 604 606
1991 148 346 391 502 522 514 567
1992 99 198 219 394 408 430
1993 118 255 352 412 581
1994 275 415 645 803
1995 261 446 637
1996 130 471
1997 148

12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-Ult
1990 3.589 1.790 1.126 1.015 1.103 1.022 1.003
1991 2.338 1.130 1.284 1.040 0.985 1.103
1992 2.000 1.106 1.799 1.036 1.054
1993 2.161 1.380 1.170 1.410
1994 1.509 1.554 1.245
1995 1.709 1.428
1996 3.623

Col. 1 1,104 1,922 2,076 1,836 1,466 1,105 604
Col. 2 2,393 2,713 2,639 2,047 1,535 1,171 606

Avg ATA 2.168 1.412 1.271 1.115 1.047 1.060 1.003
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Bayesian Philosophy

Bayes’ Theorem:

This formula has three components:

A distribution representing “prior” knowledge of the parameters 

A likelihood function representing the probability of observing the actual 
data X given a certain parameter set.

The “posterior” probability of the parameters, revised based on the data
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Bayesian Philosophy

Tools for Evaluating the Mathematics:

1) Conjugate Families

2) Linear Approximation to Bayes Formula => Bühlmann-Straub

3) Numerical Approximation of the Formula

a) Quadrature integration (old method)

b) Simulation via MCMC (the new favorite)

Conjugate family has advantage of simple calculation and interpretability.
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Conjugate Prior

When the prior distribution ߨ ߠ and likelihood ݂ ߠ|ܺ are chosen such that the 
posterior distribution ߨ ܺ|ߠ has the same distribution form as the prior, then we 
have a conjugate relationship.

Common examples from the Exponential Family are:

ߨ ߠ =>   ݂ ߠ|ܺ

Gamma  =>  Poisson

Beta       =>  Binomial

Dirichlet  =>  Multinomial

Normal   =>  Normal

9



Conjugate Priors - Interpretation

“Conjugate priors… have the desirable feature that prior information can be viewed 
as ‘fictitious sample information’ in that it is combined with the sample in exactly the 
same way that additional sample information would be combined.

“The only difference is that the prior information is ‘observed’ in the mind of the 
researcher, not in the real world.”

- Bayesian Econometric Methods; Koop, Poirier & Tobias
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Conjugate Priors – Loss Development

For analysis of loss development patterns:

• Normal / Normal [Shi & Hartman (2014)]

• Dirichlet / Multinomial [Clark (2016), following Mildenhall (2006)]

Both of these conjugate models result in the same form that is easily implemented 
in practice.
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Credibility Blending Formula

The credibility blending becomes a simple dollar-weighted average.

If you can calculate an age-to-age factor, then you can do a Bayesian model!
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  Example of Blending Client and Benchmark Patterns
12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-Ult

ATA from Triangle
Col. 1 1,104      1,922     2,076     1,836     1,466     1,105     604        -         
Col. 2 2,393      2,713     2,639     2,047     1,535     1,171     606        -         
ATA 2.168 1.412 1.271 1.115 1.047 1.060 1.003

Benchmark Pattern
Col. 1 1,419      2,027     2,546     2,933     3,383     3,633     3,717     3,042     
Col. 2 4,000      4,000     4,000     4,000     4,000     4,000     4,000     4,000     
ATA 2.819 1.973 1.571 1.364 1.182 1.101 1.076 1.315

Blended Pattern
Col. 1 2,523      3,949     4,622     4,769     4,849     4,738     4,321     3,042     
Col. 2 6,393      6,713     6,639     6,047     5,535     5,171     4,606     4,000     
ATA 2.534 1.700 1.436 1.268 1.141 1.091 1.066 1.315

All numbers for illustration onlyAll numbers for illustration only



Empirical Estimation of Credibility

• Subjective Bayes

• Prior distributions selected based on expert judgment

• Practical approach:  reverse engineer based on implied credibility 
weights used by actuaries

• Empirical Bayes

• Use other data to create a “prior”

• Known as “regularization” in Predictive Analytics

• We can use concept of Cross Validation

Note:  We can compromise by estimating empirical credibility factors and allowing 
our experts to subjectively adjust them.
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Empirical Estimation of Credibility
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============

• High Variance

• Data is sparse

• “fit to noise”

A compromise solution is to find the 
best blending between these two 
extremes.

• Shrinkage or Regularization* to 
statisticians

• Credibility to actuaries

*Andrew Gelman informally defines regularization as “a general term used for 
statistical procedures that give more stable estimates.”



Empirical Estimation of Credibility

From Howard 
Mahler’s 1998 paper, 
we are asking how 
predictive historical 
experience is for 
future claims.

Source:  Mahler (1998)
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Empirical Estimation of Credibility

The optimal credibility 
parameter minimizes 
the prediction error.

Source:  Mahler (1998)
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Empirical Estimation of Credibility

What Mahler (1998) called 
minimizing the prediction 
error is equivalent to what 
data scientists call 
optimizing the 
variance/bias trade-off.

Cross Validation is a 
popular tool for 
accomplishing this task.

Source:  Hoerl & Kennard (1970)
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Empirical Estimation of Credibility

Leave One Out Cross Validation (LOOCV):

Find the Credibility Ballast value that minimizes prediction error.  For loss 
reserving, this may be a future age-to-age factor compared to the average age-to-
age factor on the incomplete triangle averaged with a benchmark.

Example:  sample data from the CAS database of Schedule P triangles.

http://www.casact.org/research/index.cfm?fa=loss_reserves_data
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Empirical Estimation of Credibility

Remember that it is this credibility ballast that we want to estimate.
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Empirical Estimation of Credibility
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Using the Schedule P data by line of business, we use LOOCV to estimate the 
credibility constants for paid loss development.

[these are estimates to replace the constant 4,000 in earlier slides]

[Excel example is provided to show how these numbers are calculated]

All numbers for illustration onlyAll numbers for illustration only

Credibility Ballast from 1988-1997 Schedule P Database

12-24 24-36 36-48 48-60 60-72 72-84 84-96 96-108 108-120

CAL 1,068 3,626 6,845 24,326 16,399 40,550 60,229 283,454 83,671

PPAL 3,933 9,324 6,069 6,924 12,366 28,015 31,809 66,268 80,551

GL 2,544 3,500 4,000 8,403 9,732 7,463 20,456 12,582 636,980

WC 9,861 7,875 9,651 12,431 20,674 24,052 37,642 999,999 15,103



Empirical Estimation of Credibility
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Empirical Estimation of Credibility

Comments on Cross-Validation:

• The credibility parameter is estimated from the data and is therefore subject to 
estimation error.  A larger data set for this estimation is always better, but the 
final number may still need to be “smoothed” judgmentally.

• The estimation depends upon the selection of the error structure to be 
minimized (I am using Chi-Square error term).

• For the CAS Schedule P data:  the credibility “ballast” is calculated separately 
for each development age.
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Subjective Estimation of Credibility
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EXTENDING THE MODEL



Extending the Model

The model discussed so far has assumed that each age of development is to be 
blended individually.

We can extend this by allowing a dependence structure between ages.

 Shi & Hartman (2014) use a Normal/Normal model that allows for a correlation 
matrix to be included in the multivariate Normal distribution

 Clark (2016) uses a finite mixture distribution

 Alternative approaches allow for fitted curves (e.g., Sherman inverse power) 
instead of individual age-to-age factors
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Extending the Model
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We can extend this model further by including mixtures of prior distributions.

Perhaps we know that companies are naturally grouped into Fast, Medium, or Slow 
payment patterns.  But we do not know to which group our client belongs.

  Cumulative Loss Development Factors
12 24 36 48 60 72 84 96

Fast 14.014 4.930 2.607 1.759 1.406 1.263 1.191 1.155

Medium 21.950 7.787 3.946 2.512 1.842 1.558 1.415 1.315

Slow 49.240 15.860 7.407 4.163 2.706 2.057 1.750 1.567

All numbers for illustration onlyAll numbers for illustration only



Extending the Model
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We assign initial weights to each of the groupings (perhaps 33%/33%/33%) and then 
apply Bayes’ theorem to update the weights.

This allows us to adjust our “tail” based on which group is closest to our client’s data.

  Bayesian Updating of Probabilities

Difference Relative Original Revised
LogLikelihood in LL Likelihood Weights Weights

A B=A-Max(A) C=exp(B) D E=C*D/Avg( C )

Slow -4.61 -0.77 0.464 33.33% 20.41%
Baseline -4.06 -0.21 0.810 33.33% 35.61%
Fast -3.84 0.00 1.000 33.33% 43.98%

0.758 100.00% 100.00%

All numbers for illustration onlyAll numbers for illustration only



Extending the Model

Other potential extensions of this model:

 Alternative variance structures

 More refined benchmark patterns (e.g., a collection of benchmarks dependent 
upon company type or case reserving practice)

 Inclusion of frequency/severity, exposure bases and expected loss ratios 
(Mildenhall 2006)

 Use of the model for selection of reserve ranges
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Conclusions

• Credibility in Loss Development pattern selection has benefits

• Stability in estimation – can break data into small homogeneous pieces

• Consistency in pricing

• Even very sparse data from a client can update the benchmark

• We can use Cross Validation to estimate starting points for the Bayesian 
credibility constants

• The Bayesian framework can be extended for ever more realistic assumptions
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